首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salt affected soil inhibits plant growth, development and productivity, especially in case of rice crop. Ion homeostasis is a candidate defense mechanism in the salt tolerant plants or halophyte species, where the salt toxic ions are stored in the vacuoles. The aim of this investigation was to determine the OsNHX1 (a vacuolar Na+/H+ exchanger) and OsHKT2;1 (Na+/K+ transporter) regulation by salt stress (200 mM NaCl) in two rice cultivars, i.e. Pokkali (salt tolerant) and IR29 (salt susceptible), the accumulation of Na+ in the root and leaf tissues using CoroNa Green® staining dye and the associated physiological changes in test plants. Na+ content was largely increased in the root tissues of rice seedlings cv. Pokkali (15 min after salt stress) due to the higher expression of OsHKT2;1 gene (by 2.5 folds) in the root tissues. The expression of OsNHX1 gene in the leaf tissues was evidently increased in salt stressed seedlings of Pokkali, whereas it was unchanged in salt stressed seedlings of IR29. Na+ in the root tissues of both Pokkali and IR29 was enriched, when subjected to 200 mM NaCl for 12 h and easily detected in the leaf tissues of salt stressed plants exposed for 24 h, especially in cv. Pokkali. Moreover, the overexpression of OsNHX1 gene regulated the translocation of Na+ from root to leaf tissues, and compartmentation of Na+ into vacuoles, thereby maintaining the photosynthetic abilities in cv. Pokkali. Overall growth performance, maximum quantum yield (Fv/Fm), photon yield of PSII (ΦPSII) and net photosynthetic rate (Pn) was improved in salt stressed leaves of Pokkali than those in salt stressed IR29.  相似文献   

2.
Summary The availability of Ca from different levels of gypsum and calcium carbonate in a non-saline sodic soil has been investigated. Different levels of tagged gypsum (Ca45SO4.2H2O) and calcium carbonate (Ca45CO3) (i.e. 0, 25, 50, 75, and 100 per cent of gypsum requirement) were mixed thoroughly in 3.5 Kg of a non-saline alkali soil (ESP, 48.4; ECe, 2.68 millimhos/cm). Dhaincha (Sesbania aculeata) — a legume and barley (Hordeum vulgare L.) — a cereal were taken as test crops. Increasing levels of gypsum caused a gradual increase in the yield of dry matter, content of Ca and K in the plant tops and Ca:Na and (Ca+Mg):(Na+K) ratios in both the crops. Application of calcium carbonate caused a slight increase in the dry matter yield, content of Ca and Mg and Ca:Na and (Ca+Mg):(Na+K) ratios in barley, however, in case of dhaincha there was no such effect. Gypsum application caused a gradual decrease in the content of Na and P in both the crops. Total uptake of Ca, Mg, K, N and P per pot increased in response to gypsum application. The effect of calcium carbonate application on the total uptake of these elements was much smaller on dhaincha, but in barley there was some increasing trend.Increasing application of tagged gypsum and calcium carbonate caused a gradual increase in the concentration and per cent contribution of source Ca in both the crops, although, the rate of increase was considerably more in dhaincha. The availability of Ca from applied gypsum was considerably more than that from applied calcium carbonate. Efficiency of dhaincha to utilize Ca from applied sources was considerably more (i.e. about five times) than that of barley  相似文献   

3.
The research was conducted to investigate comparative oxidative damage including probable protective roles of antioxidant and glyoxalase systems in rice (Oryza sativa L.) seedlings under salinity stress. Seedlings of two rice genotypes: Pokkali (tolerant) and BRRI dhan28 (sensitive) were subjected to 8 dSm−1 salinity stress for seven days in a hydroponic system. We observed significant variation between Pokkali and BRRI dhan28 in phenotypic, biochemical and molecular level under salinity stress. Carotenoid content, ion homeostasis, antioxidant enzymes, ascorbate and glutathione redox system and proline accumulation may help Pokkali to develop defense system during salinity stress. However, the activity antioxidant enzymes particularly superoxide dismutase (SOD), catalase (CAT) and non-chloroplastic peroxidase (POD) were observed significantly higher in Pokkali compared to salt-sensitive BRRI dhan28. Higher glyoxalase (Gly-I) and glyoxalase (Gly-II) activity might have also accompanied Pokkali genotype to reduce potential cytotoxic MG through non-toxic hydroxy acids conversion. However, the efficient antioxidants and glyoxalase system together increased adaptability in Pokkali during salinity stress.  相似文献   

4.
Effects of salt stress on purslane (Portulaca oleracea) nutrition   总被引:1,自引:0,他引:1  
The objective of this study was to determine the influence of saline stress on the chemical composition of purslane (Portulaca oleracea), in particular the mineral composition. Four salinity levels were investigated using irrigation solutions with electrical conductivity values of 0.8, 6.8, 12.8 and 24.2 dS m?1 and two planting dates (May and July) were tested. Samples of full‐grown leaf and stems of purslane were harvested after 7 and 15 days of the saline treatment exposure. Chemical analysis (dry matter basis) of leaves showed significant differences among the different saline treatments for all the characteristics measured. Salinity levels, planting date and harvest time significantly influenced (P < 0.05) the levels of crude protein, total lipids, ash and carbohydrate content. Salinity treatments did not significantly (P > 0.05) affect the water content of purslane leaves. The crude protein content of purslane leaves decreased with increasing salinity levels and time of exposure to treatment. However, carbohydrates and mineral residue content increased. An unusual phenomenon was noted for intermediate salinity levels, whereby an increase in total lipid content was measured in leaves of plants exposed to salinity treatments of 6.8 and 12.8 dS m?1. The highest mineral residue content was seen in leaves of purslane exposed to the highest salinity treatment. The mineral composition was also affected by salinity levels, Na and Cl uptake, and accumulation increased with increasing salinity in irrigation solution; Mg concentration was not significantly (P > 0.05) affected by salinity levels, although a slight increase was seen, and Ca, K and Zn levels significantly (P < 0.05) decreased. Ca and Zn preferentially accumulated in the leaves, while K and Na values were higher in the stems. A significant increase (P < 0.05) in relative ratio of Na/K, Mg/K, Na/Ca and Mg/Ca was observed with increasing salinity levels. A decrease in the yield of purslane was only observed for the most severe saline treatment, where the highest ratio of Mg/Ca was seen. This study reveals that purslane is relatively tolerant to conditions of moderate salinity, thus improving its potential to become a key vegetable crop for animal and human consumption.  相似文献   

5.
Summary Application of FYM caused a gradual increase in the dry weight of dhaincha (Sesbania aculeata Pers.) tops. It also caused a gradual increase in the content of Mg and K and a decrease in the content of Ca, Na, N and P in dhaincha tops. Increase in Ca: Na ratio was more steeper than (Ca+Mg): (Na+K) ratio. Total uptake of Ca, Mg, K, N and P increased and that of Na decreased in response to FYM. Contribution of Ca from Ca45CO3 did not differ much at different levels of FYM and it was less than 6 per cent of total Ca in plant tops in all the treatments. re]19721017  相似文献   

6.
Salinity poses a major threat for agriculture worldwide. Rice is one of the major crops where most of the high-yielding cultivars are highly sensitive to salinity. Several studies on the genetic variability across rice cultivars suggest that the activity and composition of root plasma membrane transporters could underlie the observed cultivar-specific salinity tolerance in rice. In the current study, it was found that the salt-tolerant cultivar Pokkali maintains a higher K+/Na+ ratio compared with the salt-sensitive IR20 in roots as well as in shoots. Using Na+ reporter dyes, IR20 root protoplasts showed a much faster Na+ accumulation than Pokkali protoplasts. Membrane potential measurements showed that root cells exposed to Na+ in IR20 depolarized considerably further than those of Pokkali. These results suggest that IR20 has a larger plasma membrane Na+ conductance. To assess whether this could be due to different ion channel properties, root protoplasts from both Pokkali and IR20 rice cultivars were patch-clamped. Voltage-dependent K+ inward rectifiers, K+ outward rectifiers, and voltage-independent, non-selective channels with unitary conductances of around 35, 40, and 10 pS, respectively, were identified. Only the non-selective channel showed significant Na+ permeability. Intriguingly, in both cultivars, the activity of the K+ inward rectifier was drastically down-regulated after plant growth in salt but gating, conductance, and activity of all channel types were very similar for the two cultivars.  相似文献   

7.
Hpertension is an important health problem throughout the world and a risk factor for many diseases. Angiotensin-converting enzyme (ACE), a component of the renin-angiotensin system, has an important role in the regulation of blood pressure. Zinc (Zn), a trace element with important biological functions, is located in the catalytic site of ACE. Calcium (Ca), magnesium (Mg), sodium (Na), and potassium (K) also appear to be involved in hypertension pathogenesis. In this study, plasma ACE activities and Cat, Cai, Mg, Na, K, and plasma/erythrocyte Zn levels of 20 untreated patients with essential hypertension and 28 helthy individuals were evaluated. Plasma ACE activities (p<0.05) and erythrocyte Zn concentrations (p<0.001) were significantly higher in patients with essential hypertension than values of the control group. No significant difference was found between plasma Zn concentrations of the groups (p>0.05). Plasma Cat (p<0.001) and Mg levels (p<0.05) in essential hypertension were significantly lower than those of controls. Plasma Na, K, and Cai levels remained normal in essential hypertension. There are complex associations between metals and arterial pressure. Ca and Mg deficiencies seem to be associated with increased prevalence of hypertension. Increases in erythrocyte Zn may have a future potential use for diagnosis of hypertension.  相似文献   

8.
We investigated how the K/Ca, Na/Ca, Mg/Ca, and Sr/Ca ratios of powders ground from Porites coral skeletons are changed by cumulative chemical treatments to the powders: first with distilled/deionized water (DDW), next with 30?% H2O2 and then with 0.004?mol?l?1 HNO3. The K/Ca, Na/Ca, and Mg/Ca ratios were decreased with the DDW treatment and then increased with the H2O2 and HNO3 treatments; the Sr/Ca ratio was slightly decreased through the cumulative treatments, suggesting fine-scale (tens of ??m or less) elemental heterogeneities in the skeleton??K, Na, and Mg are significantly enriched at the skeletal surface and also at the center of calcification (COC); in contrast, the heterogeneity of Sr is very small. We suggest that the principal mechanisms of K incorporation into coral skeleton are (1) ion incorporation into lattice defects/distortions and (2) ion adsorption onto crystal discontinuities (including crystal?Corganic matter interfaces) as forms of K+ and KSO4 ?. Furthermore, we measured the element/Ca ratios of a modern Porites coral skeleton along its growth direction at 2-mm intervals. Results showed that all the element/Ca ratios displayed annual cycles, that the K/Ca and Na/Ca ratios covaried with each other, and that the annual-minimum K/Ca and Na/Ca ratios coincided with the annual high-density band in the skeleton. It is unclear what environmental factors may cause the covarying annual cycles of the K/Ca and Na/Ca ratios; however, as a possible explanation, the cycles may be due not to environmental factors, but to a combined effect of (1) the K and Na enrichment at the COC, (2) annual bands of high- and low-density skeleton, and (3) mm-scale element/Ca measurements along the skeletal growth direction. This kind of effect on geochemical proxies of which the concentrations significantly differ between the COC and surrounding skeleton may generate false or distorted paleoenvironmental signals.  相似文献   

9.
In a phytotron experiment four rice varieties (Pokkali, IR 28, IR 50, IR 31785-58-1-2-3-3) grown in individual pots were subjected to low (40/55% day/night) and high (75/90%) air humidity (RH), while soil salinity was gradually increased by injecting 0, 30, 60 or 120 mM NaCl solutions every two days. Bulk root and stem base water potential (SWP), abscisic acid (ABA) content of the xylem sap and stomatal resistance (rs) of the youngest fully expanded leaf were determined two days after each salt application. The SWP decreased and xylem ABA and rs increased throughout the 8 days of treatment. The effects were amplified by low RH. A chain of physiological events was hypothesized in which high soil electric conductivity (EC) reduces SWP, followed by release of root-borne ABA to the xylem and eventually resulting in stomatal closure. To explain varietal differences in stomatal reaction, supposed cause and effect variables were compared by linear regression. This revealed strong differences in physiological reactions to the RH and salt treatments among the test varieties. Under salt stress roots of IR 31785-58-1-2-3-3 produced much ABA under low RH, but no additional effect of low RH on rs could be found. By contrast, Pokkali produced little ABA, but rs was strongly affected by RH. RH did not affect the relationships EC vs. SWP and SWP vs. ABA in Pokkali, IR 28, and IR 50, but the relationship ABA vs. rs was strongly affected by RH. In IR 31785-58-1-2-3-3 RH strongly affected the relationship SWP vs. ABA, but had no effect on ABA vs. rs and EC vs. rs. The results are discussed regarding possible differences in varietal stomatal sensitivity to ABA and their implications for varietal salt tolerance.  相似文献   

10.
This study estimated the decomposition rate and nutrient dynamics of Phragmites australis litter in Lake Burullus (Egypt) and investigated the amount of nutrients released back into the water after the decomposition of the dead tissues. Phragmites australis detritus decomposition was studied from April to September 2003 utilizing the leaf, stem, and rhizome litterbags technique with coarse mesh (5 mm) bags on five sampling dates and with nine replicate packs per sample. All samples were dried, weighed and analyzed for N, P, Ca, Mg, Na, and K concentrations. The exponential breakdown rate of leaves (?0.0117/day) was significantly higher than that of rhizomes (?0.0040/day) and stems (?0.0036/day). N, Na and K mineralization were the highest from leaf litter, followed by rhizomes and stems, while P, Ca and Mg mineralization were the highest from rhizomes, followed by leaves and stems. The dead shoot biomass at the end of 2003 amounted to 4550 g DM/m2 which enters the decomposition process. By using the decay rate of 0.0117 and 0.0036/day for the leaves and stems, 3487 g DM/m2 is decomposed in a year, leaving only 1063 g DM/m2 after 1 year. This is mainly equivalent to releasing the following nutrients into surrounding water (in g/m2): 24.4 N, 1.1 P, 15.5 Ca, 3.5 Mg, 11.3 Na and 16.7 K. In conclusion, the present study indicates a significant difference in relation to the type of litter; these breakdown rates were generally greater than most rates reported in previous studies that used the same technique and mesh size.  相似文献   

11.
Rapeseed (Brassica napus) is a crop relatively tolerant to salt and sodium. Our objective was to study the interactions between Na, K and Ca and their relationship with its yield under the isolated effects of soil salinity or sodicity.Two experiments were carried out using pots filled with the Ah horizon of a Typic Natraquoll. There were three salinity levels (2.3 dS m-1; 6.0 dS m-1 and 10.0 dS m-1) and three sodicity levels, expressed as sodium adsorption ratios (SAR: 12; 27 and 44). The soil was kept near field capacity.As soil salinity increased, the K/Na and Ca/Na ratios in the tissues decreased markedly but yields and aerial biomass production were not affected. As soil SAR value increased, the K/Na and Ca/Na ratios in plants and K-Na and Ca-Na selectivities decreased. Plants could not maintain their Ca concentration in soil with a high SAR. The grain yield and biomass production diminished significantly in the highest SAR treatment. Our results are consistent with those showing detrimental osmotic effects of salts in Brassica napus. Conversely, under sodicity, the K/Na and Ca/Na ratios in plant tissues decreased considerably, in accordance with grain and biomass production. These results show that the effects of sodicity are different from those of salinity.  相似文献   

12.
Abstract

The interaction of sodium (Na) and potassium (K) on growth, yield, nutrients and citric acid composition of fruit of tomato (Lycopersicon lycopersicum [L.] Karst) was investigated. Six rates of Na at 0, 2, 4, 8, 16 and 32 mgkg?1 soil and four rates of K at 0, 32, 64 and 128 mgkg?1 soil, applied as NaCl and KCl, respectively, were arranged in a randomized complete block design and replicated three times. Plant growth rate, number of flowers and fruit yields, nutrient composition and citric acid content of fruit juice were determined. The application of 2–4 mg Na kg?1 soil with 32–64 mg K kg?1 soil increased fruit yield by about 100%. Fruit yield correlated positively with the number of leaves (0.65***), number of flowers (0.57**) and shoot-N (0.40*). Sodium applied at Na:K ratio of 1:8 to 1:32 increased the growth and yield of the tomato plant.  相似文献   

13.
Salinity significantly increased trisodium-8-hydroxy-1,3,6-pyrenetrisulphonic acid (PTS) uptake and decreased the K(+)/Na(+) ratio in salt-sensitive rice (Nipponbare) but did not markedly in salt-tolerant rice (Pokkali). Proline and glycinebetaine (betaine) suppressed the increase in PTS uptake and the decrease in the K(+)/Na(+) ratio in Nipponbare, but did not affect PTS uptake or the K(+)/Na(+) ratio in Pokkali.  相似文献   

14.
Nitrogen nutrition of rice plants under salinity   总被引:1,自引:0,他引:1  
Two rice (Oryza sativa L.) cultivars, Koshihikari and Pokkali, were grown in solution culture at three concentrations of NaCl or Na2SO4 [0 (S0), 50 (S1), and 100 (S2) mmol dm–3] and three N contents [0.7 (N1), 7 (N2) and 14 (N3) mmol dm–3]. Salinity significantly decreased dry matter of both cultivars. Pokkali had better growth than Koshihikari under both saline and non-saline conditions. Applications of N enhanced development of shoot dry mass under S0 and S1 treatments up to N2. Under S2, N application had no effect on shoot dry mass of both cultivars. Root dry mass of both cultivars decreased with increasing N application at S1 and S2. Shoot and root NO3-N content in both rice cultivars increased with increasing N concentration in the nutrient solutions. The absorption of NO3-N was less in Koshihikari than Pokkali plants, and also was much less in Cl than SO4 2– salinity suggesting the antagonism between Cl and NO3 . In addition a significant negative correlation between concentrations of NO3-N and Cl in the shoots or roots was observed in both cultivars  相似文献   

15.
Intranuclear Na, K and Mg concentrations were determined in cells of salivary glands incubated for 1h in selected NaCl/KCl/MgCl2 media. By variation of the external milieu beyond “physiological” limits the intranuclear electrolytes can be shifted between ca 100 and 280 mM [K]i, between ca 8 and 100 mM [Na]i and between ca 5 and 75 mM [Mg]i. No significant competition or interactions of the 3 ionic species are apparent. The relationships [K]e : [K]i and [Na]e : [Na]i can best be described by a positive and linear, that between [Mg]e : [Mg]i by a negative and exponential function. Regression parameters are given which permit a computation of intranuclear [Na], [K] and [Mg] as induced by NaCl/KCl/MgCl2 in any binary or triple combination that is tolerated by the explanted gland without visible damage.  相似文献   

16.
Abstract Growth of barley (Hordeum vulgare L., cv. Georgie) was insensitive to soil K content above about 150 mg kg?1, but at lower levels it declined. The reduction in yield was greater in soils containing approximately 10 mg Na kg?1 than in soils with about 90 mg kg?1 of Na. Growth was unaffected by changes in shoot K concentration above 75 mol m?3, but declined at lower concentrations, and the decrease was less in plants grown in soils with high Na. Growth responses were not simply related to tissue K concentrations because plants grown in soils with extra Na had higher yields but lower K concentrations. When soil Na was low, plants accumulated Ca as tissue K declined, but when Na was provided this ion was accumulated. Plant Mg concentrations were generally low but increased as K decreased. The Ca and Mg were osmotically active. There were highly significant inverse linear relationships between yield and either the Ca or Mg concentrations in the shoots. X-ray microanalysis was used to examine the compartmentation of cations in leaves from barley plants (cv. Clipper) grown in nutrient solutions with high and low K concentrations. In plants grown with 2.5 mol m?3 K, this was the major cation in both the cytoplasm and vacuole of mesophyll cells. However, in plants grown with 0.02 mol m?3 K it declined to undetectable levels in the vacuole, although it was still detectable in the cytoplasm. In all plants, Ca was mainly located in epidermal cells. The implication of the results for explaining responses to K. in terms of compartmentation of solutes is discussed.  相似文献   

17.
为了解丛枝菌根真菌(AMF)和不同形态氮对杉木(Cunninghamia lanceolata)生长和养分吸收的影响,以1 a生杉木幼苗接种摩西球囊霉(Glomus mosseae)和添加不同形态氮(NH4+-N和NO3-N),对其养分元素和生长状况的变化进行研究。结果表明,AMF显著提高了杉木的苗高和生物量,促进了杉木对N、P、K、Ca、Mg、Fe和Na的吸收,AMF对微量元素Fe、Na的促进作用总体上要强于大量元素K、Ca。与NO3-N相比,AMF显著提高了NH4+-N处理杉木的生物量、总C和N、Ca、Mg、Mn含量,而且这种显著性在叶中普遍高于根和茎。接种AMF可以促进杉木幼苗的生长和对养分元素的吸收,且添加NH4+-N处理的促进作用要强于NO3-N。  相似文献   

18.
Depth profiles of C, Na, Mg, Al, K and Ca were performed in the cuticle and wall of epidermal cells of flax hypocotyls, with current densities ranging from 0.2 to 1 pA μm?2. The crater bottoms were never flat, but exhibited fairly complex, filiform or alveolar structures. The profiles of K, Ca and Mg were reasonably parallel to one another. The Ca/Mg signal ratio was in the magnitude of 3.5 in the cuticle. The Na profile, except perhaps in the cuticle, did not parallel the K, Ca and Mg profiles, but rather paralleled the C profile. At the outset of the depth profiles, ie in the cuticle, the intensity of the Na signal, although fairly variable, was usually above that of K; then there was an abrupt decrease of the Na signal, possibly at the border of the cuticle and of the wall. The Al signal usually began to increase, thus revealing the occurrence of perforations through the epidermis sample, after 80 min sputtering at a current density of 1 pA μm?2; the mean sputtering rate was thus estimated to be in the order of 1 μm h?1.  相似文献   

19.
The response of the villus and crypt cells of the mouse jejunum to secretagogues has been assessed through measurements of cellular composition with x-ray microanalysis. In nonstimulated tissues the Na concentration ([Na]c) of the crypt cells was significantly less, and the K ([K]c) and Cl ([Cl]c) concentrations were significantly greater, than that of the villus cells. There was also a decreasing gradient of [Na]c and increasing gradient of [K]c from the villus tip to crypt base due to a greater number of cells with a high [Na]c and low [K]c in the upper regions of the villi. Theophylline (10 mmol L−1) stimulated a sustained increase in bumetanide sensitive short circuit current (Isc) and significantly decreased the [Na]c of the villus cells. Similar, but smaller changes were seen in the crypt cells. Changes in villus cell [Na]c reflected a reduction in the number of cells with a high [Na]c. Inhibition of the apical Na/H exchanger (1 mmol L−1 amiloride) had little effect on basal Isc and the subsequent addition of theophylline increased Isc to a comparable extent as seen without amiloride. However, after amiloride treatment the only change in cellular composition was a reduction in the [Cl]c of both crypt and villus cells, suggesting that both regions are involved in the secretory response. These data suggest that the dominant response of the jejunum to secretagogues is an inhibition of Na absorption via Na/H exchange in the villi and the secretory response is distributed throughout the crypt/villus axis. Received: 1 July 1997/Revised: 4 November 1997  相似文献   

20.
To identify biochemical markers for salt tolerance, two contrasting cultivars of rice (Oryza sativa L.) differing in salt tolerance were analyzed for various parameters. Pokkali, a salt-tolerant cultivar, showed considerably lower level of H2O2 as compared to IR64, a sensitive cultivar, and such a physiology may be ascribed to the higher activity of enzymes in Pokkali, which either directly or indirectly are involved in the detoxification of H2O2. Enzyme activities and the isoenzyme pattern of antioxidant enzymes also showed higher activity of different types and forms in Pokkali as compared to IR64, suggesting that Pokkali possesses a more efficient antioxidant defense system to cope up with salt-induced oxidative stress. Further, Pokkali exhibited a higher GSH/GSSG ratio along with a higher ratio of reduced ascorbate/oxidized ascorbate as compared to IR64 under NaCl stress. In addition, the activity of methylglyoxal detoxification system (glyoxalase I and II) was significantly higher in Pokkali as compared to IR64. As reduced glutathione is involved in the ascorbate–glutathione pathway as well as in the methylglyoxal detoxification pathway, it may be a point of interaction between these two. Our results suggest that both ascorbate and glutathione homeostasis, modulated also via glyoxalase enzymes, can be considered as biomarkers for salt tolerance in Pokkali rice. In addition, status of reactive oxygen species and oxidative DNA damage can serve as a quick and sensitive biomarker for screening against salt and other abiotic stresses in crop plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号