首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collagen-derived hydroxyproline (Hyp)-containing peptides have a variety of biological effects on cells. These bioactive collagen peptides are locally generated by the degradation of endogenous collagen in response to injury. However, no comprehensive study has yet explored the functional links between Hyp-containing peptides and cellular behavior. Here, we show that the dipeptide prolyl-4-hydroxyproline (Pro-Hyp) exhibits pronounced effects on mouse tendon cells. Pro-Hyp promotes differentiation/maturation of tendon cells with modulation of lineage-specific factors and induces significant chemotactic activity in vitro. In addition, Pro-Hyp has profound effects on cell proliferation, with significantly upregulated extracellular signal–regulated kinase phosphorylation and extracellular matrix production and increased type I collagen network organization. Using proteomics, we have predicted molecular transport, cellular assembly and organization, and cellular movement as potential linked-network pathways that could be altered in response to Pro-Hyp. Mechanistically, cells treated with Pro-Hyp demonstrate increased directional persistence and significantly increased directed motility and migration velocity. They are accompanied by elongated lamellipodial protrusions with increased levels of active β1-integrin–containing focal contacts, as well as reorganization of thicker peripheral F-actin fibrils. Pro-Hyp–mediated chemotactic activity is significantly reduced (p < 0.001) in cells treated with the mitogen-activated protein kinase kinase 1/2 inhibitor PD98059 or the α5β1-integrin antagonist ATN-161. Furthermore, ATN-161 significantly inhibits uptake of Pro-Hyp into adult tenocytes. Thus, our findings document the molecular basis of the functional benefits of the Pro-Hyp dipeptide in cellular behavior. These dynamic properties of collagen-derived Pro-Hyp dipeptide could lead the way to its application in translational medicine.  相似文献   

2.
The mammalian serine-arginine (SR) protein, ASF/SF2, contains multiple contiguous RS dipeptides at the C terminus, and approximately 12 of these serines are processively phosphorylated by the SR protein kinase 1 (SRPK1). We have recently shown that a docking motif in ASF/SF2 specifically interacts with a groove in SRPK1, and this interaction is necessary for processive phosphorylation. We previously showed that SRPK1 and its yeast ortholog Sky1p maintain their active conformations using diverse structural strategies. Here we tested if the mechanism of ASF/SF2 phosphorylation by SRPK is evolutionarily conserved. We show that Sky1p forms a stable complex with its heterologous mammalian substrate ASF/SF2 and processively phosphorylates the same sites as SRPK1. We further show that Sky1p utilizes the same docking groove to bind yeast SR-like protein Gbp2p and phosphorylates all three serines present in a contiguous RS dipeptide stretch. However, the mechanism of Gbp2p phosphorylation appears to be non-processive. Thus, there are physical attributes of SR and SR-like substrates that dictate the mechanism of phosphorylation, whereas the ability to processively phosphorylate substrates is inherent to SR protein kinases.  相似文献   

3.
Nucleotide-binding oligomerization domain protein-2 (NOD2) activation in skeletal muscle cells has been associated with insulin resistance, but the underlying mechanisms are not yet clear. Here we demonstrate the implication of oxidative stress in the development of mitochondrial dysfunction and insulin resistance in response to NOD2 activation in skeletal muscle cells. Treatment with the selective NOD2 ligand muramyl dipeptide (MDP) increased mitochondrial reactive oxygen species (ROS) generation in L6 myotubes. MDP-induced ROS production was associated with increased levels of protein carbonyls and reduction in citrate synthase activity, cellular ATP level, and mitochondrial membrane potential, as well as altered expression of genes involved in mitochondrial function and metabolism. Antioxidant treatment attenuated MDP-induced ROS production and restored mitochondrial functions. In addition, the presence of antioxidant prevented NOD2-mediated activation of MAPK kinases and the inflammatory response. This was associated with reduced serine phosphorylation of insulin receptor substrate-1 (IRS-1) and improved insulin-stimulated tyrosine phosphorylation of IRS-1 and downstream activation of Akt phosphorylation. These data indicate that oxidative stress plays a role in NOD2 activation-induced inflammatory response and that MDP-induced oxidative stress correlates with impairment of mitochondrial functions and induction of insulin resistance in skeletal muscle cells.  相似文献   

4.
The human alternative splicing factor ASF/SF2, an SR (serine-arginine-rich) protein involved in mRNA splicing control, is activated by the multisite phosphorylation of its C-terminal RS domain, a segment containing numerous arginine-serine dipeptide repeats. The protein kinase responsible for this modification, SR-specific protein kinase 1 (SRPK1), catalyzes the selective phosphorylation of approximately a dozen serines in only the N-terminal portion of the RS domain (RS1). To gain insights into the nature of selective phosphate incorporation in ASF/SF2, region-specific phosphorylation in the RS domain was monitored as a function of reaction progress. Arg-to-Lys mutations were made at several positions to produce unique protease cleavage sites that separate the RS domain into identifiable N- and C-terminal phosphopeptides upon treatment with lysyl endoproteinase. These studies reveal that SRPK1 docks near the C-terminus of the RS1 segment and then moves in an N-terminal direction along the RS domain. Multiple quadruple Ser-to-Ala and deletion mutations did not disrupt the phosphorylation of other sites regardless of position, suggesting that the active site of SRPK1 docks in a flexible manner at the center of the RS domain. Taken together, these data suggest that SRPK1 uses a unique ‘grab-and-pull’ mechanism to control the regiospecific phosphorylation of its protein substrate.  相似文献   

5.
Nucleotide binding and oligomerization domain-containing protein 2 (NOD2/Card15) is an intracellular protein that is involved in the recognition of bacterial cell wall-derived muramyl dipeptide. Mutations in the gene encoding NOD2 are associated with inherited inflammatory disorders, including Crohn disease and Blau syndrome. NOD2 is a member of the nucleotide-binding domain and leucine-rich repeat-containing protein gene (NLR) family. Nucleotide binding is thought to play a critical role in signaling by NLR family members. However, the molecular mechanisms underlying signal transduction by these proteins remain largely unknown. Mutations in the nucleotide-binding domain of NOD2 have been shown to alter its signal transduction properties in response to muramyl dipeptide in cellular assays. Using purified recombinant protein, we now demonstrate that NOD2 binds and hydrolyzes ATP. Additionally, we have found that the purified recombinant protein is able to bind directly to muramyl dipeptide and can associate with known NOD2-interacting proteins in vitro. Binding of NOD2 to muramyl dipeptide and homo-oligomerization of NOD2 are enhanced by ATP binding, suggesting a model of the molecular mechanism for signal transduction that involves binding of nucleotide followed by binding of muramyl dipeptide and oligomerization of NOD2 into a signaling complex. These findings set the stage for further studies into the molecular mechanisms that underlie detection of muramyl dipeptide and assembly of NOD2-containing signaling complexes.  相似文献   

6.
Bai XC  Liu AL  Deng F  Zou ZP  Bai J  Ji QS  Luo SQ 《Journal of biochemistry》2002,131(2):207-212
The consequences of heat-induced phospholipase C-gamma1 (PLC-gamma1) phosphorylation are not known. We investigated the role of PLC-gamma1 activation and its downstream targets during the cellular response to heat stress using mouse embryonic fibroblasts genetically deficient in PLC-gamma1 (Plcg1 null MEF) and its wild type (wt MEF) as models. Treatment of wt MEF with heat resulted in temperature- and heating duration-dependent tyrosine phosphorylation of PLC-gamma1. HSP70 synthesis and the activation of extracellular signal-regulated kinases 1/2 (ERK1/2) and c-Jun N-terminal protein kinase (JNK) increased equally following heat treatment in both cell lines. However, heat-induced protein kinase C (PKC) activation was dramatically reduced in Plcg1 null MEF compared with wt MEF. Importantly, the mitochondrial localization of PKCalpha, PKC-dependent phosphorylation of Bcl-2, and cell viability in Plcg1 null MEF following heat treatment, were significantly decreased compared with the wild type. Furthermore, pretreatment with bryostatin-1, a PKC activator, enhanced Bcl-2 phosphorylation and cellular resistance to heat-induced apoptosis in Plcg1 null MEF. Taken together, these results suggest that PLC-gamma1 activation enhances cell survival through the PKC-dependent phosphorylation of Bcl-2 during the cellular response to heat stress.  相似文献   

7.
The cellular pathways involved in the impairment of insulin signaling by cellular stress, triggered by the inflammatory cytokine tumor necrosis factor-alpha (TNF) or by translational inhibitors like cycloheximide and anisomycin were studied. Similar to TNF, cycloheximide and anisomycin stimulated serine phosphorylation of IRS-1 and IRS-2, reduced their ability to interact with the insulin receptor, inhibited the insulin-induced tyrosine phosphorylation of IRS proteins, and diminished their association with phosphatidylinositol 3-kinase (PI3K). These defects were partially reversed by wortmannin and LY294002, indicating that a PI3K-regulated step is critical for the impairment of insulin signaling by cellular stress. Induction of cellular stress resulted in complex formation between PI3K and ErbB2/ErbB3 and enhanced PI3K activity, implicating ErbB proteins as downstream effectors of stress-induced insulin resistance. Indeed, stimulation of ErbB2/ErbB3 by NDFbeta1, the ErbB3 ligand, inhibited IRS protein tyrosine phosphorylation and recruitment of downstream effectors. Specific inhibitors of the ErbB2 tyrosine kinase abrogated the activation of ErbB2/ErbB3 and in parallel prevented the reduction in IRS protein functions. Taken together, our results suggest a novel mechanism by which cellular stress induces cross-talk between two different signaling pathways. Stress-dependent transactivation of ErbB2/ErbB3 receptors triggers a PI3K cascade that induces serine phosphorylation of IRS proteins culminating in insulin resistance.  相似文献   

8.
We have now found that the most potent, Cpd 5 [2-(2-mercaptoethanol)-3-methyl-1, 4-napthoquinone], inhibits growth of doxorubicin-resistant and doxorubicin-sensitive breast cancer cells (MCF 7r and MCF 7w) in culture. Growth inhibition by Cpd 5 was antagonized by the thiol antioxidants glutathione and cysteine, but not by catalase or superoxide dismutase, suggesting that growth inhibition is probably via conjugation of cellular thiols. In support of this, we found that Cpd 5 inhibited the activity of thiol containing cellular protein tyrosine phosphatase (PTP) enzyme, with consequent induction of various tyrosine phosphoproteins, but not serine or tyrosine phosphoproteins. The tyrosine phosphorylation was also inhibited by exogenous glutathione or cysteine and could be enhanced by depletion of cellular glutathione by BSO. This effect of Cpd 5 on protein tyrosine phosphorylation was highly selective, however. Tyrosine phosphorylation of EGF-R, Erb-B2, and ERK1/2 was increased, but not that of Insulin-R or JNK. ERK1/2 tyrosine phosphorylation and growth inhibition increased with increasing concentrations of Cpd 5. Furthermore, suppression of Cpd 5-mediated ERK1/2 phosphorylation by an ERK-kinase inhibitor antagonized growth inhibition. These results suggest a strong correlation between ERK1/2 phosphorylation by Cpd 5 and growth inhibition. This novel K-vitamin analog thus inhibits MCF 7 cell growth and induces selective protein tyrosine phosphorylation.  相似文献   

9.
Sphingosine kinase 1 (SK1) is an important regulator of cellular signaling that has been implicated in a broad range of cellular processes. Cell exposure to a wide array of growth factors, cytokines, and other cell agonists can result in a rapid and transient increase in SK activity via an activating phosphorylation. We have previously identified extracellular signal-regulated kinases 1 and 2 (ERK1/2) as the kinases responsible for the phosphorylation of human SK1 at Ser(225), but the corresponding phosphatase targeting this phosphorylation has remained undefined. Here, we provide data to support a role for protein phosphatase 2A (PP2A) in the deactivation of SK1 through dephosphorylation of phospho-Ser(225). The catalytic subunit of PP2A (PP2Ac) was found to interact with SK1 using both GST-pulldown and coimmunoprecipitation analyses. Coexpression of PP2Ac with SK1 resulted in reduced Ser(225) phosphorylation of SK1 in human embryonic kidney (HEK293) cells. In vitro phosphatase assays showed that PP2Ac dephosphorylated both recombinant SK1 and a phosphopeptide based on the phospho-Ser(225) region of SK1. Finally, both basal and tumor necrosis factor-alpha-stimulated cellular SK1 activity were regulated by molecular manipulation of PP2Ac activity. Thus, PP2A appears to function as an endogenous regulator of SK1 phosphorylation.  相似文献   

10.
Dipeptidyl peptidase I (DPPI, cathepsin C) is a lysosomal cysteine protease that can activate zymogens of several different serine proteases by one step or sequential removal of dipeptides from the N-termini of the pro-protease protein substrates. To find DPPI inhibitors more suitable for cellular applications than diazomethyl ketones, we synthesized three types of inhibitors: dipeptide acyloxymethyl ketones, fluoromethyl ketones, and vinyl sulfones (VS). The acyloxymethyl ketones inhibited DPPI slowly and are moderate inhibitors of cellular DPPI. The fluoromethyl ketones were potent, but the inhibited DPPI regained activity quickly. The dipeptide vinyl sulfones were effective inhibitors for DPPI, but they also inhibited cathepsins B, H, and L weakly. The best inhibitor, Ala-Hph-VS-Ph, had a k2/K(I) of 2,000,000M(-1)s(-1). The vinyl sulfones also inhibited intracellular DPPI, and for this application the more stable inhibitors exhibit better potency. We conclude that vinyl sulfones are promising inhibitors to study the intracellular functions of DPPI.  相似文献   

11.
Starvation induces autophagy to preserve cellular homeostasis in virtually all eukaryotic organisms. However, the mechanisms by which starvation induces autophagy are not completely understood. In mammalian cells, the antiapoptotic protein, Bcl-2, binds to Beclin 1 during nonstarvation conditions and inhibits its autophagy function. Here we show that starvation induces phosphorylation of cellular Bcl-2 at residues T69, S70, and S87 of the nonstructured loop; Bcl-2 dissociation from Beclin 1; and autophagy activation. In contrast, viral Bcl-2, which lacks the phosphorylation site-containing nonstructured loop, fails to dissociate from Beclin 1 during starvation. Furthermore, the stress-activated signaling molecule, c-Jun N-terminal protein kinase 1 (JNK1), but not JNK2, mediates starvation-induced Bcl-2 phosphorylation, Bcl-2 dissociation from Beclin 1, and autophagy activation. Together, our findings demonstrate that JNK1-mediated multisite phosphorylation of Bcl-2 stimulates starvation-induced autophagy by disrupting the Bcl-2/Beclin 1 complex. These findings define a mechanism that cells use to regulate autophagic activity in response to nutrient status.  相似文献   

12.
Transforming growth factor-beta-activated kinase 1 (TAK1) mitogen-activated protein kinase kinase kinase has been shown to be activated by cellular stresses including tumor necrosis factor-alpha (TNF-alpha). Here, we characterized the molecular mechanisms of cellular stress-induced TAK1 activation, focusing mainly on the phosphorylation of TAK1 at Thr-187 and Ser-192 in the activation loop. Thr-187 and Ser-192 are conserved among species from Caenorhabditis elegans to human, and their replacement with Ala resulted in inactivation of TAK1. Immunoblotting with a novel phospho-TAK1 antibody revealed that TNF-alpha significantly induced the phosphorylation of endogenous TAK1 at Thr-187, and subsequently the phosphorylated forms of TAK1 rapidly disappeared. Intermolecular autophosphorylation of Thr-187 was essential for TAK1 activation. RNA interference and overexpression experiments demonstrated that TAK1-binding protein TAB1 and TAB2 were involved in the phosphorylation of TAK1, but they regulated TAK1 phosphorylation differentially. Furthermore, SB203580 and p38alpha small interfering RNA enhanced TNF-alpha-induced Thr-187 phosphorylation as well as TAK1 kinase activity, indicating that the phosphorylation is affected by p38alpha/TAB1/TAB2-mediated feedback control of TAK1. These results indicate critical roles of Thr-187 phosphorylation in the stress-induced rapid and transient activation of TAK1 in a signaling complex containing TAB1 and TAB2.  相似文献   

13.
The mammalian target of rapamycin (mTOR) plays a central role in the regulation of a number of cellular processes including growth, metabolism, and ion transport. mTOR is found in two multiprotein complexes, mTORC1 and mTORC2, which phosphorylate distinct substrates and regulate distinct cellular processes. SGK1 is an mTORC2 substrate, which is a key regulator of epithelial Na(+) transport mediated by the epithelial sodium channel. Although it is known that SGK1 physically interacts with mTORC2, it is unknown which mTORC2 component mediates this interaction or whether this interaction plays a physiologically relevant role in specific activation of SGK1. Here we identify mSIN1 as the mTORC2 component that mediates interaction with SGK1 and demonstrate that this interaction is required for SGK1 phosphorylation and epithelial sodium channel activation. We used the yeast two-hybrid system coupled with random mutagenesis to identify a mutant mSIN1 (mSIN1/Q68H), which does not interact with SGK1. Expression of this mutant does not restore SGK1 phosphorylation to wild-type levels in mSIN1-deficient murine embryo fibroblasts. Furthermore, in kidney epithelial cells, mSIN1/Q68H has a dominant-negative effect on SGK1 phosphorylation and on SGK1-dependent Na(+) transport. Interestingly, this interaction appears to be specific in that another mTORC2 substrate, Akt, does not interact with mSIN1, and its phosphorylation and activity are unaffected by the Q68H mutation. These data support the conclusion that mTORC2 uses distinct strategies to phosphorylate different substrates and suggest a mechanism for mTORC2 specificity in the regulation of diverse cellular processes.  相似文献   

14.
Hemin has been reported to be protective in the pathological process, but its protective mechanisms have not been precisely defined. Hemin could induce Erk1/2 phosphorylation in astrocyte. Erk1/2 phosphorylation has been proved to be involved in many growth signals cellular transduction. However, little study has been conducted as to the relationship between hemin and Erk1/2 activation in human umbilical vein endothelial cells (HUVECs). The present study aimed to investigate the relationship between hemin and Erk1/2 phosphorylation in HUVECs. The results showed that low concentration of hemin induced and sustained phosphorylation of Erk1/2 for a long time. The HO inhibitor protoporphyrin IX zinc (II) abrogated phosphorylation of Erk1/2 induced by hemin. Biliverdin, one of the metabolites of hemin, obviously induced the Erk1/2 phosphorylation in HUVECs. Both hemin and biliverdin promoted HUVEC cell growth. The results strongly suggested that hemin could induce and sustain Erk1/2 phosphorylation in HUVECs by way of HO-1 induction and biliverdin produced from HO-1 catalysing hemin degradation.  相似文献   

15.
Chen N  Shao W  Lv P  Zhang S  Chen Y  Zhu L  Lu Y  Shen Y 《Free radical research》2007,41(9):990-996
Hemin has been reported to be protective in the pathological process, but its protective mechanisms have not been precisely defined. Hemin could induce Erk1/2 phosphorylation in astrocyte. Erk1/2 phosphorylation has been proved to be involved in many growth signals cellular transduction. However, little study has been conducted as to the relationship between hemin and Erk1/2 activation in human umbilical vein endothelial cells (HUVECs). The present study aimed to investigate the relationship between hemin and Erk1/2 phosphorylation in HUVECs. The results showed that low concentration of hemin induced and sustained phosphorylation of Erk1/2 for a long time. The HO inhibitor protoporphyrin IX zinc (II) abrogated phosphorylation of Erk1/2 induced by hemin. Biliverdin, one of the metabolites of hemin, obviously induced the Erk1/2 phosphorylation in HUVECs. Both hemin and biliverdin promoted HUVEC cell growth. The results strongly suggested that hemin could induce and sustain Erk1/2 phosphorylation in HUVECs by way of HO-1 induction and biliverdin produced from HO-1 catalysing hemin degradation.  相似文献   

16.
17.
PPP2R2A是PP2A磷酸酶的调控亚基之一,以往的研究报道显示,PPP2R2A可促进肿瘤细胞生存和生长。本研究通过串联亲和纯化联合HPLC-Chip-ESI/MS/MS筛选PPP2R2A的相互作用蛋白质,分析结果显示,L-谷氨酰胺-D-果糖-6-磷酸转氨酶1(Glutamine-fructose-6-phosphate transaminase 1,GFPT1)和L-谷氨酰胺-D-果糖-6-磷酸转氨酶2(Glutamine-fructose-6-phosphate transaminase 2,GFPT2)是PPP2R2A可能的结合蛋白。通过免疫荧光共定位、GST Pull-down和免疫共沉淀等方法,进一步确认了PPP2R2A和GFPT1及GFPT2的相互结合。通过shRNA下调PPP2R2A后,GFPT2的磷酸化水平显著增加,但GFPT1的磷酸化水平改变不明显。GFPT2是O-GlcNAC糖基化修饰通路中的一个限速酶,在乳腺癌细胞MDA-MB-231中下调PPP2R2A后,蛋白质O-GlcNAC糖基化修饰水平增加。这些结果表明,PPP2R2A可直接结合GFPT2,并导致其去磷酸化,进而影响细胞内O-GlcNAC糖基化修饰。  相似文献   

18.
Assembly of the spliceosome requires the participation of SR proteins, a family of splicing factors rich in arginine-serine dipeptide repeats. The repeat regions (RS domains) are polyphosphorylated by the SRPK and Clk/Sty families of kinases. The two families of kinases have distinct enzymatic properties, raising the question of how they may work to regulate the function of SR proteins in RNA metabolism in mammalian cells. Here we report the first mass spectral analysis of the RS domain of ASF/SF2, a prototypical SR protein. We found that SRPK1 was responsible for efficient phosphorylation of a short stretch of amino acids in the N-terminal portion of the RS domain of ASF/SF2 while Clk/Sty was able to transfer phosphate to all available serine residues in the RS domain, indicating that SR proteins may be phosphorylated by different kinases in a stepwise manner. Both kinases bind with high affinity and use fully processive catalytic mechanisms to achieve either restrictive or complete RS domain phosphorylation. These findings have important implications on the regulation of SR proteins in vivo by the SRPK and Clk/Sty families of kinases.  相似文献   

19.
Peroxisome proliferator-activated receptor gamma (PPARgamma) causes epithelial to mesenchymal transformation (EMT) in intestinal epithelial cells, as evidenced by reorganization of the actin cytoskeleton, acquisition of a polarized, mesenchymal cellular morphology, increased cellular motility, and colony scattering. This response is due to activation of Cdc42, resulting in p21-activated kinase-dependent phosphorylation and activation of MEK1 Ser(298) and activation of ERK1/2. Dominant negative MEK1, MEK2, and ERK2 block PPARgamma-induced EMT, whereas constitutively active MEK1 and MEK2 induce a mesenchymal phenotype similar to that evoked by PPARgamma. PPARgamma also stimulates ERK1/2 phosphorylation in the intestinal epithelium in vivo. PPARgamma induces the p110alpha subunit of phosphoinositide 3-kinase (PI3K), and inhibition of PI3K blocks PPARgamma-dependent phosphorylation of MEK1 Ser(298), activation of ERK1/2, and EMT. We conclude that PPARgamma regulates the motility of intestinal epithelial cells through a mitogen-activated protein kinase cascade that involves PI3K, Cdc42, p21-activated kinase, MEK1, and ERK1/2. Regulation of cellular motility through Rho family GTPases has not been previously reported for nuclear receptors, and elucidation of the mechanism that accounts for the role of PPARgamma in regulating motility of intestinal epithelial cells provides fundamental new insight into the function of this receptor during renewal of the intestinal epithelium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号