首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large family of cysteine-rich secretory proteins (CRISPs) includes proteins of different origin, the function of the majority of CRISPs being unknown. For CRISPs isolated from snake venom, two types of activities were found: two proteins blocked cyclic nucleotide-gated ion channels, several others blocked potassium-stimulated smooth muscle contraction. Thus, snake CRISPs represent potentially valuable tools for studies of ion channels, which makes promising a search for new CRISPs. Here we report on the isolation of several novel CRISPs from the venoms of Asian cobra Naja kaouthia and African cobra Naja haje using a combination of different types of liquid chromatography. Four CRISP variants were identified in N. kaouthia venom and three proteins, one of them acidic, were found in N. haje venom. Acidic CRISP was found in a reptilian venom for the first time. Our data suggest that each cobra venom contains a pool of different CRISPs.  相似文献   

2.
Lampreys are one of the most primitive vertebrates diverged some 500 million years ago. It has long been known that parasitic lampreys secrete anticoagulant from their buccal glands and prevent blood coagulation of host fishes. We found two major protein components of 160 and 26 kDa in the buccal gland secretion of parasitic river lamprey, Lethenteron japonicum. The larger protein was identified as river lamprey plasma albumin. The complete primary structure of the 26-kDa protein was determined by protein and cDNA analysis. It belonged to the cysteine-rich secretory protein (CRISP) superfamily that includes recently identified reptile venom ion-channel blockers. Lamprey CRISP blocked depolarization-induced contraction of rat-tail arterial smooth muscle, but showed no effect on caffeine-induced contraction. The result suggests that lamprey CRISP is an L-type Ca(2+)-channel blocker and may act as a vasodilator, which facilitates the parasite to feed on the host's blood. The lamprey CRISP protein contains a number of short insertions throughout the sequence, when aligned with reptilian venom CRISP proteins, probably due to the large evolutionary distance between the Agnatha and the Reptilia, and may represent a novel class of venom CRISP family proteins.  相似文献   

3.
Stecrisp from Trimeresurus stejnegeri snake venom belongs to a family of cysteine-rich secretory proteins (CRISP) that have various functions related to sperm-egg fusion, innate host defense, and the blockage of ion channels. Here we present the crystal structure of stecrisp refined to 1.6-angstrom resolution. It shows that stecrisp contains three regions, namely a PR-1 (pathogenesis-related proteins of group1) domain, a hinge, and a cysteine-rich domain (CRD). A conformation of solvent-exposed and -conserved residues (His60, Glu75, Glu96, and His115) in the PR-1 domain similar to that of their counterparts in homologous structures suggests they may share some molecular mechanism. Three flexible loops of hypervariable sequence surrounding the possible substrate binding site in the PR-1 domain show an evident difference in homologous structures, implying that a great diversity of species- and substrate-specific interactions may be involved in recognition and catalysis. The hinge is fixed by two crossed disulfide bonds formed by four of ten characteristic cysteines in the carboxyl-terminal region and is important for stabilizing the N-terminal PR-1 domain. Spatially separated from the PR-1 domain, CRD possesses a similar fold with two K+ channel inhibitors (Bgk and Shk). Several candidates for the possible functional sites of ion channel blocking are located in a solvent-exposed loop in the CRD. The structure of stecrisp will provide a prototypic architecture for a structural and functional exploration of the diverse members of the CRISP family.  相似文献   

4.
In this study, we isolated a 25-kDa novel snake venom protein, designated ablomin, from the venom of the Japanese Mamushi snake (Agkistrodon blomhoffi). The amino-acid sequence of this protein was determined by peptide sequencing and cDNA cloning. The deduced sequence showed high similarity to helothermine from the Mexican beaded lizard (Heloderma horridum horridum), which blocks voltage-gated calcium and potassium channels, and ryanodine receptors. Ablomin blocked contraction of rat tail arterial smooth muscle elicited by high K+-induced depolarization in the 0.1-1 microm range, but did not block caffeine-stimulated contraction. Furthermore, we isolated three other proteins from snake venoms that are homologous to ablomin and cloned the corresponding cDNAs. Two of these homologous proteins, triflin and latisemin, also inhibited high K+-induced contraction of the artery. These results indicate that several snake venoms contain novel proteins with neurotoxin-like activity.  相似文献   

5.
Mammalian fertilization is a complex multi-step process mediated by different molecules present on both gametes. CRISP1 (cysteine-rich secretory protein 1) is an epididymal protein thought to participate in gamete fusion through its binding to egg-complementary sites. Structure-function studies using recombinant fragments of CRISP1 as well as synthetic peptides reveal that its egg-binding ability resides in a 12 amino acid region corresponding to an evolutionary conserved motif of the CRISP family, named Signature 2 (S2). Further experiments analyzing both the ability of other CRISP proteins to bind to the rat egg and the amino acid sequence of their S2 regions show that the amino acid sequence of the S2 is needed for CRISP1 to interact with the egg. CRISP1 appears to be involved in the first step of sperm binding to the zona pellucida, identifying a novel role for this protein in fertilization. The observation that sperm testicular CRISP2 is also able to bind to the egg surface suggests a role for this protein in gamete fusion. Subsequent experiments confirmed the participation of CRISP2 in this step of fertilization and revealed that CRISP1 and CRISP2 interact with common egg surface binding sites. Together, these results suggest a functional cooperation between CRISP1 and CRISP2 to ensure the success of fertilization. These observations contribute to a better understanding of the molecular mechanisms underlying mammalian fertilization.  相似文献   

6.
7.
8.
Vascular endothelial growth factor (VEGF165) and its receptor KDR (kinase insert domain-containing receptor) are central regulators of blood vessel formation. We herein report a KDR-binding protein we have isolated in the venom of eastern cottonmouth (Agkistrodon piscivorus piscivorus). Sequence analysis revealed the isolated KDR-binding protein (designated KDR-bp) is identical to Lys49-phosholipase A2 (Lys49PLA2), an inactive PLA2 homologue with strong myotoxicity, in which Lys49 substitutes Asp49, a key residue for binding the essential cofactor Ca2+. KDR-bp binds to the extracellular domain of KDR with subnanomolar affinity. KDR-bp also binds to a lesser extent with Flt-1 and IgG but not to other receptors with similar immunoglobulin-like domain structures such as platelet-derived growth factor receptor alpha. The interaction between KDR-bp and KDR was blocked by VEGF165, and KDR-bp specifically inhibited VEGF165-stimulated endothelial cell proliferation, indicating KDR-bp is an antagonistic ligand for KDR. Lys49PLA2s from another snake venom were found to exhibit similar receptor binding properties to KDR-bp. This is the first report to demonstrate that an exogenous factor antagonizes VEGF and its receptor system. Our observation offers further insight into the as yet unknown molecular mechanism of myotoxic activity of snake venom Lys49PLA2s. Furthermore, KDR-bp would make a valuable tool for studying the structure and function of KDR, such as that expressed on skeletal muscle cells.  相似文献   

9.
Homologues of a protein originally isolated from snake venom and frog skin secretions are present in many vertebrate species. They contain 80–90 amino acids, 10 of which are cysteines with identical spacing. Various names have been given to these proteins, such as mamba intestinal protein 1 (MIT1), Bv8 (Bombina variegata molecular mass ~8 kDa), prokineticins and endocrine-gland vascular endothelial growth factor (EG-VEGF). Their amino-terminal sequences are identical, and so we propose that the sequence of their first four residues, AVIT, is used as a name for this family. From a comparison of the sequences, two types of AVIT proteins can be discerned. These proteins seem to be distributed widely in mammalian tissues and are known to bind to G-protein-coupled receptors. Members of this family have been shown to stimulate contraction of the guinea pig ileum, to cause hyperalgesia after injection into rats and to be active as specific growth factors. Moreover, the messenger RNA level of one of these AVIT proteins changes rhythmically in the region of the brain known as the suprachiasmatic nucleus. This shows that members of this new family of small proteins are involved in diverse biological processes.  相似文献   

10.
Australian elapid snakes are among the most venomous in the world. Their venoms contain multiple components that target blood hemostasis, neuromuscular signaling, and the cardiovascular system. We describe here a comprehensive approach to separation and identification of the venom proteins from 18 of these snake species, representing nine genera. The venom protein components were separated by two-dimensional PAGE and identified using mass spectrometry and de novo peptide sequencing. The venoms are complex mixtures showing up to 200 protein spots varying in size from <7 to over 150 kDa and in pI from 3 to >10. These include many proteins identified previously in Australian snake venoms, homologs identified in other snake species, and some novel proteins. In many cases multiple trains of spots were typically observed in the higher molecular mass range (>20 kDa) (indicative of post-translational modification). Venom proteins and their post-translational modifications were characterized using specific antibodies, phosphoprotein- and glycoprotein-specific stains, enzymatic digestion, lectin binding, and antivenom reactivity. In the lower molecular weight range, several proteins were identified, but the predominant species were phospholipase A2 and alpha-neurotoxins, both represented by different sequence variants. The higher molecular weight range contained proteases, nucleotidases, oxidases, and homologs of mammalian coagulation factors. This information together with the identification of several novel proteins (metalloproteinases, vespryns, phospholipase A2 inhibitors, protein-disulfide isomerase, 5'-nucleotidases, cysteine-rich secreted proteins, C-type lectins, and acetylcholinesterases) aids in understanding the lethal mechanisms of elapid snake venoms and represents a valuable resource for future development of novel human therapeutics.  相似文献   

11.
Snake venoms contain a complex mixture of polypeptides that modulate prey homeostatic mechanisms through highly specific and targeted interactions. In this study we have identified and characterised cystatin-like cysteine-protease inhibitors from elapid snake venoms for the first time. Novel cystatin sequences were cloned from 12 of 13 elapid snake venom glands and the protein was detected, albeit at very low levels, in a total of 22 venoms. One highly conserved isoform, which displayed close sequence identity with family 2 cystatins, was detected in each elapid snake. Crude Austrelaps superbus (Australian lowland copperhead) snake venom inhibited papain, and a recombinant form of A. superbus cystatin inhibited cathepsin L ≅ papain > cathepsin B, with no inhibition observed for calpain or legumain. While snake venom cystatins have truncated N-termini, sequence alignment and structural modelling suggested that the evolutionarily conserved Gly-11 of family 2 cystatins, essential for cysteine protease inhibition, is conserved in snake venom cystatins as Gly-3. This was confirmed by mutagenesis at the Gly-3 site, which increased the dissociation constant for papain by 104-fold. These data demonstrate that elapid snake venom cystatins are novel members of the type 2 family. The widespread, low level expression of type 2 cystatins in snake venom, as well as the presence of only one highly conserved isoform in each species, imply essential housekeeping or regulatory roles for these proteins.  相似文献   

12.
We analyzed the origin and evolution of snake venom toxin families represented in both viperid and elapid snakes by means of phylogenetic analysis of the amino acid sequences of the toxins and related nonvenom proteins. Out of eight toxin families analyzed, five provided clear evidence of recruitment into the snake venom proteome before the diversification of the advanced snakes (Kunitz-type protease inhibitors, CRISP toxins, galactose-binding lectins, M12B peptidases, nerve growth factor toxins), and one was equivocal (cystatin toxins). In two others (phospholipase A(2) and natriuretic toxins), the nonmonophyly of venom toxins demonstrates that presence of these proteins in elapids and viperids results from independent recruitment events. The ANP/BNP natriuretic toxins are likely to be basal, whereas the CNP/BPP toxins are Viperidae only. Similarly, the lectins were recruited twice. In contrast to the basal recruitment of the galactose-binding lectins, the C-type lectins were shown to be Viperidae only, with the alpha-chains and beta-chains resulting from an early duplication event. These results provide strong additional evidence that venom evolved once, at the base of the advanced snake radiation, rather than multiple times in different lineages, with these toxins also present in the venoms of the "colubrid" snake families. Moreover, they provide a first insight into the composition of the earliest ophidian venoms and point the way toward a research program that could elucidate the functional context of the evolution of the snake venom proteome.  相似文献   

13.
1. Venom of Vipera palastinae was subjected to isoelectrofocusing on polyacrylamide gel. The protein separation profiles were similar for different venom samples; more than 25 protein bands with a wide range of pI values could be demonstrated by this technique. 2. Labelled venom was obtained 8h after an intracardial injection of [3H]leucine. The relative radioactivities of four out of 12 main protein bands were significantly different in the venom synthesized during the 2nd day of the venom regeneration cycle as compared with the venom of the 4th day. The comparison was made in venom samples obtained from the two glands of the same snake at two different secretory stages. 3. It is concluded that the asynchronous synthesis of exportable proteins after the initiation of a new venom regeneration cycle is responsible for the non-parallel secretion of some venom proteins by the venom gland of Vipera palaestinae during the first few days after milking.  相似文献   

14.
Epididymal protein CRISPI is a member of the CRISP (Cysteine-RIch Secretory proteins) family and is involved in sperm-egg fusion through its interaction with complementary sites on the egg surface. Results from our laboratory have shown that this binding ability resides in a 12-amino-acid region corresponding to a highly conserved motif of the CRISP family, named Signature 2 (S2). In addition to this, our results revealed that CRISP1 could also be involved in the previous step of sperm binding to the zona pellucida, identifying a novel role for this protein in fertilization. As another approach to elucidate the participation of CRISP1 in fertilization, a mouse line containing a targeted disruption of CRISP1 was generated. Although CRISP1-deficient mice exhibited normal fertility, CRISP1-defficient sperm presented a decreased level of protein tyrosine phosphorylation during capacitation, and an impaired ability to fertilize both zona-intact and zona-free eggs in vitro, confirming the proposed roles for the protein in fertilization. Evidence obtained in our laboratory indicated that testicular CRISP2 would also be involved in sperm-egg fusion. Competition assays between CRISP1 and CRISP2, as well as the comparison of their corresponding S2 regions, suggest that both proteins bind to common complementary sites in the egg. Together, these results suggest a functional cooperation between CRISP1 and CRISP2 to ensure the success of fertilization.  相似文献   

15.
Wang J  Shen B  Guo M  Lou X  Duan Y  Cheng XP  Teng M  Niu L  Liu Q  Huang Q  Hao Q 《Biochemistry》2005,44(30):10145-10152
Cysteine-rich secretory proteins (CRISPs) are widespread in snake venoms. Some members of these CRISPs recently have been found to block L-type Ca(2+) channels or cyclic nucleotide-gated ion (CNG) channels. Here, natrin purified from Naja atra venom, a member of the CRISP family, can induce a further contractile response in the endothelium-denuded thoracic aorta of mouse which has been contracted by a high-K(+) solution. Further experiments show it can block the high-conductance calcium-activated potassium (BK(Ca)) channel in a concentration-dependent manner with an IC(50) of 34.4 nM and a Hill coefficient of 1.02, which suggests that only a single natrin molecule is required to bind an ion channel to block BK(Ca) current. The crystal structure of natrin displaying two domains in tandem shows its cysteine-rich domain (CRD) has relatively independent flexibility, especially for the C-terminal long loop (loop I) of CRD to participate in the interface of two domains. On the basis of previous studies of CNG channel and L-Ca(2+) channel blockers, and the sequence and structural comparison of natrin and stecrisp, the deviation of the vital loop I of CRD is suggested to contribute to different effects of some CRISPs in protein-protein interaction.  相似文献   

16.
During the generation of abundant expressed sequence tags from the Viperidae snake Bothrops insularis venom glands, we identified for the first time a cDNA coding for a putative vascular endothelial growth factor-like (VEGF-like) protein. The deduced primary sequence, after complete sequencing of the longest snake venom VEGF (svVEGF) cDNA, displayed similarity with vertebrate VEGFs and with the hypotensive factor from Vipera aspis venom. Its cDNA was subcloned, expressed in Escherichia coli with a His(6) tag as an insoluble monomer, and purified by Ni(2+)-affinity chromatography after 8 m urea extraction. Antiserum against svVEGF was generated and tested in Western blot against proteins from snake venoms and cellular extracts. The mature svVEGF appears to be ubiquitously distributed throughout snake venoms and was also confirmed by Northern blot studies of other related Viperidae species and by cDNA cloning of svVEGF from Bothrops jararaca pit viper. The produced recombinant protein dimerizes after refolding processes and was biologically characterized, showing ability to increase vascular permeability. These results established that svVEGF is a novel and important active toxin during the early stages of bothropic snake bite envenoming and represents a new member of the VEGF family of proteins.  相似文献   

17.
Snake venom contains a diverse array of proteins and polypeptides. Cytotoxins and short neurotoxins are non-enzymatic polypeptide components of snake venom. The three-dimensional structure of cytotoxin and short neurotoxin resembles a three finger appearance of three-finger protein super family. Different family members of three-finger protein super family are employed in diverse biological functions. In this work we analyzed the cytotoxin, short neurotoxin and related non-toxin proteins of other chordates in terms of functional analysis, amino acid compositional (%) profile, number of amino acids, molecular weight, theoretical isoelectric point (pI), number of positively charged and negatively charged amino acid residues, instability index and grand average of hydropathy with the help of different bioinformatical tools. Among all interesting results, profile of amino acid composition (%) depicts that all sequences contain a conserved cysteine amount but differential amount of different amino acid residues which have a family specific pattern. Involvement in different biological functions is one of the driving forces which contribute the vivid amino acid composition profile of these proteins. Different biological system dependent adaptation gives the birth of enriched bio-molecules. Understanding of physicochemical properties of these proteins will help to generate medicinally important therapeutic molecules for betterment of human lives.  相似文献   

18.
The reprolysin subfamily of metalloproteinases includes snake venom metalloproteinases (SVMP) and mammalian disintegrin/metalloproteinase. These proteins are synthesized as zymogens and undergo proteolytic processing resulting in a variety of multifunctional proteins. Jararhagin is a P-III SVMP isolated from the venom of Bothrops jararaca. In crude venom, two forms of jararhagin are typically found, full-length jararhagin and jararhagin-C, a proteolytically processed form of jararhagin that is composed of the disintegrin-like and cysteine-rich domains of jararhagin. To better understand the structural and mechanistic bases for these forms of jararhagin in the venom of B. jararaca and the source of venom complexity in general, we have examined the jararhagin forms isolated from venom and the autolysis of isolated jararhagin under the conditions of varying pH, calcium ion concentration, and reducing agents. From our results, jararhagin isolated from venom appears as two forms: a predominant form that is stable to in vitro autolysis and a minor form that is susceptible to autolysis under a variety of conditions including alkaline pH, low calcium ion concentrations, or reducing agent. The autolysis site for production of jararhagin-C from isolated jararhagin was different from that observed for jararhagin-C as isolated from crude venom. Taken together, these data lead us to the conclusion that during the biosynthesis of jararhagin in the venom gland at least three forms are present: one form which is rapidly processed to give rise to jararhagin-C, one form which is resistant to processing in the venom and autolysis in vitro, and one minor form which is susceptible to autolysis under conditions that promote destabilization of its structure. The presence of these different forms of jararhagin contributes to greater structural and functional complexity of the venom and may be a common feature among all snake venoms. The biological and biochemical features in the venom gland responsible for these jararhagin isoforms are currently under investigation.  相似文献   

19.
The three-dimensional structure of nawaprin has been determined by nuclear magnetic resonance spectroscopy. This 51-amino acid residue peptide was isolated from the venom of the spitting cobra, Naja nigricollis, and is the first member of a new family of snake venom proteins referred to as waprins. Nawaprin is relatively flat and disc-like in shape, characterized by a spiral backbone configuration that forms outer and inner circular segments. The two circular segments are held together by four disulfide bonds, three of which are clustered at the base of the molecule. The inner segment contains a short antiparallel beta-sheet, whereas the outer segment is devoid of secondary structures except for a small turn or 310 helix. The structure of nawaprin is very similar to elafin, a human leukocyte elastase-specific inhibitor. Although substantial parts of the nawaprin molecule are well defined, the tips of the outer and inner circular segments, which are hypothesized to be critical for binding interactions, are apparently disordered, similar to that found in elafin. The amino acid residues in these important regions in nawaprin are different from those in elafin, suggesting that nawaprin is not an elastase-specific inhibitor and therefore has a different function in the snake venom.  相似文献   

20.
We cloned Xenopus laevis CRISP, XCRISP, a homologue of the mammalian family of cysteine-rich secretory proteins (CRISPs), which has been previously identified as a Wnt3a/noggin responsive gene in an expression screen [Mech. Dev. 87 (1999) 21]. We detected XCRISP expression exclusively in the hatching gland. XCRISP enters the secretory pathway and accumulates on the surface of presumptive hatching gland cells. Overexpression studies of XCRISP and XCRISP-mutants show that XCRISP induces premature hatching of embryos preceded by degradation of the vitelline envelope. A deletion mutant that lacks a 35 amino acid domain even accelerates hatching, while further deletion of the carboxy-terminus reverses these effects. From our studies, we conclude that XCRISP is sufficient to induce degradation of vitelline envelopes and that this activity maps to the most C-terminal amino acids, while the adjacent domain regulates XCRISP activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号