首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Following a search of sequence data bases for intronic sequences exhibiting structural features typical of snoRNAs, we have positively identified by Northern assays and sequence analysis another intron-encoded snoRNA, termed U21. U21 RNA is a 93 nt. long, metabolically stable RNA, present at about 10(4) molecules per HeLa cell. It is encoded in intron 5 of the ribosomal protein L5 gene, both in chicken and in the two mammals studied so far, human and mouse. U21 RNA is devoid of a 5'-trimethyl-cap and is likely to result from processing of intronic RNA. The nucleolar localization of U21 has been established by fluorescence microscopy after in situ hybridization with digoxigenin-labeled oligonucleotide probes. Like most other snoRNAs U21 contains the box C and box D motifs and is precipitated by anti-fibrillarin antibodies. By the presence of a typical 5'-3' terminal stem, U21 appears more particularly related to U14, U15, U16 and U20 intron-encoded snoRNAs. Remarkably, U21 contains a long stretch (13 nt.) of complementarity to a highly conserved sequence in 28S rRNA. Sequence comparisons between chicken and mammals, together with Northern hybridizations with antisense oligonucleotides on cellular RNAs from more distant vertebrates, point to the preferential preservation of this segment of U21 sequence during evolution. Accordingly, this complementarity, which overlaps the complementarity of 28S rRNA to another snoRNA, U18, could reflect an important role of U21 snoRNA in the biogenesis of large ribosomal subunit.  相似文献   

2.
3.
Recent cloning and sequencing of one of the two Xenopus gene copies (S1b) coding for the ribosomal protein S1 has revealed that its introns III, V and VI carry a region of about 150 nt that shares an identity of 60%. We show here the presence in Xenopus oocytes and cultured cells of a 143-147 nt long RNA species encoded by these three repeated sequences on the same strand as the S1 mRNA and by at least one repeat present in the S1 a copy of the r-protein gene. We identify these RNAs as forms of the small nucleolar RNA U15 (U15 snoRNA) because of their sequence homology with an already described human U15 RNA encoded in the first intron of the human r-protein S3 gene, which is homologous to Xenopus S1. Comparison of the various Xenopus and human U15 RNA forms shows a very high conservation in some regions, but considerable divergence in others. In particular the most conserved sequences include two box C and two box D motifs, typical of most snoRNAs interacting with the nucleolar protein fibrillarin. Adjacent to the two D boxes there are two sequences, 9 and 10 nt in length, which are perfectly complementary to an evolutionary conserved sequence of the 28S rRNA. Modeling the possible secondary structure of Xenopus and human U15 RNAs reveals that, in spite of the noticeable sequence diversity, a high structural conservation in some cases may be maintained by compensatory mutations. We show also that the different Xenopus U15 RNA forms are expressed at comparable levels, localized in the nucleoli and produced by processing of the intronic sequences, as recently described for other snoRNAs.  相似文献   

4.
5.
We have studied the role of the U14 small nucleolar RNA (snoRNA) in pre-rRNA methylation and processing in Xenopus oocytes. Depletion of U14 in Xenopus oocytes was achieved by co-injecting two nonoverlapping antisense oligonucleotides. Focusing on the earliest precursor, depletion experiments revealed that the U14 snoRNA is essential for 2'-O-ribose methylation at nt 427 of the 18S rRNA. Injection of U14-depleted oocytes with specific U14 mutant snoRNAs indicated that conserved domain B, but not domain A, of U14 is required for the methylation reaction. When the effect of U14 on pre-rRNA processing is assayed, we find only modest effects on 18S rRNA levels, and no effect on the type or accumulation of 18S precursors, suggesting a role for U14 in a step in ribosome biogenesis other than cleavage of the pre-rRNA. Xenopus U14 is, therefore, a Box C/D fibrillarin-associated snoRNA that is required for site-specific 2'-O-ribose methylation of pre-rRNA.  相似文献   

6.
The nucleolus, the compartment in which the large ribosomal RNA precursor (pre-rRNA) is synthesized, processed through a series of nucleolytic cleavages and modifications into the mature 18S, 5.8S, and 28S rRNAs, and assembled with proteins to form ribosomal subunits, also contains many small nucleolar RNAs (snoRNAs). We present evidence that the first processing event in mouse rRNA maturation, cleavage within the 5' external transcribed spacer, is facilitated by at least four snoRNAs: U14, U17(E1), and E3, as well as U3. These snoRNAs do not augment this processing by directing 2'-O-methylation of the pre-rRNA. A macromolecular complex in which this 5'ETS processing occurs may then function in the processing of 18S rRNA.  相似文献   

7.
The 5' external transcribed spacer (ETS) region of the pre-rRNA in Saccharomyces cerevisiae contains a sequence with 10 bp of perfect complementarity to the U3 snoRNA. Base pairing between these sequences has been shown to be required for 18S rRNA synthesis, although interaction over the full 10 bp of complementarity is not required. We have identified the homologous sequence in the 5' ETS from the evolutionarily distant yeast Hansenula wingei; unexpectedly, this shows two sequence changes in the region predicted to base pair to U3. By PCR amplification and direct RNA sequencing, a single type of U3 snoRNA coding sequence was identified in H. wingei. As in the S. cerevisiae U3 snoRNA genes, it is interrupted by an intron with features characteristic of introns spliced in a spliceosome. Consequently, this unusual property is not restricted to the yeast genus Saccharomyces. The introns of the H. wingei and S. cerevisiae U3 genes show strong differences in length and sequence, but are located at the same position in the U3 sequence, immediately upstream of the phylogenetically conserved Box A region. The 3' domains of the H. wingei and S. cerevisiae U3 snoRNAs diverge strongly in primary sequence, but have very similar predicted secondary structures. The 5' domains, expected to play a direct role in pre-ribosomal RNA maturation, are more conserved. The sequence predicted to base pair to the pre-rRNA contains two nucleotide substitutions in H. wingei that restore 10 bp of perfect complementarity to the 5' ETS. This is a strong phylogenetic evidence for the importance of the U3/pre-rRNA interaction.  相似文献   

8.
Mechanisms of ITS2 excision from pre-rRNA remain largely elusive. In mammals, at least two endonucleolytic cleavages are involved, which result in the transient accumulation of precursors to 5.8S rRNA termed 8S and 12S RNAs. We have sequenced ITS2 in four new species of the Mus genus and investigated its secondary structure using thermodynamic prediction and comparative approach. Phylogenetic evidence supports an ITS2 folding organized in four domains of secondary structure extending from a preserved structural core. This folding is also largely conserved for the previously available mammalian ITS2 sequences, rat and human, despite their extensive sequence divergence relative to the Mus species. Conserved structural features include the structural core, containing the 3' end of 8S pre-rRNA within a single-stranded sequence, and a stem containing the 3' end of the 12S pre-rRNA species. A putative, phylogenetically preserved pseudoknot has been detected 1 nt downstream from the 12S 3' end. Two long complementarities have also been identified, in sequences conserved among vertebrates, between the pre-rRNA 32S and the snoRNA (small nucleolar RNA) U8 which is required for the excision of Xenopus ITS2. The first complementarity involves the 5.8S-ITS2 junction and 13 nt at the 5' end of U8, whereas the other one occurs between a mature 28S rRNA segment known to be required for ITS2 excision and positions 15-25 of snoRNA U8. These two potential interactions, in combination with ITS2 folding, could organize a functional pocket containing three cleavage sites and key elements for pre-rRNA processing, suggesting a chaperone role for the snoRNA U8.  相似文献   

9.
10.
The nucleolus, the site of pre-ribosomal RNA (pre-rRNA) synthesis and processing in eukaryotic cells, contains a number of small nucleolar RNAs (snoRNAs). Yeast U3 snoRNA is required for the processing of 18S rRNA from larger precursors and contains a region complementary to the pre-rRNA. Substitution mutations in the pre-rRNA which disrupt this base pairing potential are lethal and prevent synthesis of 18S rRNA. These mutant pre-rRNAs show defects in processing which closely resemble the effects of genetic depletion of components of the U3 snoRNP. Co-expression of U3 snoRNAs which carry compensatory mutations allows the mutant pre-rRNAs to support viability and synthesize 18S rRNA at high levels. Pre-rRNA processing steps which are blocked by the external transcribed spacer region mutations are largely restored by expression of the compensatory U3 mutants. Pre-rRNA processing therefore requires direct base pairing between snoRNA and the substrate. Base pairing with the substrate is thus a common feature of small RNAs involved in mRNA and rRNA maturation.  相似文献   

11.
Saccharomyces cerevisiae snR30 is an essential box H/ACA small nucleolar RNA (snoRNA) required for the processing of 18S rRNA. Here, we show that the previously characterized human, reptilian, amphibian, and fish U17 snoRNAs represent the vertebrate homologues of yeast snR30. We also demonstrate that U17/snR30 is present in the fission yeast Schizosaccharomyces pombe and the unicellular ciliated protozoan Tetrahymena thermophila. Evolutionary comparison revealed that the 3'-terminal hairpins of U17/snR30 snoRNAs contain two highly conserved sequence motifs, the m1 (AUAUUCCUA) and m2 (AAACCAU) elements. Mutation analysis of yeast snR30 demonstrated that the m1 and m2 elements are essential for early cleavages of the 35S pre-rRNA and, consequently, for the production of mature 18S rRNA. The m1 and m2 motifs occupy the opposite strands of an internal loop structure, and they are located invariantly 7 nucleotides upstream from the ACA box of U17/snR30 snoRNAs. U17/snR30 is the first identified box H/ACA snoRNA that possesses an evolutionarily conserved role in the nucleolytic processing of eukaryotic pre-rRNA.  相似文献   

12.
13.
Fibrillarin is a key nucleolar protein in eukaryotes which associates with box C/D small nucleolar RNAs (snoRNAs) directing 2'-O-ribose methylation of the rRNA. In this study we describe two genes in Arabidopsis thaliana, AtFib1 and AtFib2, encoding nearly identical proteins conserved with eukaryotic fibrillarins. We demonstrate that AtFib1 and AtFib2 proteins are functional homologs of the yeast Nop1p (fibrillarin) and can rescue a yeast NOP1-null mutant strain. Surprisingly, for the first time in plants, we identified two isoforms of a novel box C/D snoRNA, U60.1f and U60.2f, nested in the fifth intron of AtFib1 and AtFib2. Interestingly after gene duplication the host intronic sequences completely diverged, but the snoRNA was conserved, even in other crucifer fibrillarin genes. We show that the U60f snoRNAs accumulate in seedlings and that their targeted residue on the 25 S rRNA is methylated. Our data reveal that the three modes of expression of snoRNAs, single, polycistronic, and intronic, exist in plants and suggest that the mechanisms directing rRNA methylation, dependent on fibrillarin and box C/D snoRNAs, are evolutionarily conserved in plants.  相似文献   

14.
15.
U14 is a member of the rapidly growing family of intronic small nucleolar RNAs (snoRNAs) that are involved in pre-rRNA processing and ribosome biogenesis. These snoRNA species are encoded within introns of eukaryotic protein coding genes and are synthesized via an intron processing pathway. Characterization of Xenopus laevis U14 snoRNA genes has revealed that in addition to the anticipated location of U14 within introns of the amphibian hsc70 gene (introns 4, 5 and 7), additional intronic U14 snoRNAs are also found in the ribosomal protein S13 gene (introns 3 and 4). U14 is thus far a unique intronic snoRNA in that it is encoded within two different parent genes of a single organism. Northern blot analysis revealed that U14 snoRNAs accumulate during early oocyte development and are rapidly expressed after the mid-blastula transition of developing embryos. Microinjection of hsc70 pre-mRNAs into developing oocytes demonstrated that oocytes as early as stages II and III are capable of processing U14 snoRNA from the pre-mRNA precursor. The ability of immature oocytes to process intronic snoRNAs is consistent with the observed accumulation of U14 during oocyte maturation and the developmentally regulated synthesis of rRNA during oogenesis.  相似文献   

16.
Forzani C  Lobréaux S  Mari S  Briat JF  Lebrun M 《Gene》2002,292(1-2):199-204
A novel 72 nt small nucleolar RNA (snoRNA) called U87 was found in rat liver cells. This RNA possesses the features of C/D box snoRNA family: boxes C, D', C', D, and 11 nt antisense element complementary to 28S ribosomal RNA (rRNA). The vast majority of C/D box snoRNAs direct site-specific 2'-O-ribose methylation of rRNAs. U87 RNA is suggested to be involved in 2'-O-methylation of a G(3468) residue in 28S rRNA. U87 RNA was detected in different mammalian species with slight length variability. Rat and mouse U87 RNA gene was characterized. Unlike the majority of C/D box snoRNAs U87 RNA lacks the terminal stem required for snoRNA processing. However, U87 gene is flanked by 7 bp inverted repeats potentially able to form a terminal stem in U87 RNA precursor.  相似文献   

17.
The U18 small nuclear RNA (snRNA) is one of several newly discovered intron-encoded nucleolar RNAs whose function is unknown. We have studied the accumulation and function of the U18 snRNA in oocytes of the vertebrate, Xenopus laevis. The U18 snRNA contains 13 nt complementary to a highly conserved sequence in 28S ribosomal RNA (rRNA). Three oligonucleotides, selected to contain all or some of the complementary sequence, deplete the U18 snRNA upon injection into Xenopus oocytes. Injection of two of the oligonucleotides has no effect on pre-rRNA processing or ribosome transport. Injection of the third oligonucleotide does interrupt pre-18S rRNA processing, but this is due to coincidental simultaneous depletion of the U22 snRNA. The U18 snRNA is the first nucleolar snRNA that is not essential for ribosome biogenesis in vertebrates.  相似文献   

18.
It has long been known that U3 can be isolated hydrogen bonded to pre-ribosomal RNAs, but the sites of interaction are poorly characterized. Here we show that yeast U3 can be cross-linked to 35S pre-rRNA both in deproteinized extracts and in living cells. The sites of cross-linking were localized to the 5' external transcribed spacer (ETS) and then identified at the nucleotide level. Two regions of U3 near the 5' end are cross-linked to pre-rRNA in vivo and in vitro; the evolutionarily conserved box A region and a 10 nucleotide (nt) sequence with perfect complementarity to an ETS sequence. Two in vivo cross-links are detected in the ETS, at +470, within the region complementary to U3, and at +655, close to the cleavage site at the 5' end of 18S rRNA. A tagged rDNA construct was used to follow the effects of mutations in the ETS in vivo. A small deletion around the +470 cross-linking site in the ETS prevents the synthesis of 18S rRNA. This region is homologous to the site of vertebrate ETS cleavage. We propose that this site may be evolutionarily conserved to direct the assembly of a pre-rRNA processing complex required for the cleavages that generate 18S rRNA.  相似文献   

19.
The sequences and structural features of Xenopus laevis U3 small nucleolar RNA (snoRNA) necessary for pre-rRNA cleavage at sites 1 and 2 to form 18 S rRNA were assayed by depletion/rescue experiments in Xenopus oocytes. Mutagenesis results demonstrated that the putative stem of U3 domain I is unnecessary for 18 S rRNA processing. A model consistent with earlier experimental data is proposed for the structure of domain I when U3 is not yet bound to pre-rRNA. For its function in rRNA processing, a newly discovered element (5' hinge) was revealed to be important but not as critical as the 3' hinge region in Xenopus U3 snoRNA for 18 S rRNA formation. Base-pairing is proposed to occur between the U3 5' hinge and 3' hinge and complementary regions in the external transcribed spacer (ETS); these interactions are phylogenetically conserved, and are homologous to those previously described in yeast (5' hinge-ETS) and trypanosomes (3' hinge-ETS). A model is presented where the base-pairing of the 5' hinge and 3' hinge of U3 snoRNA with the ETS of pre-rRNA helps to correctly position U3 boxes A'+A for their function in rRNA processing. Like an earlier proposal for yeast, boxes A' and A of Xenopus may base-pair with 18 S sequences in pre-rRNA. We present the first direct experimental evidence in any system that box A' is essential for U3 snoRNA function in 18 S rRNA formation. The analysis of insertions and deletions indicated that the spacing between the U3 elements is important, suggesting that they base-pair with the ETS and 18 S regions of pre-rRNA at the same time.  相似文献   

20.
Recognition signals for mouse pre-rRNA processing   总被引:17,自引:0,他引:17  
In order to identify signals for rRNA processing in eukaryotes, mouse pre-rRNA sequence features around four cleavage sites have been analyzed. No consensus sequence can be recognized when the four boundary regions are examined. Unlike mature rRNA termini, distal sequences of precursor-specific domains cannot participate in stable duplex with adjacent regions. The extensive divergence of precursor-specific sequences during evolution also applies to nucleotides adjacent to cleavage sites, with a significant exception for a conserved segment immediately downstream 5.8S rRNA. A specific role is proposed for U3 nucleolar RNA in the conversion of 32S pre-rRNA into mature 28S rRNA, through base-pairing with precursor-specific sequences at the boundaries of excised domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号