首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Na(+)/H(+) exchanger regulatory factor (NHERF) is an adapter protein that is responsible for organizing a number of cell receptors and channels. NHERF contains two amino-terminal PDZ (postsynaptic density 95/disk-large/zonula occluden-1) domains that bind to the cytoplasmic domains of a number of membrane channels or receptors. The carboxyl terminus of NHERF interacts with the FERM domain (a domain shared by protein 4.1, ezrin, radixin, and moesin) of a family of actin-binding proteins, ezrin-radixin-moesin. NHERF was shown previously to be capable of enhancing the channel activities of cystic fibrosis transmembrane conductance regulator (CFTR). Here we show that binding of the FERM domain of ezrin to NHERF regulates the cooperative binding of NHERF to bring two cytoplasmic tails of CFTR into spatial proximity to each other. We find that ezrin binding activates the second PDZ domain of NHERF to interact with the cytoplasmic tails of CFTR (C-CFTR), so as to form a specific 2:1:1 (C-CFTR)(2).NHERF.ezrin ternary complex. Without ezrin binding, the cytoplasmic tail of CFTR only interacts strongly with the first amino-terminal PDZ domain to form a 1:1 C-CFTR.NHERF complex. Immunoprecipitation and immunoblotting confirm the specific interactions of NHERF with the full-length CFTR and with ezrin in vivo. Because of the concentrated distribution of ezrin and NHERF in the apical membrane regions of epithelial cells and the diverse binding partners for the NHERF PDZ domains, the regulation of NHERF by ezrin may be employed as a general mechanism to assemble channels and receptors in the membrane cytoskeleton.  相似文献   

2.
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a cAMP-regulated Cl- channel expressed at the apical plasma membrane. It has been proposed that the C-terminal PDZ binding motif of CFTR is required for its apical membrane targeting and that PDZ-domain interactions may tether CFTR to the actin cytoskeleton via soluble proteins including EBP50/NHERF1 and ezrin. We measured the diffusional mobility of human CFTR in the plasma membrane of Madin-Darby canine kidney cells by photobleaching of green fluorescent protein (GFP)-CFTR chimeras. After bleaching by a focused laser beam, GFP-CFTR fluorescence in the bleached membrane region recovered to approximately 90% of its initial level, indicating that nearly all of the CFTR was mobile. The GFP-CFTR diffusion coefficient (D) was 0.99 +/- 0.09 x 10(-10) cm2/s at 37 degrees C, similar to that of other membrane proteins. GFP-CFTR diffusion was not altered by protein kinase A or C activators but was blocked by paraformaldehyde and filipin. CFTR mutants lacking functional PDZ-binding domains (GFPCFTR-DeltaTRL and GFP-CFTR-DeltaTRA) were also mobile with D significantly increased by approximately 60% compared with GFP-CFTR. However, GFP-CFTR, GFP-CFTR-Delta TRL, and GFP-CFTR-DeltaTRA had similar mobilities (D approximately 12 x 10(-10) cm2/s) at the endoplasmic reticulum in brefeldin A-treated cells. Agents that modulate the actin cytoskeleton (cytochalasin D and jasplakinolide) altered the plasma membrane mobility of CFTR but not CFTR- DeltaTRL. EBP50 (NHERF1), a PDZ domain-containing protein that interacts with the C terminus of CFTR, diffused freely in the cytoplasm with a diffusion coefficient of 0.9 +/- 0.1 x 10(-7) cm2/s. EBP50 diffusion increased by approximately 2-fold after deletion of its ezrin-binding domain. These results indicate that wild-type CFTR is not tethered statically at the plasma membrane but that its diffusion is dependent on PDZ-domain interactions and an intact actin skeleton. PDZ-domain interactions of CFTR are thus dynamic and occur on a time scale of seconds or faster.  相似文献   

3.
Among the phospholipase C that catalyzes the hydrolysis of phosphatidylinositol 4,5-bisphosphate, four mammalian phospholipase C-beta (PLC-beta) isotypes (isotypes 1-4) are activated through G protein-coupled receptors (GPCRs). Although the regulation of the PLC-betas by GPCRs and heterotrimeric G proteins has been extensively studied, little is known about the molecular determinants that regulate their activity. The PLC-beta isozymes carry a putative PSD-95/Dlg/ZO-1 (PDZ) binding motif (X(S/T)X(V/L)COOH) at their carboxyl terminus, which is implicated in specific interactions with anchor proteins. Using the yeast two-hybrid system, we identified Na(+)/H(+) exchanger regulatory factor 2 (NHERF2) as a protein that interacted with a C-terminal heptapeptide of PLC-beta3. Immunoprecipitation studies revealed that NHERF2 interacts specifically with PLC-beta3, but not with other PLC-beta isotypes. Furthermore, PLC-beta3 interacted with NHERF2 rather than with other PDZ-containing proteins. This interaction required the COOH-terminal NTQL sequence of PLC-beta3 and the second PDZ domain of NHERF2. Interestingly, NHERF2 potentiated the PLC-beta activation by carbachol in COS7 and HeLa cells, while mutant NHERF2, lacking the second PDZ domain, had no such effect. Taken together, the data suggest that NHERF2 may act as a modulator underlying the process of PLC-beta3-mediated signaling.  相似文献   

4.
The Na(+)/H(+) exchanger regulatory factor-1 (NHERF1) is a molecular scaffold important for the signaling of the G-protein coupled receptor for the parathyroid hormone (PTH1R). The two PDZ (PSD-95, Discs-large, ZO1) domains of NHERF1 through association with the C-termini of PTH1R and phospholipase C enhance the signaling pathway associated with PTH. To examine these interactions, we have produced the individual PDZ1 and PDZ2 domains as well as the tandem PDZ1-PDZ2 domains (PDZ12) of NHERF1 and have characterized the binding affinities of the C-terminal motifs of PTH1R and PLCbeta using fluorescence anisotropy. Circular dichroism indicates that the PDZ1 and PDZ2 are properly folded. Based on fluorescence anisotropy we find that the C-terminus of PTH1R, containing ETVM, has similar affinities (approximately 10 microm) for both PDZ1 and PDZ2. The PTH1R displayed reduced binding affinity for the tandem PDZ12 (16 microm) compared with the individual domains or a solution of equal molar concentrations of PDZ1 and PDZ2 (5.8 microm), suggesting negative cooperativity between the PDZ domains or intervening region. The C-termini of PLCbeta (both beta1 and beta2 isozymes were examined, containing DTPL and ESRL, respectively) displayed a diminished affinity for PDZ2 (approximately 30 microm) over that of PDZ1 (approximately 8 microm). Finally, we demonstrate trans PDZ1-PDZ2 association that is enhanced in the presence of the C-terminus of PTH1R or PLCbeta, suggesting oligomerization of NHERF as a mode for enhancing the signaling associated with PTH.  相似文献   

5.
The membrane localization of the plasma membrane Ca2+-ATPase isoform 2 (PMCA2) in polarized cells is determined by alternative splicing; the PMCA2w/b splice variant shows apical localization, whereas the PMCA2z/b and PMCA2x/b variants are mostly basolateral. We previously reported that PMCA2b interacts with the PDZ protein Na+/H+ exchanger regulatory factor 2 (NHERF2), but the role of this interaction for the specific membrane localization of PMCA2 is not known. Here we show that co-expression of NHERF2 greatly enhanced the apical localization of GFP-tagged PMCA2w/b in polarized Madin-Darby canine kidney cells. GFP-PMCA2z/b was also redirected to the apical membrane by NHERF2, whereas GFP-PMCA2x/b remained exclusively basolateral. In the presence of NHERF2, GFP-PMCA2w/b co-localized with the actin-binding protein ezrin even after disruption of the actin cytoskeleton by cytochalasin D or latrunculin B. Surface biotinylation and fluorescence recovery after photobleaching experiments demonstrated that NHERF2-mediated anchorage to the actin cytoskeleton reduced internalization and lateral mobility of the pump. Our results show that the specific interaction with NHERF2 enhances the apical concentration of PMCA2w/b by anchoring the pump to the apical membrane cytoskeleton. The data also suggest that the x/b splice form of PMCA2 contains a dominant lateral targeting signal, whereas the targeting and localization of the z/b form are more flexible and not fully determined by intrinsic sequence features.  相似文献   

6.
Na/H exchanger regulatory factor-1 (NHERF1) is a cytoplasmic PDZ (postsynaptic density 95/disc large/zona occludens) protein that assembles macromolecular complexes and determines the localization, trafficking, and signaling of select G protein-coupled receptors and other membrane-delimited proteins. The parathyroid hormone receptor (PTHR), which regulates mineral ion homeostasis and bone turnover, is a G protein-coupled receptor harboring a PDZ-binding motif that enables association with NHERF1 and tethering to the actin cytoskeleton. NHERF1 interactions with the PTHR modify its trafficking and signaling. Here, we characterized by live cell imaging the mechanism whereby NHERF1 coordinates the interactions of multiple proteins, as well as the fate of NHERF1 itself upon receptor activation. Upon PTHR stimulation, NHERF1 rapidly dissociates from the receptor and induces receptor aggregation in long lasting clusters that are enriched with the actin-binding protein ezrin and with clathrin. After NHERF1 dissociates from the PTHR, ezrin then directly interacts with the PTHR to stabilize the PTHR at the cell membrane. Recruitment of β-arrestins to the PTHR is delayed until NHERF1 dissociates from the receptor, which is then trafficked to clathrin for internalization. The ability of NHERF to interact dynamically with the PTHR and cognate adapter proteins regulates receptor trafficking and signaling in a spatially and temporally coordinated manner.  相似文献   

7.
The effects of the expression of the Na+/H+ exchanger regulatory factor-1 (NHERF1) on the distribution, dynamics, and signaling properties of the PTH type 1 receptor (PTH1R) were studied in rat osteosarcoma cells ROS 17/2.8. NHERF1 had a dramatic effect on the subcellular distribution of PTH1R, promoting a substantial relocation of the receptor to regions of the plasma membrane located in very close proximity to cytoskeletal fibers. Direct interactions of NHERF1 with the PTH1R and the cytoskeleton were required for these effects, because they were abolished by 1) PTH1R mutations that impair NHERF1 binding, and 2) NHERF1 mutations that impair binding to the PTH1R or the cytoskeleton. NHERF1 reduced significantly the diffusion of the PTH1R by a mechanism that was also dependent on a direct association of NHERF1 with the PTH1R and the cytoskeleton. NHERF1 increased ligand-dependent production of cAMP and induced ligand-dependent rises in intracellular calcium. These effects on calcium were due to increased calcium uptake, as they were blocked by calcium channel inhibitors and by the addition of EGTA to the medium. These calcium effects were abolished by protein kinase A inhibition but phospholipase C inhibition was without effect. Based on these analyses, we propose that, in ROS cells, the presence of NHERF1 induces PTH-dependent calcium signaling by a cAMP-mediated mechanism that involves local protein kinase A-dependent activation of calcium channels.  相似文献   

8.
Enteropathogenic Escherichia coli (EPEC) strains are diarrhoeal pathogens that use a type III secretion system to translocate effector proteins into host cells in order to colonize and multiply in the human gut. Map, EspI and NleH1 are conserved EPEC effectors that possess a C‐terminal class I PSD‐95/Disc Large/ZO‐1 (PDZ)‐binding motif. Using a PDZ array screen we identified Na+/H+ exchanger regulatory factor 2 (NHERF2), a scaffold protein involved in tethering and recycling ion channels in polarized epithelia that contains two PDZ domains, as a common target of Map, EspI and NleH1. Using recombinant proteins and co‐immunoprecipitation we confirmed that NHERF2 binds each of the effectors. We generated a HeLa cell line stably expressing HA‐tagged NHERF2 and found that Map, EspI and NleH1 colocalize and interact with intracellular NHERF2 via their C‐terminal PDZ‐binding motif. Overexpression of NHERF2 enhanced the formation and persistence of Map‐induced filopodia, accelerated the trafficking of EspI to the Golgi and diminished the anti‐apoptotic activity of NleH1. The binding of multiple T3SS effectors to a single scaffold protein is unique. Our data suggest that NHERF2 may act as a plasma membrane sorting site, providing a novel regulatory mechanism to control the intracellular spatial and temporal effector protein activity.  相似文献   

9.
An emerging theme in cell signaling is that membrane-bound channels and receptors are organized into supramolecular signaling complexes for optimum function and cross-talk. In this study, we determined how protein kinase C (PKC) phosphorylation influences the scaffolding protein Na(+)/H(+) exchanger regulatory factor 1 (NHERF) to assemble protein complexes of cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel that controls fluid and electrolyte transport across cell membranes. NHERF directs polarized expression of receptors and ion transport proteins in epithelial cells, as well as organizes the homo- and hetero-association of these cell surface proteins. NHERF contains two modular PDZ domains that are modular protein-protein interaction motifs, and a C-terminal domain. Previous studies have shown that NHERF is a phosphoprotein, but how phosphorylation affects NHERF to assemble macromolecular complexes is unknown. We show that PKC phosphorylates two amino acid residues Ser-339 and Ser-340 in the C-terminal domain of NHERF, but a serine 162 of PDZ2 is specifically protected from being phosphorylated by the intact C-terminal domain. PKC phosphorylation-mimicking mutant S339D/S340D of NHERF has increased affinity and stoichiometry when binding to C-CFTR. Moreover, solution small angle x-ray scattering indicates that the PDZ2 and C-terminal domains contact each other in NHERF, but such intramolecular domain-domain interactions are released in the PKC phosphorylation-mimicking mutant indicating that PKC phosphorylation disrupts the autoinhibition interactions in NHERF. The results demonstrate that the C-terminal domain of NHERF functions as an intramolecular switch that regulates the binding capability of PDZ2, and thus controls the stoichiometry of NHERF to assemble protein complexes.  相似文献   

10.
Scaffolding proteins are molecular switches that control diverse signaling events. The scaffolding protein Na+/H+ exchanger regulatory factor 1 (NHERF1) assembles macromolecular signaling complexes and regulates the macromolecular assembly, localization, and intracellular trafficking of a number of membrane ion transport proteins, receptors, and adhesion/antiadhesion proteins. NHERF1 begins with two modular protein-protein interaction domains—PDZ1 and PDZ2—and ends with a C-terminal (CT) domain. This CT domain binds to ezrin, which, in turn, interacts with cytosekeletal actin. Remarkably, ezrin binding to NHERF1 increases the binding capabilities of both PDZ domains. Here, we use deuterium labeling and contrast variation neutron-scattering experiments to determine the conformational changes in NHERF1 when it forms a complex with ezrin. Upon binding to ezrin, NHERF1 undergoes significant conformational changes in the region linking PDZ2 and its CT ezrin-binding domain, as well as in the region linking PDZ1 and PDZ2, involving very long range interactions over 120 Å. The results provide a structural explanation, at mesoscopic scales, of the allosteric control of NHERF1 by ezrin as it assembles protein complexes. Because of the essential roles of NHERF1 and ezrin in intracellular trafficking in epithelial cells, we hypothesize that this long-range allosteric regulation of NHERF1 by ezrin enables the membrane-cytoskeleton to assemble protein complexes that control cross-talk and regulate the strength and duration of signaling.  相似文献   

11.
Harteneck C 《Cell calcium》2003,33(5-6):303-310
TRP channels are involved in different signaling cascades; TRP channels can be activated via hormones and neurotransmitter in a receptor/G-protein-mediated manner or by osmotic, thermic or mechanic stimuli. The overall functional role of TRP channels within these processes of hormonal cellular control, nociception or cellular calcium homeostasis is still unclear, as these complex processes often involve macromolecular structures. Whereas the integration of Drosophila TRP in the phototransduction process is becoming clear, the understanding of the participation of mammalian TRP channels in signal transduction complexes is only beginning. TRP channels have been demonstrated to interact with PDZ domain proteins, and both scaffold and regulatory function have been shown for INAD, the PDZ domain protein of the Drosophila phototransduction complex. In mammalian cells, the interaction of NHERF and TRPC4 has been shown and it is anticipated that NHERF may abolish the apparent store-dependent regulation of TRPC4 and TRPC5. Whereas TRP channels and PDZ domain proteins form permanent heterodimeric proteins, the interaction of calcium-binding proteins is dependent on the calcium concentration and is, therefore, dynamic. The prototype of calcium-binding protein used for experiments is calmodulin; whether or not calmodulin is also the natural interaction partner of TRP channels is an open question.  相似文献   

12.
Molecular sorting of G protein-coupled receptors (GPCRs) between divergent recycling and lysosomal pathways determines the functional consequences of agonist-induced endocytosis. The carboxyl-terminal cytoplasmic domain of the beta2 adrenergic receptor (beta2AR) mediates both PDZ binding to Na+/H+ exchanger regulatory factor/ezrin/radixin/moesin-binding phosphoprotein of 50 kDa (NHERF/EBP50) family proteins and non-PDZ binding to the N-ethylmaleimide-sensitive factor (NSF). We have investigated whether PDZ interaction(s) are actually sufficient to promote rapid recycling of endocytosed receptors and, if so, whether PDZ-mediated sorting is restricted to the beta2AR tail or to sequences that bind NHERF/EBP50. The trafficking effects of short (10 residue) sequences differing in PDZ and NSF binding properties were examined using chimeric mutant receptors. The recycling activity of the beta2AR-derived tail sequence was not blocked by a point mutation that selectively disrupts binding to NSF, and naturally occurring PDZ ligand sequences were identified that do not bind detectably to NSF yet function as strong recycling signals. The carboxyl-terminal cytoplasmic domain of the beta1-adrenergic receptor, which does not bind either to NSF or NHERF/EBP50 and interacts selectively with a distinct group of PDZ proteins, promoted rapid recycling of chimeric mutant receptors with efficiency similarly high as that of the beta2AR tail. These results indicate that PDZ domain-mediated protein interactions are sufficient to promote rapid recycling of GPCRs, independent of binding to NSF. They also suggest that PDZ-directed recycling is a rather general mechanism of GPCR regulation, which is not restricted to a single GPCR, and may involve additional PDZ domain-containing protein(s) besides NHERF/EBP50.  相似文献   

13.
The Na(+)/H(+) exchanger regulatory factor (NHERF; also known as EBP50) contains two PDZ domains that mediate the assembly of transmembrane and cytosolic proteins into functional signal transduction complexes. The NHERF PDZ1 domain interacts specifically with the motifs DSLL, DSFL, and DTRL present at the carboxyl termini of the beta(2) adrenergic receptor (beta(2)AR), the platelet-derived growth factor receptor (PDGFR), and the cystic fibrosis transmembrane conductance regulator (CFTR), respectively, and plays a central role in the physiological regulation of these proteins. The crystal structure of the human NHERF PDZ1 has been determined at 1.5 A resolution using multiwavelength anomalous diffraction phasing. The overall structure is similar to known PDZ structures, with notable differences in the NHERF PDZ1 carboxylate-binding loop that contains the GYGF motif, and the variable loop between the beta2 and beta3 strands. In the crystalline state, the carboxyl-terminal sequence DEQL of PDZ1 occupies the peptide-binding pocket of a neighboring PDZ1 molecule related by 2-fold crystallographic symmetry. This structure reveals the molecular mechanism of carboxyl-terminal leucine recognition by class I PDZ domains, and provides insights into the specificity of NHERF interaction with the carboxyl termini of several membrane receptors and ion channels, including the beta(2)AR, PDGFR, and CFTR.  相似文献   

14.
Liedtke CM  Wang X 《Biochemistry》2006,45(34):10270-10277
Regulation of the CFTR Cl channel function involves a protein complex of activated protein kinase Cepsilon (PKCepsilon) bound to RACK1, a receptor for activated C kinase, and RACK1 bound to the human Na(+)/H(+) exchanger regulatory factor (NHERF1) in human airway epithelial cells. Binding of NHERF1 to RACK1 is mediated via a NHERF1-PDZ1 domain. The goal of this study was to identify the binding motif for human NHERF1 on RACK1. We examined the site of binding of NHERF1 on RACK1 using peptides encoding the seven WD40 repeat units of human RACK1. One WD repeat peptide, WD5, directly binds NHERF1 and the PDZ1 domain with similar EC(50) values, blocks binding of recombinant RACK1 and NHERF1, and pulls down endogenous RACK1 from Calu-3 cell lysate in a dose-dependent manner. The remaining WD repeat peptides did not block RACK1-NHERF1 binding. An 11-amino acid peptide encoding a site on the PDZ1 domain blocks binding of the WD5 repeat peptide with the PDZ1 domain. An N-terminal 12-amino acid segment of the WD5 repeat peptide, which comprises the first of four antiparallel beta-strands, dose-dependently binds to the PDZ1 domain of NHERF1 and blocks binding of the PDZ1 domain to RACK1. These results suggest that the binding site might form a beta-turn with topology sufficient for binding of NHERF1. Our results also demonstrate binding of NHERF to RACK1 at the WD5 repeat, which is distinct from the PKCepsilon binding site on the WD6 repeat of RACK1.  相似文献   

15.
Previous studies from this laboratory demonstrated a role for protein kinase C (PKC) in the regulation of cAMP-dependent cystic fibrosis transmembrane regulator (CFTR) Cl channel function via binding of PKC to RACK1, a receptor for activated C kinase, and of RACK1 to human Na+/H+ exchanger regulatory factor (NHERF1). In the present study, we investigated the role of RACK1 in regulating CFTR function in a Calu-3 airway epithelial cell line. Confocal microscopy and biotinylation of apical surface proteins demonstrate apical localization of RACK1 independent of actin. Mass spectrometric analysis of NHERF1 revealed copurification of tubulin, which, in in vitro binding assays, selectively binds to NHERF1, but not RACK1, via a PDZ1 domain. In binding and pulldown assays, we show direct binding of a PDZ2 domain to NHERF1, pulldown of endogenous NHERF1 by a PDZ2 domain, and inhibition of NHERF1-tubulin binding by a PDZ1 domain. Downregulation of RACK1 using double-stranded silencing RNA reduced the amount of RACK1 by 77.5% and apical expression of biotinylated CFTR by 87.4%. Expression of CFTR, NHERF1, and actin were not altered by treatment with siRACK1 or by nontargeting control silencing RNA, which, in addition, did not affect RACK1 expression. On the basis of these results, we model a RACK1 proteome consisting of PKC-RACK1-NHERF1-NHERF1-tubulin with a role in stable expression of CFTR in the apical plasma membrane of epithelial cells. silencing RNA; downregulation; biotinylation; tubulin; NHERF1; tailless cystic fibrosis transmembrane regulator; PDZ domain  相似文献   

16.
Mutations in cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated chloride channel, cause cystic fibrosis. To investigate interactions of CFTR in living cells, we measured the diffusion of quantum dot-labeled CFTR molecules by single particle tracking. In multiple cell lines, including airway epithelia, CFTR diffused little in the plasma membrane, generally not moving beyond 100-200 nm. However, CFTR became mobile over micrometer distances after 1) truncations of the carboxy terminus, which contains a C-terminal PDZ (PSD95/Dlg/ZO-1) binding motif; 2) blocking PDZ binding by C-terminal green fluorescent protein fusion; 3) disrupting CFTR association with actin by expression of a mutant EBP50/NHERF1 lacking its ezrin binding domain; or 4) skeletal disruption by latrunculin. CFTR also became mobile when the cytoskeletal adaptor protein binding capacity was saturated by overexpressing CFTR or its C terminus. Our data demonstrate remarkable and previously unrecognized immobilization of CFTR in the plasma membrane and provide direct evidence that C-terminal coupling to the actin skeleton via EBP50/ezrin is responsible for its immobility.  相似文献   

17.
The mammalian Na+/H+ exchange regulatory factor 1 (NHERF1) is a multidomain scaffolding protein essential for regulating the intracellular trafficking and macromolecular assembly of transmembrane ion channels and receptors. NHERF1 consists of tandem PDZ-1, PDZ-2 domains that interact with the cytoplasmic domains of membrane proteins and a C-terminal (CT) domain that binds the membrane-cytoskeleton linker protein ezrin. NHERF1 is held in an autoinhibited state through intramolecular interactions between PDZ2 and the CT domain that also includes a C-terminal PDZ-binding motif (-SNL). We have determined the structures of the isolated and tandem PDZ2CT domains by high resolution NMR using small angle x-ray scattering as constraints. The PDZ2CT structure shows weak intramolecular interactions between the largely disordered CT domain and the PDZ ligand binding site. The structure reveals a novel helix-turn-helix subdomain that is allosterically coupled to the putative PDZ2 domain by a network of hydrophobic interactions. This helical subdomain increases both the stability and the binding affinity of the extended PDZ structure. Using NMR and small angle neutron scattering for joint structure refinement, we demonstrate the release of intramolecular domain-domain interactions in PDZ2CT upon binding to ezrin. Based on the structural information, we show that human disease-causing mutations in PDZ2, R153Q and E225K, have significantly reduced protein stability. Loss of NHERF1 expressed in cells could result in failure to assemble membrane complexes that are important for normal physiological functions.  相似文献   

18.
The Na(+)/H(+) exchange regulatory factor-1 (NHERF1) is a scaffolding protein that possesses two tandem PDZ domains and a carboxy-terminal ezrin-binding domain (EBD). The parathyroid hormone receptor (PTHR), type II sodium-dependent phosphate cotransporter (Npt2a), and β2-adrenergic receptor (β2-AR), through their respective carboxy-terminal PDZ-recognition motifs, individually interact with NHERF1 forming a complex with one of the PDZ domains. In the basal state, NHERF1 adopts a self-inhibited conformation, in which its carboxy-terminal PDZ ligand interacts with PDZ2. We applied molecular dynamics (MD) simulations to uncover the structural and biochemical basis for the binding selectivity of NHERF1 PDZ domains. PDZ1 uniquely forms several contacts not present in PDZ2 that further stabilize PDZ1 interactions with target ligands. The binding free energy (ΔG) of PDZ1 and PDZ2 with the carboxy-terminal, five-amino acid residues that form the PDZ-recognition motif of PTHR, Npt2a, and β2-AR was calculated and compared with the calculated ΔG for the self-association of NHERF1. The results suggest that the interaction of the PTHR, β2-adrenergic, and Npt2a involves competition between NHERF1 PDZ domains and the target proteins. The binding of PDZ2 with PTHR may also compete with the self-inhibited conformation of NHERF1, thereby contributing to the stabilization of an active NHERF1 conformation.  相似文献   

19.
The ROMK subtypes of inward rectifier K+ channels (Kir 1.1, KCNJ1) mediate potassium secretion and regulate NaCl reabsorption in the kidney. In the present study, the role of the PDZ binding motif in ROMK function is explored. Here we identify the Na/H exchange regulatory factors, NHERF-1 and NHERF-2, as PDZ domain interaction partners of the ROMK channel. Characterization of the basis and consequences of NHERF association with ROMK reveals a PDZ interaction-dependent trafficking process and a coupling mechanism for linking ROMK to a channel modifier protein, the cystic fibrosis transmembrane regulator (CFTR). As measured by antibody binding of external epitope-tagged forms of Kir 1.1 in intact cells, NHERF-1 or NHERF-2 coexpression increased cell surface expression of ROMK. Channel interaction with NHERF proteins and effects of NHERF on ROMK localization were dependent on the presence of the PDZ domain binding motif in ROMK. Both NHERF proteins contain two PDZ domains; recombinant protein-protein binding assays and yeast-two-hybrid studies revealed that ROMK preferentially associates with the second PDZ domain of NHERF-1 and with the first PDZ domain of NHERF-2, precisely opposite of what has been reported for CFTR. Consistent with the scaffolding capacity of the NHERF proteins, coexpression of NHERF-2 with ROMK and CFTR dramatically increases the amount of ROMK protein that coimmunopurifies and functionally interacts with CFTR. Thus NHERF facilitates assembly of a ternary complex containing ROMK and CFTR. These observations raise the possibility that PDZ-based interactions may underscore physiological regulation and membrane targeting of ROMK in the kidney.  相似文献   

20.
The PDZ domain adaptor protein Na+/H+ exchanger regulatory factor (NHERF)-2 is expressed in renal medullary descending vasa recta (DVR), although its function has not been defined. Transient receptor potential channels (TRPC) TRPC4 and TRPC5, nonselective cation channels that transport Ca2+, were recently demonstrated to complex with the NHERF proteins. We investigated whether TRPC4 and/or TRPC5 are associated with NHERF-2 in DVR. RT-PCR revealed mRNA for TRPC4 and NHERF-2, but not for TRPC5 or NHERF-1, in microdissected DVR. Immunohistochemical studies demonstrated expression of TRPC4 and NHERF-2 proteins in both the endothelial cells and pericytes. These proteins colocalized in some cells of the DVR. TRPC4 coimmunoprecipitated with NHERF-2 from renal medullary lysates, and NHERF-2 coimmunoprecipitated with TRPC4. TRPC5 was not detected in DVR with the use of immunohistochemistry or in NHERF-2 immunoprecipitates. We conclude that DVR pericytes and endothelia coexpress TRPC4 and NHERF-2 mRNA and protein and that these proteins colocalize and coimmunoprecipitate, indicating a possible physical association. These findings suggest that TRPC4 and NHERF-2 may play a role in interactions related to Ca2+ signaling. PDZ proteins; calcium channels; medulla; pericytes; endothelium; microcirculation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号