共查询到20条相似文献,搜索用时 15 毫秒
1.
DeGorter MK Conseil G Deeley RG Campbell RL Cole SP 《Biochemical and biophysical research communications》2008,365(1):29-34
Multidrug resistance protein 1 (MRP1/ABCC1) is a 190 kDa member of the ATP-binding cassette (ABC) superfamily of transmembrane transporters that is clinically relevant for its ability to confer multidrug resistance by actively effluxing anticancer drugs. Knowledge of the atomic structure of MRP1 is needed to elucidate its transport mechanism, but only low resolution structural data are currently available. Consequently, comparative modeling has been used to generate models of human MRP1 based on the crystal structure of the ABC transporter Sav1866 from Staphylococcus aureus. In these Sav1866-based models, the arrangement of transmembrane helices differs strikingly from earlier models of MRP1 based on the structure of the bacterial lipid transporter MsbA, both with respect to packing of the twelve helices and their interactions with the nucleotide binding domains. The functional importance of Tyr324 in transmembrane helix 6 predicted to project into the substrate translocation pathway was investigated. 相似文献
2.
Arsenic transport by the human multidrug resistance protein 1 (MRP1/ABCC1). Evidence that a tri-glutathione conjugate is required 总被引:7,自引:0,他引:7
Inorganic arsenic is an established human carcinogen, but its metabolism is incompletely defined. The ATP binding cassette protein, multidrug resistance protein (MRP1/ABCC1), transports conjugated organic anions (e.g. leukotriene C(4)) and also co-transports certain unmodified xenobiotics (e.g. vincristine) with glutathione (GSH). MRP1 also confers resistance to arsenic in association with GSH; however, the mechanism and the species of arsenic transported are unknown. Using membrane vesicles prepared from the MRP1-overexpressing lung cancer cell line, H69AR, we found that MRP1 transports arsenite (As(III)) only in the presence of GSH but does not transport arsenate (As(V)) (with or without GSH). The non-reducing GSH analogs L-gamma-glutamyl-L-alpha-aminobutyryl glycine and S-methyl GSH did not support As(III) transport, indicating that the free thiol group of GSH is required. GSH-dependent transport of As(III) was 2-fold higher at pH 6.5-7 than at a more basic pH, consistent with the formation and transport of the acid-stable arsenic triglutathione (As(GS)(3)). Immunoblot analysis of H69AR vesicles revealed the unexpected membrane association of GSH S-transferase P1-1 (GSTP1-1). Membrane vesicles from an MRP1-transfected HeLa cell line lacking membrane-associated GSTP1-1 did not transport As(III) even in the presence of GSH but did transport synthetic As(GS)(3). The addition of exogenous GSTP1-1 to HeLa-MRP1 vesicles resulted in GSH-dependent As(III) transport. The apparent K(m) of As(GS)(3) for MRP1 was 0.32 microM, suggesting a remarkably high relative affinity. As(GS)(3) transport by MRP1 was osmotically sensitive and was inhibited by several conjugated organic anions (MRP1 substrates) as well as the metalloid antimonite (K(i) 2.8 microM). As(GS)(3) transport experiments using MRP1 mutants with substrate specificities differing from wild-type MRP1 suggested a commonality in the substrate binding pockets of As(GS)(3) and leukotriene C(4). Finally, human MRP2 also transported As(GS)(3). In conclusion, MRP1 transports inorganic arsenic as a tri-GSH conjugate, and GSTP1-1 may have a synergistic role in this process. 相似文献
3.
Multidrug resistance is a major obstacle to cancer treatment and leads to poor prognosis for the patient. Multidrug resistance-associated protein 1 (MRP1) transports a wide range of therapeutic agents as well as diverse physiological substrates and may play a role in the development of drug resistance in several cancers including those of the lung, breast and prostate, as well as childhood neuroblastoma. The majority of patients with neuroblastoma present with widely disseminated disease at diagnosis and despite intensive treatment, the prognosis for such patients is dismal. There is increasing evidence that MRP1 is a MYCN target gene involved in the development of multidrug resistance in neuroblastoma. Given the importance of MRP1 overexpression in neuroblastoma, MRP1 inhibition may be a clinically relevant approach to improving patient outcome in this disease. 相似文献
4.
Rothnie A Callaghan R Deeley RG Cole SP 《The Journal of biological chemistry》2006,281(20):13906-13914
Multidrug resistance protein 1 (MRP1/ABCC1) is an ATP-dependent efflux pump that can confer resistance to multiple anticancer drugs and transport conjugated organic anions. Unusually, transport of several MRP1 substrates requires glutathione (GSH). For example, estrone sulfate transport by MRP1 is stimulated by GSH, vincristine is co-transported with GSH, or GSH can be transported alone. In the present study, radioligand binding assays were developed to investigate the mechanistic details of GSH-stimulated transport of estrone sulfate by MRP1. We have established that estrone sulfate binding to MRP1 requires GSH, or its non-reducing analogue S-methyl GSH (S-mGSH), and further that the affinity (Kd) of MRP1 for estrone sulfate is 2.5-fold higher in the presence of S-mGSH than GSH itself. Association kinetics show that GSH binds to MRP1 first, and we propose that GSH binding induces a conformational change, which makes the estrone sulfate binding site accessible. Binding of non-hydrolyzable ATP analogues to MRP1 decreases the affinity for estrone sulfate. However, GSH (or S-mGSH) is still required for estrone sulfate binding, and the affinity for GSH is unchanged. Estrone sulfate affinity remains low following hydrolysis of ATP. The affinity for GSH also appears to decrease in the post-hydrolytic state. Our results indicate ATP binding is sufficient for reconfiguration of the estrone sulfate binding site to lower affinity and argue for the presence of a modulatory GSH binding site not associated with transport of this tripeptide. A model for the mechanism of GSH-stimulated estrone sulfate transport is proposed. 相似文献
5.
Valente RC Capella LS Nascimento CR Lopes AG Capella MA 《Cell biology and toxicology》2007,23(6):421-427
Besides being a (Na+,K+)-ATPase inhibitor, high doses of the hormone ouabain have also been reported to modulate both the expression and activity
of proteins belonging to the ATP binding cassette family of transporters, such as ABCC7 (CFTR), ABCB1 (P-glycoprotein), and
ABCC1 (MRP1). Although these proteins are present in the kidney, only ABCB1 has a putative physiological role in this organ,
secreting endobiotics and xenobiotics. In the present work, we studied the relationship between ouabain and ABCC1 expression
and function, aiming to establish a physiological role for ouabain. It was observed that prolonged (24 h) but not short (30 min)
incubation with 1 nmol/L or higher ouabain concentrations decreased the expression of ABCC1 protein and induced its mRNA expression.
This decrease was rapidly reversible, reaching control levels after incubation of cells in ouabain-free medium for 3 h, denoting
a hormonal action. Moreover, concentrations equal or higher than 100 nmol/L ouabain also induced impairment of ABCC1 activity,
increasing the accumulation of carboxyfluorescein diacetate, an ABCC1 fluorescent substrate. Because ouabain is now accepted
as an endogenous hormone, our results suggest that ABCC1 is regulated by hormones related to body volume control, which may
have implications for the treatment of hypertensive cancer patients. Moreover, providing ABCC1 is expressed in several other
tissues, such as brain, testis, and the immune system, and is related to the transport of glutathione, it is possible that
ouabain release may control a number of functions within these organs and tissues by modulating both the expression and the
activity of ABCC1. 相似文献
6.
The 190-kDa multidrug resistance protein MRP1 (ABCC1) is a polytopic transmembrane protein belonging to the ATP-binding cassette transporter superfamily. In addition to conferring resistance to various antineoplastic agents, MRP1 is a transporter of conjugated organic anions, including the cysteinyl leukotriene C(4) (LTC(4)). We previously characterized the ATPase activity of reconstituted immunoaffinity-purified native MRP1 and showed it could be stimulated by its organic anion substrates (Mao, Q., Leslie, E. M., Deeley, R. G., and Cole, S. P. C. (1999) Biochim. Biophys. Acta 1461, 69-82). Here we show that purified reconstituted MRP1 is also capable of active transport of its substrates. Thus LTC(4) uptake by MRP1 proteoliposomes was osmotically sensitive and could be inhibited by two MRP1-specific monoclonal antibodies. LTC(4) uptake was also markedly reduced by the competitive inhibitor, S-decyl-glutathione, as well as by the MRP1 substrates 17 beta-estradiol 17-beta-(d-glucuronide), oxidized glutathione, and vincristine in the presence of reduced glutathione. The K(m) for ATP and LTC(4) were 357 +/- 184 microm and 366 +/- 38 nm, respectively, and 2.14 +/- 0.75 microm for 17 beta-estradiol 17-beta-(d-glucuronide). Transport of vincristine required the presence of both ATP and GSH. Conversely, GSH transport was stimulated by vincristine and verapamil. Our data represent the first reconstitution of transport competent purified native MRP1 and confirm that MRP1 is an efflux pump, which can transport conjugated organic anions and co-transport vincristine together with GSH. 相似文献
7.
Robbert H Cool Marloes K Veenstra Wim van Klompenburg René I R Heyne Michael Müller Elisabeth G E de Vries Hendrik W van Veen Wil N Konings 《European journal of biochemistry》2002,269(14):3470-3478
The human multidrug resistance-associated protein(MRP1) is an ATP-dependent efflux pump that transports anionic conjugates, and hydrophobic compounds in a glutathione dependent manner. Similar to the other, well-characterized multidrug transporter P-gp, MRP1 comprises two nucleotide-binding domains (NBDs) in addition to transmembrane domains. However, whereas the NBDs of P-gp have been shown to be functionally equivalent, those of MRP1 differ significantly. The isolated NBDs of MRP1 have been characterized in Escherichia coli as fusions with either the glutathione-S-transferase (GST) or the maltose-binding domain (MBP). The nonfused NBD1 was obtained by cleavage of the fusion protein with thrombin. The GST-fused forms of NBD1 and NBD2 hydrolyzed ATP with an apparent K(m) of 340 microm and a V(max) of 6.0 nmol P(I) x mg-1 x min-1, and a K(m) of 910 microm ATP and a V(max) of 7.5 nmol P(I) x mg-1 x min-1, respectively. Remarkably, S-decyl-glutathione, a conjugate specifically transported by MRP1 and MRP2, was able to stimulate the ATPase activities of the isolated NBDs more than 2-fold in a concentration-dependent manner. However,the stimulation of the ATPase activity was found to coincide with the formation of micelles by S-decyl-glutathione. Equivalent stimulation of ATPase activity could be obtained by surfactants with similar critical micelle concentrations. 相似文献
8.
In many different plant species, genes belonging to the multidrug resistance-associated protein (MRP, ABCC) subfamily of ABC transporters have been identified. Following the discovery of vacuolar transport systems for xenobiotic or plant-produced conjugated organic anions, plant MRPs were originally proposed to be primarily involved in the vacuolar sequestration of potentially toxic metabolites. Indeed, heterologous expression of different Arabidopsis MRPs in yeast demonstrates their activity as ATP-driven pumps for structurally diverse substrates. Recent analysis of protein-protein interactions and the characterization of knockout mutants in Arabidopsis suggests that apart from transport functions plant MRPs play additional roles including the control of plant transpiration through the stomata. Here, we review and discuss the diverse functions of plant MRP-type ABC transporters and present an organ-related and developmental analysis of the expression of Arabidopsis MRPs using the publicly available full-genome chip data. 相似文献
9.
Reconstitution of transport-active multidrug resistance protein 2 (MRP2; ABCC2) in proteoliposomes 总被引:1,自引:0,他引:1
The apical multidrug resistance protein MRP2 (symbol ABCC2) is an ATP-dependent export pump for anionic conjugates in polarized cells. MRP2 has only 48% amino acid identity with the paralog MRP1 (ABCC1). In this study we show that purified recombinant MRP2 reconstituted in proteoliposomes is functionally active in substrate transport. The Km values for ATP and LTC4 in the transport by MRP2 in proteoliposomes were 560 microM and 450 nM, respectively. This transport function of MRP2 in proteoliposomes was dependent on the amount of MRP2 protein present and was determined to 2.7 pmol x min(-1) x mg MRP2(-1) at 100 nM LTC4. Transport was competitively inhibited by the quinoline derivative MK571 with 50% inhibition at about 12 microM. Our data document the first reconstitution of transport-active purified recombinant MRP2. Binding and immunoprecipitation experiments indicated that MRP2 preferentially associates with the chaperone calnexin, but co-reconstitution studies using purified MRP2 and purified calnexin in proteoliposomes suggested that the LTC4 transport function of MRP2 is not dependent on calnexin. The purified, transport-active MRP2 may serve to identify additional interacting proteins in the apical membrane of polarized cells. 相似文献
10.
The 190 kDa multidrug resistance protein 1 (MRP1; ABCC1) is comprised of three membrane spanning domains (MSDs) and two nucleotide binding domains (NBDs) configured MSD1-MSD2-NBD1-MSD3-NBD2. MRP1 overexpression in tumor cells results in an ATP-dependent efflux of many oncolytic agents and arsenic and antimony oxyanions. MRP1 also transports GSSG and GSH as well as conjugated organic anions, including leukotriene C(4) and 17beta-estradiol 17-(beta-D-glucuronide) and certain xenobiotics in association with GSH. Previous studies have shown that portions of MSD1 and the cytoplasmic loop (CL3) connecting it to MSD2 are important for MRP1 transport function. In the present study, Cys residues at positions 43, 49, 85, 148, and 190 in MSD1 and positions 208 and 265 in CL3 were mutated to Ala and Ser, and the effects on protein expression, plasma membrane localization, trypsin sensitivity, organic anion transport, and drug resistance properties were investigated. Confocal microscopy showed that 11 of 14 mutants displayed significant levels of nonplasma membrane-associated MRP1. Most mutant proteins were also more resistant to trypsin proteolysis than wild-type MRP1. All Cys mutants transported organic anions (0.5-1.5-fold wild-type MRP1 activity), and cells expressing Ser-substituted but not Ala-substituted Cys43 and Cys265 MRP1 mutants exhibited a 2.5-fold decrease and a 3-fold increase in arsenite resistance, respectively; Cys43Ser MRP1 also conferred lower levels of vincristine resistance. These results indicate that certain Cys residues in the NH(2) proximal region of MRP1 can be important for its structure and selected transport activities. 相似文献
11.
Multidrug resistance protein (MRP) 1 belongs to the 'C' branch of the ABC transporter superfamily. MRP1 is a high-affinity transporter of the cysteinyl leukotriene C(4) and is responsible for the systemic release of this cytokine in response to an inflammatory stimulus. However, the substrate specificity of MRP1 is extremely broad and includes many organic anion conjugates of structurally unrelated endo- and xenobiotics. In addition, MRP1 transports unmodified hydrophobic compounds, such as natural product type chemotherapeutic agents and mutagens, such as aflatoxin B(1). Transport of several of these compounds has been shown to be dependent on the presence of reduced glutathione (GSH). More recently, GSH has also been shown to stimulate the transport of some conjugated compounds, including sulfates and glucuronides. Here, we summarize current knowledge of the substrate specificity and modes of transport of MRP1 and discuss how the protein may recognize its structurally diverse substrates. 相似文献
12.
The multidrug resistance protein, MRP1 (ABCC1), is an ATP-binding cassette transporter that confers resistance to chemotherapeutic agents. MRP1 also mediates transport of organic anions such as leukotriene C(4) (LTC(4)), 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG), estrone 3-sulfate, methotrexate (MTX), and GSH. We replaced three charged amino acids, Lys(332), His(335), and Asp(336), predicted to be in the sixth transmembrane (TM6) helix of MRP1 with neutral and oppositely charged amino acids and determined the effect on substrate specificity and transport activity. All mutants were expressed in transfected human embryonic kidney cells at levels comparable with wild-type MRP1, and confocal microscopy showed that they were correctly routed to the plasma membrane. Vesicular transport studies revealed that the MRP1-Lys(332) mutants had lost the ability to transport LTC(4), and GSH transport was reduced; whereas E(2)17betaG, estrone 3-sulfate, and MTX transport were unaffected. E(2)17betaG transport was not inhibited by LTC(4) and could not be photolabeled with [(3)H]LTC(4), indicating that the MRP1-Lys(332) mutants no longer bound this substrate. Substitutions of MRP1-His(335) also selectively diminished LTC(4) transport and photolabeling but to a lesser extent. Kinetic analyses showed that V(max) (LTC(4)) of these mutants was decreased but K(m) was unchanged. In contrast to the selective loss of LTC(4) transport in the Lys(332) and His(335) mutants, the MRP1-Asp(336) mutants no longer transported LTC(4), E(2)17betaG, estrone 3-sulfate, or GSH, and transport of MTX was reduced by >50%. Lys(332), His(335), and Asp(336) of TM6 are predicted to be in the outer leaflet of the membrane and are all capable of forming intrahelical and interhelical ion pairs and hydrogen bonds. The importance of Lys(332) and His(335) in determining substrate specificity and of Asp(336) in overall transport activity suggests that such interactions are critical for the binding and transport of LTC(4) and other substrates of MRP1. 相似文献
13.
Kinetic analysis of rhodamines efflux mediated by the multidrug resistance protein (MRP1) 总被引:1,自引:0,他引:1 下载免费PDF全文
Characterization of rhodamine 123 as functional assay for MDR has been primarily focused on P-glycoprotein-mediated MDR. Several studies have suggested that Rh123 is also a substrate for MRP1. However, no quantitative studies of the MRP1-mediated efflux of rhodamines have, up to now, been performed. Measurement of the kinetic characteristics of substrate transport is a powerful approach to enhancing our understanding of their function and mechanism. In the present study, we have used a continuous fluorescence assay with four rhodamine dyes (rhodamine 6G, tetramethylrosamine, tetramethylrhodamine ethyl ester, and tetramethylrhodamine methyl ester) to quantify drug transport by MRP1 in living GLC4/ADR cells. The formation of a substrate concentration gradient was observed. MRP1-mediated transport of rhodamine was glutathione-dependent. The kinetics parameter, k(a) = V(M)/k(m), was very similar for the four rhodamine analogs but approximately 10-fold less than the values of the same parameter determined previously for the MRP1-mediated efflux of anthracycline. The findings presented here are the first to show quantitative information about the kinetics parameters for MRP1-mediated efflux of rhodamine dyes. 相似文献
14.
Molecular model of the outward facing state of the human multidrug resistance protein 4 (MRP4/ABCC4)
ATP-binding cassette (ABC) transporter multidrug resistance protein 4 (MRP4, ABCC4) is involved in multidrug resistance (MDR), which is an increasing challenge to the treatment of cancer and infections. We have constructed a molecular model of ABCC4 based on the outward facing Sav1866 crystal structure using molecular modeling techniques. Amino acids reported by ICMPocketFinder to take part in substrate translocation were among others Glu103 (TMH1), Ser328 (TMH5), Gly359 (TMH6), Arg362 (TMH6), Val726 (TMH7), and Leu987 (TMH12), and their corresponding amino acids in ABCB1 (P-glycoprotein) have been reported to be involved in drug binding according to site-directed mutagenesis studies. The ABCC4 model may be used as a working tool for experimental studies on ABCC4 and design of more specific membrane transport modulating agents (MTMA). 相似文献
15.
Gayet L Picault N Cazalé AC Beyly A Lucas P Jacquet H Suso HP Vavasseur A Peltier G Forestier C 《FEBS letters》2006,580(30):6891-6897
ABC transporters from the multidrug resistance-associated protein (MRP) subfamily are glutathione S-conjugate pumps exhibiting a broad substrate specificity illustrated by numerous xenobiotics, such as anticancer drugs, herbicides, pesticides and heavy metals. The engineering of MRP transporters into plants might be interesting either to reduce the quantity of xenobiotics taken up by the plant in the context of “safe-food” strategies or, conversely, in the development of phytoremediation strategies in which xenobiotics are sequestered in the vacuolar compartment. In this report, we obtained Arabidopsis transgenic plants overexpressing human MRP1. In these plants, expression of MRP1 did not increase plant resistance to antimony salts (Sb(III)), a classical glutathione-conjugate substrate of MRP1. However, the transporter was fully translated in roots and shoots, and targeted to the plasma membrane. In order to investigate the functionality of MRP1 in Arabidopsis, mesophyll cell protoplasts (MCPs) were isolated from transgenic plants and transport activities were measured by using calcein or Sb(III) as substrates. Expression of MRP1 at the plasma membrane was correlated with an increase in the MCPs resistance to Sb(III) and a limitation of the metalloid content in the protoplasts due to an improvement in Sb(III) efflux. Moreover, Sb(III) transport was sensitive to classical inhibitors of the human MRP1, such as MK571 or glibenclamide. These results demonstrate that a human ABC transporter can be functionally introduced in Arabidopsis, which might be useful, with the help of stronger promoters, to reduce the accumulation of xenobiotics in plants, such as heavy metals from multi-contaminated soils. 相似文献
16.
Structural requirements for the apical sorting of human multidrug resistance protein 2 (ABCC2). 总被引:9,自引:0,他引:9
Anne T Nies J?rg K?nig Yunhai Cui Manuela Brom Herbert Spring Dietrich Keppler 《European journal of biochemistry》2002,269(7):1866-1876
The human multidrug resistance protein 2 (MRP2, symbol ABCC2) is a polytopic membrane glycoprotein of 1545 amino acids which exports anionic conjugates across the apical membrane of polarized cells. A chimeric protein composed of C-proximal MRP2 and N-proximal MRP1 localized to the apical membrane of polarized Madin-Darby canine kidney cells (MDCKII) indicating involvement of the carboxy-proximal part of human MRP2 in apical sorting. When compared to other MRP family members, MRP2 has a seven-amino-acid extension at its C-terminus with the last three amino acids (TKF) comprising a PDZ-interacting motif. In order to analyze whether this extension is required for apical sorting of MRP2, we generated MRP2 constructs mutated and stepwise truncated at their C-termini. These constructs were fused via their N-termini to green fluorescent protein (GFP) and were transiently transfected into polarized, liver-derived human HepG2 cells. Quantitative analysis showed that full-length GFP-MRP2 was localized to the apical membrane in 73% of transfected, polarized cells, whereas it remained on intracellular membranes in 27% of cells. Removal of the C-terminal TKF peptide and stepwise deletion of up to 11 amino acids did not change this predominant apical distribution. However, apical localization was largely impaired when GFP-MRP2 was C-terminally truncated by 15 or more amino acids. Thus, neither the PDZ-interacting TKF motif nor the full seven-amino-acid extension were necessary for apical sorting of MRP2. Instead, our data indicate that a deletion of at least 15 C-terminal amino acids impairs the localization of MRP2 to the apical membrane of polarized cells. 相似文献
17.
Ito K Olsen SL Qiu W Deeley RG Cole SP 《The Journal of biological chemistry》2001,276(19):15616-15624
Multidrug resistance protein 1 (MRP1/ABCC1) belongs to the ATP-binding cassette transporter superfamily and is capable of conferring resistance to a broad range of chemotherapeutic agents and transporting structurally diverse conjugated organic anions. In this study, we found that substitution of a highly conserved tryptophan at position 1246 with cysteine (W1246C-MRP1) in the putative last transmembrane segment (TM17) of MRP1 eliminated 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG) transport by membrane vesicles prepared from transiently transfected human embryonic kidney cells while leaving the capacity for leukotriene C(4)- and verapamil-stimulated glutathione transport intact. In addition, in contrast to wild-type MRP1, leukotriene C(4) transport by the W1246C-MRP1 protein was no longer inhibitable by E(2)17betaG, indicating that the mutant protein had lost the ability to bind the glucuronide. A similar phenotype was observed when Trp(1246) was replaced with Ala, Phe, and Tyr. Confocal microscopy of cells expressing Trp(1246) mutant MRP1 molecules fused at the C terminus with green fluorescent protein showed that they were correctly routed to the plasma membrane. In addition to the loss of E(2)17betaG transport, HeLa cells stably transfected with W1246C-MRP1 cDNA were not resistant to the Vinca alkaloid vincristine and accumulated levels of [(3)H]vincristine comparable to those in vector control-transfected cells. Cells expressing W1246C-MRP1 were also not resistant to cationic anthracyclines (doxorubicin, daunorubicin) or the electroneutral epipodophyllotoxin VP-16. In contrast, resistance to sodium arsenite was only partially diminished, and resistance to potassium antimony tartrate remained comparable to that of cells expressing wild-type MRP1. This suggests that the structural determinants required for transport of heavy metal oxyanions differ from those for chemotherapeutic agents. Our results provide the first example of a tryptophan residue being so critically important for substrate specificity in a eukaryotic ATP-binding cassette transporter. 相似文献
18.
Norman BH Gruber JM Hollinshead SP Wilson JW Starling JJ Law KL Self TD Tabas LB Williams DC Paul DC Wagner MM Dantzig AH 《Bioorganic & medicinal chemistry letters》2002,12(6):883-886
Tricyclic isoxazoles were identified from a screen as a novel class of selective multidrug resistance protein (MRP1) inhibitors. From a screen lead, SAR efforts resulted in the preparation of LY 402913 (9h), which inhibits MRP1 and reverses drug resistance to MRP1 substrates, such as doxorubicin, in HeLa-T5 cells (EC(50)=0.90 microM), while showing no inherent cytotoxicity. Additionally, LY 402913 inhibits ATP-dependent, MRP1-mediated LTC(4) uptake into membrane vesicles prepared from the MRP1-overexpressing HeLa-T5 cells (EC(50)=1.8 microM). LY 402913 also shows selectivity ( approximately 22-fold) against the related transporter, P-glycoprotein, in HL60/Adr and HL60/Vinc cells. Finally, when dosed in combination with the oncolytic MRP1 substrate vincristine, LY 402913 delays the growth of MRP1-overexpressing tumors in vivo. 相似文献
19.
van de Ven R de Jong MC Reurs AW Schoonderwoerd AJ Jansen G Hooijberg JH Scheffer GL de Gruijl TD Scheper RJ 《Journal of immunology (Baltimore, Md. : 1950)》2006,176(9):5191-5198
Dendritic cells (DC) express the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and multidrug resistance protein 1 (MRP1; ABCC1). Functionally, both these transporters have been described to be required for efficient DC and T cell migration. In this study, we report that MRP1 activity is also crucial for differentiation of DC. Inhibition of MRP1, but not P-glycoprotein, transporter activity with specific antagonists during in vitro DC differentiation interfered with early DC development. Impaired interstitial and Langerhans DC differentiation was characterized by 1) morphological changes, reflected by dropped side scatter levels in flow cytometric analysis and 2) phenotypic changes illustrated by maintained expression of the monocytic marker CD14, lower expression levels of CD40, CD86, HLA-DR, and a significant decrease in the amount of cells expressing CD1a, CD1c, and Langerin. Defective DC differentiation also resulted in their reduced ability to stimulate allogeneic T cells. We identified the endogenous CD1 ligands sulfatide and monosialoganglioside GM1 as MRP1 substrates, but exogenous addition of these substrates could not restore the defects caused by blocking MRP1 activity during DC differentiation. Although leukotriene C(4) was reported to restore migration of murine Mrp1-deficient DC, the effects of MRP1 inhibition on DC differentiation appeared to be independent of the leukotriene pathway. Though MRP1 transporter activity is important for DC differentiation, the relevant MRP1 substrate, which is required for DC differentiation, remains to be identified. Altogether, MRP1 seems to fulfill an important physiological role in DC development and DC functions. 相似文献
20.
Bai J Lai L Yeo HC Goh BC Tan TM 《The international journal of biochemistry & cell biology》2004,36(2):247-257
Multidrug resistance proteins (MRPs) are ATP-dependent export pumps that mediate the export of organic anions. ABCC1 (MRP1), ABCC2 (MRP2) and ABCC3 (MRP3) are all able to facilitate the efflux of anionic conjugates including glutathione (GSH), glucuronide and sulfate conjugates of xenobiotics and endogenous molecules. Earlier studies showed that ABCC4 functions as an ATP-driven export pump for cyclic AMP and cyclic GMP, as well as estradiol-17-beta-D-glucuronide. However, it was unclear if other conjugated metabolites can be transported by ABCC4. Hence in this study, a fluorescent substrate, bimane-glutathione (bimane-GS) was used to further examine the transport activity of ABCC4. Using cells stably overexpressing ABCC4, this study shows that ABCC4 can facilitate the efflux of the glutathione conjugate, bimane-glutathione. Bimane-glutathione efflux increased with time and >85% of the conjugate was exported after 15min. This transport was abolished in the presence of 2.5microM carbonylcyanide m-chlorophenylhydrasone (CCCP), an uncoupler of oxidative phosphorylation. Inhibition was also observed with known inhibitors of MRP transporters including benzbromarone, verapamil and indomethacin. In addition, 100microM methotrexate, an ABCC4 substrate or 100microM 6-thioguanine (6-TG), a compound whose monophosphate metabolite is an ABCC4 substrate, reduced efflux by >40%. A concentration-dependent inhibition of bimane-glutathione efflux was observed with 1-chloro-2,4-dinitrobenzene (CDNB) which is metabolized intracellularly to the glutathione conjugate, 2,4-dinitrophenyl-glutathione (DNP-GS). The determination that ABCC4 can mediate the transport of glucuronide and glutathione conjugates indicates that ABCC4 may play a role in the cellular extrusion of Phase II detoxification metabolites. 相似文献