首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 191 毫秒
1.
3H][D-Ala2,NMePhe4,Gly-ol5]-enkephalin (mu-opioid) binding in beige-J mice   总被引:2,自引:0,他引:2  
Tritiated [D-Ala2,NMePhe4,Gly-ol5]-enkephalin ([3H]DAGO) was used to examine mu-opioid receptor number and mu-ligand binding in brain synaptic membranes (P2 fraction) from C57BL/6J-bgJ/bgJ (beige-J) mice, a strain with combined deficiencies in immunological function (resembling Chediak-Higashi syndrome) and analgesic response to mu-opioid agonists such as morphine and DAGO. As controls, white mice, beige-J littermates (normally responsive to mu-opioid agonists), and a known mu-deficient strain (CXBK) were also examined. Neither the KD (0.47 to 0.49 nM) nor the Bmax (153 to 168 fmol/mg protein) determined for beige-J mice was significantly different from values determined for littermates or white mice. In contrast, the Bmax of CXBK mice (66 fmol/mg protein) was clearly less than that of the other strains. The analgesic defect of beige-J mice, therefore, is not likely due to an insufficient number of mu-opioid receptors, as it presumably is in CXBK mice. Carbachol (200 micrograms/ml), which partly corrects the analgesic defect of beige-J mice, had no effect on [3H]DAGO binding either acutely in vitro or chronically ex vivo after administration to beige-J mice for three weeks. Hence, the analgesic defect of beige-J mice appears to be due to some defect in the mu-opioid receptor-effector coupling mechanism or to some endogenous substance that inhibits binding of mu-opioid ligands to otherwise functional receptors.  相似文献   

2.
Several studies have shown the participation of the endogenous opioid system on the antinociceptive effects and addictive properties of nicotine. The aim of the present study was to explore the involvement of the mu-opioid receptors in the development of tolerance to nicotine antinociception. Chronic treatment of C57BL/6 mice with nicotine (5 mg/kg s.c., three times daily during 12 days) resulted in tolerance to its antinociceptive responses in the tail-immersion test. We investigated the possible existence of adaptive changes in the expression and/or functional activity of mu-opioid receptors in these tolerant mice by using autoradiography of [(3)H]D-Ala(2)-MePhe(4)-Gly-ol(5) enkephalin ([(3)H]DAMGO) binding and DAMGO-stimulated guanosine [(35)S]5'-(gamma-thio)-triphosphate ([(35)S]GTPgammaS) binding. The density of mu-opioid receptors in the spinal cord was not modified in nicotine-tolerant mice, whereas a decrease was found in the caudate-putamen, as well as in the core and the shell of the nucleus accumbens. However, the functional activity of these receptors was significantly increased in the spinal cord as a consequence of nicotine treatment. To further investigate the role of mu-opioid receptors in the tolerance to nicotine-induced antinociception, we evaluated this response in C57BL/6 mu-opioid receptor knockout mice. Chronic nicotine treatment produced tolerance in both wild-type and knockout animals, but tolerance developed faster in mice lacking mu-opioid receptors. These results indicate that mu-opioid receptors play an important role in the development of tolerance to nicotine antinociceptive effects.  相似文献   

3.
A method utilizing the insertion of a 3 mm glass bead into the distal colon was used to evaluate the activity of intracerebroventricularly (ICV) administered mu- and delta-opioid agonists on colonic bead expulsion time in mice. Specifically, the ability of two mu-opioid receptor agonists, morphine and [D-Ala2,NMePhe4, Gly-ol5]-enkephalin (DAGO) and a selective delta-opioid receptor agonist, [D-Pen2,L-Pen5]-enkephalin (DPLPE), to inhibit colonic bead expulsion time was measured in normal (Swiss) and mu-opioid deficient (CXBK) mice. All three compounds maximally inhibited colonic bead expulsion time in normal mice. All three compounds also inhibited colonic bead expulsion time in CXBK mice, but none maximally. These results are in contrast to previous work in which clear differential analgesic sensitivity of CXBK mice to centrally administered mu- and delta-opioid receptor agonists was observed in the tail-flick test. Taken together, the results suggest (a) that mu-, and possibly delta-, opioid receptors can mediate supraspinal inhibition of colonic bead expulsion in mice and (b) that the genetic deficits of mu-receptor number or genetically-induced alteration in receptor function in CXBK mice do not equally affect inhibition of colonic bead expulsion and tail-flick antinociception.  相似文献   

4.
Synaptosomes prepared from rat cerebral cortex and labeled with [3H]noradrenaline (NA) were superfused with calcium-free Krebs-Ringer-bicarbonate medium and exposed to 10 mM K+ plus 0.1 mM Ca2+ so that [3H]NA release was induced. 6,7-Dihydroxy-N,N-dimethyl-2-aminotetralin (TL-99) strongly inhibited synaptosomal K+-induced [3H]NA release (EC50 = 5-10 nM) by activating alpha 2-adrenoceptors. Release was also inhibited (maximally by 40-50%) by morphine (EC50 = 5-10 nM), [Leu5]enkephalin (EC50 = approximately 300 nM), [D-Ala2,D-Leu5]enkephalin (DADLE), and Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol (DAGO) (EC50 values = approximately 30 nM). In contrast to the mu-selective opioid receptor agonists morphine and DAGO, the highly delta-selective agonist [D-Pen2,D-Pen5]enkephalin (1 microM) did not affect [3H]-NA release. Furthermore, the inhibitory effect of DADLE, an agonist with affinity for both delta- and mu-opioid receptors, was antagonized by low concentrations of naloxone. The findings strongly support the view that, like alpha 2-adrenoceptors, mu-opioid receptors mediating inhibition of NA release in the rat cerebral cortex are localized on noradrenergic nerve terminals.  相似文献   

5.
The antinociceptive effect of Tyr-d-Arg-Phe-Sar (TAPS) at the spinal level was characterized with the mouse tail-flick test. Intrathecal (i.t.) administration of TAPS produced a dose-dependent antinociception. The antinociception induced by TAPS was completely blocked by i.t. pretreatment with the mu-opioid receptor antagonist beta-funaltrexamine, the mu(1)-opioid receptor antagonist naloxonazine or the kappa-opioid receptor antagonist nor-binaltorphimine, but not with the delta-opioid receptor antagonist naltrindole. Moreover, TAPS-induced antinociception was dose-dependently attenuated by i.t. pretreatment with an antiserum against dynorphin B, but not against dynorphin A, alpha-neo-endorphin, [Met(5)]enkephalin, or [Leu(5)]enkephalin. In mice lacking prodynorphin, TAPS-induced antinociception was significantly reduced compared to that in wild-type mice. These results suggest that TAPS mainly stimulates mu(1)-opioid receptors, which subsequently induce the release of dynorphin B, which then acts on kappa-opioid receptors to produce antinociception.  相似文献   

6.
The present study was designed to investigate the effect of repeated administration of a selective kappa-opioid receptor agonist (1S-trans)-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]-benzeneacetamide hydrochloride [(-)U-50,488H] on antinociception and G-protein activation induced by mu-opioid receptor agonists in mice. A single s.c. injection of (-)U-50,488H produced a dose-dependent antinociception, and this effect was reversed by a selective kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI). Furthermore, a single s.c. pre-treatment with (-)U-50,488H had no effect on the mu-opioid receptor agonist-induced antinociception. In contrast, repeated s.c. administration of (-)U-50,488H resulted in the development of tolerance to (-)U-50,488H-induced antinociception. Under these conditions, we demonstrated here that repeated s.c. injection of (-)U-50,488H significantly enhanced the antinociceptive effect of selective mu-opioid receptor agonists endomorphin-1, endomorphin-2 and [d-Ala2,N-MePhe4,Gly-ol5] enkephalin (DAMGO). Using the guanosine-5'-o-(3-[35S]thio) triphosphate ([35S]GTP gamma S) binding assay, we found that (-)U-50,488H was able to produce a nor-BNI-reversible increase in [35S]GTP gamma S binding to membranes of the mouse thalamus, which has a high level of kappa-opioid receptors. Repeated administration of (-)U-50,488H caused a significant reduction in the (-)U-50,488H-stimulated [35S]GTP gamma S binding in this region, whereas chronic treatment with (-)U-50,488H exhibited the increase in the endomorphin-1-, endomorphin-2- and DAMGO-stimulated [35S]GTP gamma S bindings in membranes of the thalamus and periaqueductal gray. These results suggest that repeated stimulation of kappa-opioid receptors leads to the heterologous up-regulation of mu-opioid receptor functions in the thalamus and periaqueductal gray regions, which may be associated with the supersensitivity of mu-opioid receptor-mediated antinociception.  相似文献   

7.
Fifteen generations of selective breeding were used to produce lines (strains) of mice which differ markedly from one another in levorphanol-induced antinociception on the hot plate assay. These are the high antinociceptive response (HAR) and low antinociceptive response (LAR) selection lines, which now differ by over 5-fold in the i.p. dose of levorphanol doubling control (no drug or saline) latency scores. We sought to determine if these large genetically-mediated differences in antinociceptive sensitivity bred into these selection lines with i.p. levorphanol would generalize equally to a series of enkephalin analogues known to differ in their selectivity for mu and delta opioid receptors. DAGO (D-ala2, MePhe4, Gly-ol5 enkephalin), a highly mu selective agent, produced a 67-fold difference between HAR and LAR mice in the slopes of the dose-response curves on the hot plate assay, while DSLET (D-ser2, leu enkephalin Thr6), a delta selective agent, only produced a 5.4-fold difference via the i.c.v. route. DADLE (D-ala, D-ser enkephalin) a slightly delta preferring ligand, was found to be intermediate (17.4-fold difference). These findings demonstrate that selective breeding has been quite successful in altering those genes which control analgesia due to mu selective agents, while relatively little change has occurred in those genes which control analgesia due to delta agonists. Thus, analgesia mediated by the former has been genetically dissociated from analgesia mediated by the latter, implying that DAGO has mechanisms of action largely dependent of DSLET on the hot plate assay. These findings are consistent with the contention that the mu receptor mediates analgesia produced by DAGO, while a different receptor (presumably delta) mediates much of the analgesic effects of DSLET.  相似文献   

8.
A Dray  L Nunan  W Wire 《Peptides》1986,7(2):323-329
The 36 amino acid peptide neuropeptide Y (NPY) has been found distributed in central structures associated with nociception and the actions of opioid analgesics. We therefore studied its central actions on reflex bladder contractions which we have shown to be inhibited by supraspinal and spinal opioid administrations in urethane anesthetized rats. Neuropeptide Y produced a dose related (0.5-2 micrograms per rat) inhibition of bladder contractions following intracerebroventricular (ICV) and spinal intrathecal (IT) administrations. These effects could not be antagonized by naloxone (2 micrograms, ICV or IT) or by ICI 174,864 [N,N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH: Aib = alpha-aminoisobutyric acid] (3 micrograms, ICV or IT). NPY (0.5-1 micrograms) reduced the ICV and IT effects of morphine but potentiated the action of the selective delta-receptor ligand [2-D-penicillamine, 5-L-penicillamine] enkephalin (DPLPE). The effect of the mu-selective opioid ligand [D-Ala2, Me-Phe4, Gly(ol)5] enkephalin (DAGO) were unaffected as were the submaximal ICV and IT actions of noradrenaline. It was concluded that NPY-induced inhibition of bladder activity was not due to a direct opioid receptor interaction. However since NPY consistently changed the activity of opioids (morphine and DPLPE), this suggested a possible physiological role in the regulation of opioid receptors, central neural excitability and thereby visceral activity.  相似文献   

9.
The antinociceptive mechanisms of the selective mu-opioid receptor agonists [D-Ala2,NMePhe4,Gly(ol)5]enkephalin (DAMGO), H-Tyr-D-Arg-Phe-beta-Ala-OH (TAPA) or H-Tyr-D-Arg-Phe-beta-Ala-NH2 (TAPA-NH2) against substance P (SP)- or capsaicin-elicited nociceptive behaviors was investigated in mice. DAMGO, TAPA or TAPA-NH2 given intrathecally inhibited the nociceptive behaviors elicited by intrathecally administered SP or capsaicin, and these antinociceptive effects were completely eliminated by intrathecal co-administration with D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), a selective mu-opioid receptor antagonist. Pretreatment subcutaneously with naloxonazine, a selective mu1-opioid receptor antagonist, partially attenuated the antinociceptive effect of TAPA-NH2, but not DAMGO and TAPA, against SP. However, the antinociception induced by TAPA, but not DAMGO and TAPA-NH2, against capsaicin was significantly inhibited by naloxonazine. On the other hand, co-administration intrathecally with Tyr-D-Pro-Trp-Gly-NH2 (D-Pro2-Tyr-W-MIF-1), a selective mu2-opioid receptor antagonist, significantly attenuated the antinociceptive effects of DAMGO, but not TAPA and TAPA-NH2, against capsaicin, while the antinociceptions induced by three opioid peptides against SP were significantly inhibited by D-Pro2-Tyr-W-MIF-1. These results suggest that differential inhibitory mechanisms on pre- and postsynaptic sites in the spinal cord contribute to the antinociceptive effects of the three mu-opioid peptides.  相似文献   

10.
Antisense oligodeoxynucleotides (ODN) were used to investigate the supraspinal antinociceptive effects of endomorphin-1, an endogenous peptide whose analgesic profile suggests that it is a ligand at the mu-opioid receptor. To selectively restrict the expression of this receptor, five ODN targeting distinct exons of the gene sequence were injected subchronically by the intracerebroventricular route (i.c.v.) into mice. The antinociception induced by endomorphin-1 was greatly reduced in animals receiving the ODN directed to nucleotides 677-697, which code for a sequence located on the second extracellular loop of the mu receptor. ODN-mu(un), one of the two antisense ODN directed to exon 1, also impaired endomorphin-1 antinociception. ODN targeting exons 2 and 4 were totally inactive. In contrast, all five ODN blocked the antinociception induced by morphine and beta-casomorphin. The analgesic potency of endomorphin-1, morphine, and beta-casomorphin remained unaltered by administration of an ODN to nucleotides 29-46 of the murine delta-opioid receptor gene sequence of a random-sequence ODN. This suggest the existence of diverse molecular forms for the mu-opioid receptor that mediate the antinociceptive effects of endomorphin-1 and morphine/beta-casomorphin.  相似文献   

11.
J A Qi  H I Mosberg  F Porreca 《Life sciences》1990,47(11):PL43-PL47
The present study has characterized the antinociceptive actions of [D-Ala2]deltorphin II following intracerebroventricular (i.c.v.) administration in the mouse tail-flick test. [D-Ala2]deltorphin II produced dose- and time-related antinociception, with maximal effects at +10 min and significant antinociception which lasted for 40-60 min. [D-Ala2]deltorphin II was 13-fold more potent than i.c.v. [D-Pen2, D-Pen5]enkephalin (DPDPE), a second highly selective delta agonist, and approximately equipotent with i.c.v. morphine in producing antinociception. The antinociceptive effects of i.c.v. [D-Ala2]deltorphin II and DPDPE, but not those of morphine, were antagonized by the selective delta antagonist, ICI 174,864. In contrast, pretreatment with the non-equilibrium mu antagonist, beta-funaltrexamine blocked morphine antinociception, but failed to antagonize [D-Ala2]deltorphin II and DPDPE antinociception. These data indicate that [D-Ala2]deltorphin II produced its antinociceptive effects at a supraspinal delta receptor. [D-Ala2]deltorphin II appears to be the most appropriate delta opioid agonist currently available for studies in vivo and support the involvement of delta receptors in supraspinal antinociception.  相似文献   

12.
TRK-820, a new type of 4,5-epoxymorphinan derivative, was investigated in vivo for antinociceptive activities and its selectivity on various opioid receptors in mice. TRK-820 given s.c. or p.o. was found to be 351- and 796-fold more potent than U50,488H with acetic acid-induced abdominal constriction test. The duration of the antinociceptive effect produced by TRK-820 was longer than that produced by mu-opioid receptor agonist morphine or other kappa-opioid receptor agonists. In addition, with four other antinociceptive assays, low temperature hot plate (51 degrees C), thermal tail flick, mechanical tail pressure and tail pinch tests, TRK-820 was also found to be 68- to 328-fold more potent than U-50488H, and 41- to 349-fold more potent than morphine in producing antinociception, as comparing the weight of the different compound. However, TRK-820 was less active in inhibiting the high temperature (55 degrees C) hot plate response. The antinociceptive effects produced by TRK-820 were inhibited by nor-BNI, but not by naloxone or naltrindole (NTI) with the abdominal constriction test, indicating that the antinociception is selectively mediated by the stimulation of kappa-, but not mu- or delta-opioid receptors. Co-administration of TRK-820 with morphine slightly enhanced the antinociception induced by morphine in the mouse hot plate test. On the other hand, pentazocine significantly reduced the morphine-induced antinociception. TRK-820 produced sedation at doses, which are much higher than the doses for producing antinociception. These results indicate that the potent antinociception induced by TRK-820 is mediated via the stimulation of kappa-, but not mu- or delta-opiod receptors.  相似文献   

13.
Picomol doses of the acetylated derivative of beta-endorphin-(1-31), injected intracerebroventricularly (icv) in mice, reduced the analgesic activity of morphine, etorphine and beta-endorphin-(1-31), while the efficiency of DAGO and DADLE in producing analgesia was enhanced. The effects of the delta agonists DPDPE and [D-Ala2]-Deltorphin II were not altered by this treatment. After alpha N-acetyl beta-endorphin-(1-31) injection, morphine antagonized the analgesia of DAGO. The regulatory effect of alpha N-acetyl beta-endorphin-(1-31) was exhibited when giving the peptide both before (up to 24 h) and after the opioids. Naloxone did not prevent or reverse that modulatory activity; moreover, pretreatment with the acetylated peptide did not change the pA2 value displayed by the antagonist at the mu receptor. The antinociceptive activity of the alpha 2-adrenoceptor agonist clonidine was also increased in mice treated with alpha N-acetyl beta-endorphin-(1-31). The reducing activity of alpha N-acetyl beta-endorphin-(1-31) upon morphine- and beta-endorphin-induced analgesia was not exhibited in mice undergoing treatment with pertussis toxin or N-ethylmaleimide, agents known to impair the function of Gi/Go transducer proteins. However, the enhancing activity displayed by this peptide upon DAGO- DADLE and clonidine-evoked antinociception was still manifested. These results confirm and strengthen the idea of alpha N-acetyl beta-endorphin-(1-31) acting as a non-competitive regulator of mu opioid- and alpha 2-adrenoceptor-mediated supraspinal antinociception. A neural substrate acted on by both receptors (likely Gi/Go transducer proteins) appears to be involved in the effects of that neuropeptide.  相似文献   

14.
Opioid agonists display different capacities to stimulate mu-opioid receptor (MOR) endocytosis, which is related to their ability to provoke the phosphorylation of specific cytosolic residues in the MORs. Generally, opioids that efficiently promote MOR endocytosis and recycling produce little tolerance, as is the case for [d-Ala2, N-MePhe4,Gly-ol5] encephalin (DAMGO). However, morphine produces rapid and profound antinociceptive desensitization in the adult mouse brain associated with little MOR internalization. The regulator of G-protein signaling, the RGS14 protein, associates with MORs in periaqueductal gray matter (PAG) neurons, and when RGS14 is silenced morphine increased the serine 375 phosphorylation in the C terminus of the MOR, a GRK substrate. Subsequently, these receptors were internalized and recycled back to the membrane where they accumulated on cessation of antinociception. These mice now exhibited a resensitized response to morphine and little tolerance developed. Thus, in morphine-activated MORs the RGS14 prevents GRKs from phosphorylating those residues required for β-arresting-mediated endocytosis. Moreover morphine but not DAMGO triggered a process involving calcium/calmodulin-dependent kinase II (CaMKII) in naïve mice, which contributes to MOR desensitization in the plasma membrane. In RGS14 knockdown mice morphine failed to activate this kinase. It therefore appears that phosphorylation and internalization of MORs disrupts the CaMKII-mediated negative regulation of these opioid receptors.  相似文献   

15.
Homozygous µ-opioid receptor (MOR) knockout (KO) mice developed on a chimeric C57B6/129SV background lack morphine-induced antinociception, locomotion and reward. Therefore it appears that MOR largely mediates these morphine actions. However, one factor that could affect the extent of knockout deficits in morphine-induced behavior is the genetic background against which the gene deletion is expressed. To examine the effect of genetic background chimeric C57B6/129SV MOR knockout mice from the 15th generation of those developed in our laboratory were backcrossed for 10 successive generations with C57BL/6 mice, a strain which is more sensitive to many of the properties of morphine, to produce congenic MOR (conMOR) KO mice. Heterozygote conMOR KO mice display attenuated morphine locomotion and reduced morphine analgesia compared to wild-type mice. Homozygote conMOR KO mice display baseline hyperalgesia, no morphine place preference, no morphine analgesia and no morphine locomotion. These results are not qualitatively different from those observed in the MOR KO strain with a chimeric C57B6/129SV background, and suggest that although the strain has separate influences on these functions, it does not substantially interact with deletion of the µ opiate receptor gene.  相似文献   

16.
We recently discovered and reported that C57BL/6J-bgJ/bgJ (beige-J) mice have a deficiency in their analgesic response to intracerebroventricularly-administered morphine in the tail-flick test. Postulating a link between these findings and the known immunological defect of beige-J mice (Chediak-Higashi syndrome), we examined the effect of splenectomy on beige-J mice and the adoptive transfer of their mononuclear spleen cells to normal littermate controls (2 x 10(7) cells via tail vein). Eight days after these interventions, the splenectomized beige-J mice responded nearly as well as normal mice to centrally administered morphine in the tail-flick test. The adoptive transfer recipients, in contrast, nearly completely lost their response to the analgesic action of morphine in this test. From the combined results, the spleen appears to be a significant factor in the analgesic defect of beige-J mice and, furthermore, mononuclear splenocytes appear to be the source of a substance that can transfer this defect to otherwise normal animals.  相似文献   

17.
Cholera toxin, an agent that impairs the function of Gs transducer proteins, was injected (0.5 microgram/mouse, icv) and the antinociceptive activity of opioids and clonidine was studied 24h later in the tail-flick test. In these animals, an enhancement of the analgesic potency of morphine, beta-endorphin and clonidine could be observed. Cholera toxin did not modify the antinociception evoked by the enkephalin derivatives DAGO and DADLE. Pertussis toxin that catalyses the ADP ribosylation of alpha subunits of Gi/Go regulatory proteins was given icv (0.5 microgram/mouse). This treatment reduced the analgesic effect of opioids and clonidine. However, while the analgesia elicited by DAGO, DADLE and clonidine was greatly decreased, the effect of morphine and beta-endorphin was reduced to a moderate extent. It is concluded that Gi/Go regulatory proteins functionally coupled to opioid and alpha 2 receptors are implicated in the efficacy displayed by opioids and clonidine to produce supraspinal analgesia. Moreover, these two receptors are susceptible to regulation by a process that might involve a Gs protein.  相似文献   

18.
The ability of opioids to influence rectal temperature after injection into the periaqueductal grey region (PAG) of rat brain was investigated. Both morphine and beta-endorphin caused a dose-dependent increase in rectal temperature of up to 2 degrees C. By using selective ligands of the subclasses of opiate receptor such as [D-Ala2,D-Leu5]enkephalin for delta-receptors and ethylketocyclazocine, dynorphin(1-17) and dynorphin(1-8) for kappa-receptors, it was possible to show that neither the delta- nor the kappa-opiate receptor was involved in the hyperthermic response. However, [D-Ala2,MePhe4,Gly-ol5]enkephalin (DAGO), a mu-receptor ligand, did produce a dose-dependent hyperthermia. The ability of naltrexone, an opiate receptor antagonist, to reverse the hyperthermia induced by beta-endorphin and DAGO suggests that the opioid-stimulated increase in body temperature via the PAG is mediated through the mu-opiate receptor. Since the application of opioids to the PAG produces a hyperthermic response, it is possible that this brain site may have a role in the peptidergic control of body temperature.  相似文献   

19.
The protein kinase C (PKC)gamma isoform is a major pool of the PKC family in the mammalian spinal cord. PKCgamma is distributed strategically in the superficial layers of the dorsal horn and, thus, may serve as an important biochemical substrate in sensory signal processing including pain. Here we report that mu-opioid receptor-mediated analgesia/antinociception and activation of G-proteins in the spinal cord are enhanced in PKCgamma knockout mice. In contrast, delta- and kappa-opioidergic and ORL-1 receptor-mediated activation of G-proteins in PKCgamma knockout mice was not altered significantly relative to the wild-type mice. Deletion of PKCgamma had no significant effect on the mRNA product of spinal mu-opioid receptors but caused an increase of maximal binding of the mu-opioid receptor agonist [3H][d-Ala(2),N-Me-Phe(4),Gly(5)-ol]enkephalin in spinal cord membranes obtained from PKCgamma knockout mice. These findings suggest that deletion of PKCgamma genes protects the functional mu-opioid receptors from degradation by phosphorylation. More importantly the present data provide direct evidence that PKCgamma constitutes an essential pathway through which phosphorylation of mu-opioid receptors occurs.  相似文献   

20.
The main analgesic effects of the opioid alkaloid morphine are mediated by the mu-opioid receptor. In contrast to endogenous opioid peptides, morphine activates the mu-opioid receptor without causing its rapid endocytosis. Recently, three novel C-terminal splice variants (MOR1C, MOR1D, and MOR1E) of the mouse mu-opioid receptor (MOR1) have been identified. In the present study, we show that these receptors differ substantially in their agonist-selective membrane trafficking. MOR1 and MOR1C stably expressed in human embryonic kidney 293 cells exhibited phosphorylation, internalization, and down-regulation in the presence of the opioid peptide [d-Ala(2),Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO) but not in response to morphine. In contrast, MOR1D and MOR1E exhibited robust phosphorylation, internalization, and down-regulation in response to both DAMGO and morphine. DAMGO elicited a similar desensitization (during an 8-h exposure) and resensitization (during a 50-min drug-free interval) of all four mu-receptor splice variants. After morphine treatment, however, MOR1 and MOR1C showed a faster desensitization and no resensitization as compared with MOR1D and MOR1E. These results strongly reinforce the hypothesis that receptor phosphorylation and internalization are required for opioid receptor reactivation thus counteracting agonist-induced desensitization. Our findings also suggest a mechanism by which cell- and tissue-specific C-terminal splicing of the mu-opioid receptor may significantly modulate the development of tolerance to the various effects of morphine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号