首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photosynthetic apparatus of Rhodopseudomonas palustris contains, in addition to reaction center bacteriochlorophyll (Bchl) two spectral forms of light harvesting (LH) Bchl, i.e. LH Bchl I, characterized by an infrared absorption maximum at 880 nm (890 nm at 77°K) and LH Bchl II absorbing at 805 and 855 nm (805 and 870 nm at 77°K). LH Bchl I seems to be associated with a single protein species of an apparent mol. wt. of 13000 whereas LH Bchl II is apparently associated with two proteins of mol. wts. of 9000 and 11000.Cells in anaerobic cultures adapt to changes of light intensity 1. by variation of the size of the photosynthetic unit, i.e. the molar ratio of LH Bchl II to reaction center Bchl, 2. by variation of the number of photosynthetic units per unit of membrane area, 3. by regulation of the size of the intracytoplasmic membrane system.During adaptation of changes of oxygen partial pressure cells are able to synthesize reaction center Bchl, LH Bchl and intracytoplasmic membranes at different rates. The synthesis of reaction center Bchl and LH Bchl I are, however, coordinated with each other, while the syntheses of LH Bchl II and reaction center Bchl proceed independently.List of Non-Standard Abbreviations Bchl bacteriochlorophyll - ICM mitracytoplasmic membrane - LDAO lauryldimethyl aminoxide - R Rhodopseudomonas - RC reaction center - SDS sodium dodecylsulfate  相似文献   

2.
Bacteriochlorophyll(Bchl)-protein complexes were isolated from obligate aerobic bacteria, Erythrobacter longus and Erythrobacter species OCh 114. The apparent molecular weights, absorption spectra and polypeptide compositions of the light-harvesting complexes were, in general, similar to those of the light-harvesting Bchl-protein complexes of purple photosynthetic bacteria. The reaction center complexes of these bacteria also showed similar properties to those of the purple bacteria except for slightly altered polypeptides. However, the following characteristic features of the light-harvesting systems were found in these aerobic bacteria. Major carotenoids were not bound to the Bchl-protein complex in E. longus. In Erythrobacter sp. OCh 114, a new type of Bchl-protein complex which showed a single absorption band in the near infrared region at 806 nm was obtained. The reaction center of strain OCh 114 was associated with a c-type cytochrome.Abbreviations Bchl bacteriochlorophyll a - RC reaction center - SDS sodium dodecylsulfate - PAGE polyacrylamide gel electrophoresis  相似文献   

3.
In vivo states and functions of carotenoids in the membranes and the isolated RC-B865 pigment-protein complexes from an aerobic photosynthetic bacterium, Erythrobacter longus, are investigated by means of fluorescence excitation and resonance Raman (RR) spectra. Erythroxanthin sulfate, a dominant carotenoid species in the membranes (>70%), is found not to transfer the absorbed light energy to bacteriochlorophyll (Bchl), and its RR spectra are similar between the in vivo and in vitro states. These observations indicate that erythroxanthin sulfate does not interact with either Bchl or proteins in the membranes, and suggest that its function may be limited to photoprotection by quenching the harmful singlet oxygen. On the other hand, two other carotenoid species contained in the isolated RC-B865 complexes, zeaxanthin and bacteriorubixanthinal, have a high efficiency of energy transfer to Bchl (88±5%). The RR spectra of these two carotenoids, each of which can be selectively obtained by choosing the excitation wavelength, show some characteristics of interactions with proteins or Bchl.Abbreviations Bchl bacteriochlorophyll a - FWHM full width at half maximum - PAGE polyacrylamide gel electrophoresis - RC reaction center - RR resonance Raman - SDS sodium dodecyl sulfate  相似文献   

4.
Intracytoplasmic membranes of the mutant strain NK3 of Rhodopseudomonas capsulata lacking the lightharvesting complex B800-850 were fused with proteoliposomes containing the B800-850 complex. Fluorescence emission spectroscopy at 77K showed that after fusion the fluorescence of the B850 bacteriochlorophyll disappeared nearly completely and the B870 fluorescence became prominent. This result and control experiments with proteoliposome-chromatophore mixture and with chromatophore and solubilized B800-850 complexes, respectively, indicate that in fused membranes a reorientation of membrane particles took place and excitons migrated from B850 to B870 bacteriochlorophyll.In fused proteoliposome-chromatophore vesicles a light-induced carotenoid band shift was observed, reflecting the building of an electrical membrane potential due to chargeseparation. Carotenoid band shift was not observed in separated proteoliposomes and NK3 chromatophores.It is concluded that by membrane fusion and lateral diffusion of membrane particles reaction center-light-harvesting B870 complexes came in functional contact with B800-850 antenna complexes.Abbreviations Bchl bacteriochlorophyll - LDAO lauryl dimethylamine oxide - RC reaction center Dedicated to Professor R. Clinton Fuller, Amherst, MA, USA, on the occasion of his 60th birthday in recognition of his work on photosynthetic bacteria and the cooperation between our laboratories  相似文献   

5.
The time dependent assembly of the photosynthetic apparatus was studied in Rhodospirillum rubrum after transfer of cells growing aerobically in the dark to low aeration. While bacteriochlorophyll (Bchl) cellular levels increase continuously levels of soluble cytochrome c 2do not change significantly. Absorption spectra of membranes isolated at different times after transfer reveal that incorporation of carotenoids lags behind incorporation of Bchl. However, a carotenoid fraction exhibiting spectral properties of spirilloxanthin isomers was isolated apart from membranes. This carotenoid fraction even was present in homogenates from Bchl-free, aerobically grown cells. Incorporation of U-14C-proteinhydrolyzate into membrane proteins showed that proteins are mainly formed which are specific for photosynthetic membranes. Although the proportion of reaction center (RC) Bchl per light harvesting (LH) Bchl does not change the proportions of membrane proteins present in RC and LH preparations change initially. But later on the proportions of the different proteins also reach constant values. Concerning proteins characteristic for cytoplasmic membranes a differential incorporation of label can be observed. The data indicate that the photosynthetic apparatus in Rhodospirillum rubrum is assembled through a sequential mechanism.Abbreviations Bchl bacteriochlorophyll - LH light harvesting - RC reaction center - R. Rhodospirillum - R. Rhodopseudomonas  相似文献   

6.
Time-correlated single photon counting was used to study energy trapping and detrapping kinetics at 295 K in Rhodobacter sphaeroides chromatophore membranes containing mutant reaction centers. The mutant reaction centers were expressed in a background strain of Rb. sphaeroides which contained only B880 antenna complexes and no B800-850 antenna complexes. The excited state decay times in the isolated reaction centers from these strains were previously shown to vary by roughly 15-fold, from 3.4 to 52 ps, due to differences in the charge separation rates in the different mutants (Allen and Williams (1995) J Bioenerg Biomembr 27: 275–283). In this study, measurements were also performed on wild type Rhodospirillum rubrum and Rb. sphaeroides B880 antenna-only mutant chromatophores for comparison. The emission kinetics in membranes containing mutant reaction centers was complex. The experimental data were analyzed in terms of a kinetic model that involved fast excitation migration between antenna complexes followed by reversible energy transfer to the reaction center and charge separation. Three emission time constants were identified by fitting the data to a sum of exponential decay components. They were assigned to trapping/quenching of antenna excitations by the reaction center, recombination of the P+H charge-separated state of the reaction center reforming an emitting state, and emission from uncoupled antenna pigment-protein complexes. The first varied from 60 to 160 ps, depending on the reaction center mutation; the second was 200–300 ps, and the third was about 700 ps. The observed weak linear dependence of the trapping time on the primary charge separation time, together with the known sub-picosecond exciton migration time within the antenna, supports the concept that it is energy transfer from the antenna to the reaction center, rather than charge separation, that limits the overall energy trapping time in wild type chromatophores. The component due to charge recombination reforming the excited state is minor in wild type membranes, but increases substantially in mutants due to the decreasing free energy gap between the states P* and P+H.Abbreviations PSU photosynthetic unit - Bchl bacteriochlorophyll - Bphe bacteriopheophytin - P reaction center primary electron donor - RC reaction center - Rb. Rhodobacter - Rs. Rhodospirillum - EDTA (ethylenediamine)tetraacetic acid - Tris tris(hydroxymethyl)aminomethane Author for correspondence  相似文献   

7.
The orientation ofRhodobacter sphaeroides reaction center complexes (RC complexes) in proteoliposomal membranes was investigated by a direct electrometric method. Conditions were found that allow monitoring of only that RC complex fraction that is oriented with its donor side to the inner part of the proteoliposome. It is shown thato-phenanthroline, an inhibitor of electron transfer between primary (QA) and secondary (QB) quinone acceptors, can also inhibit the photoinduced QA reduction. The efficiency of this inhibition depends on the concentration of added ubiquinone. It is assumed that the laser flash-inducedo-phenanthroline inhibition of primary dipole (P-870+ · Q A ) formation is of a competitive nature.  相似文献   

8.
Emission and excitation spectra of steady-state fluorescencefrom membranes and isolated pigment-protein complexes of anaerobic photosynthetic bacterium, Erythrobacter sp. strain OCh114 indicated high efficiency of energy transfer from Bchl 806to Bchl 870 and from carotenoids to bacteriochlorophyll. Thus,this bacterium has a highly efficient light-harvesting systemtypical of photosynthetic bacteria. (Received August 3, 1989; Accepted January 27, 1990)  相似文献   

9.
A gene bank of the phototrophic bacterium Rhodopseudomonas capsulata was constructed using the binary plasmid system pRK290/pRK2013. Fragments of about 20 kb of chromosomal DNA of R. capsulata strain 37b4 were inserted into the cloning vector pRK290. The hybrid plasmids of the gene bank, maintained in Escherichia coli HB101 were transferred by conjugation to R. capsulata strains defective in the photosynthetic apparatus with frequencies of 5×10-4 to 5×10-2. Phototrophically growing transconjugants occurred with frequencies of 5×10-7 to 5×10-6. Recombination between the hybrid plasmids and the R. capsulata chromosome was shown. The hybrid plasmid pRCF1002, carrying a 25 kb insert of R. capsulata wild type DNA, was isolated from one E. coli clone of the gene bank. It reconstituted some bacteriochlorophyll- and photosynthetic negative mutants to phototrophic growth.Abbreviations Bchl Bacteriochlorophyll - RC reaction center - LH light-harvesting complex - Crt carotenoid - pho phototrophic growth - P Bchl precursor excreted, the number behind P indicates the maximum of absorption in ether (nm) - SDS sodium dodecyl sulfate - Tc tetracycline - Km kanamycin - Gm gentamicin - r resistant - kb kilo base pairs Dedicated to Hans-Günter Schlegel on occasion of his 60th birthday  相似文献   

10.
The protein components of the reaction center (RC) and core light-harvesting (LH 1) complexes of photosynthetic bacteria have evolved to specifically, but non-covalently, bind bacteriochlorophyll (Bchl). The contribution to binding of specific structural elements in the protein and Bchl may be determined for the LH 1 complex because its subunit can be studied by reconstitution under equilibrium conditions. Important to the determination and utilization of such information is the characterization of the interacting molecular species. To aid in this characterization, a fluorescent probe molecule has been covalently attached to each of the LH 1 polypeptides. The fluorescent probes were selected for optimal absorption and emission properties in order to facilitate their unique excitation and to enable the detection of energy transfer to Bchl. Oregon Green 488 carboxylic acid and 7-diethylaminocoumarin-3-carboxylic acid seemed to fulfill these requirements. Each of these probes were utilized to derivatize the LH1 β-polypeptide of Rhodobacter sphaeroides. It was demonstrated that the β-polypeptides did not interact with each other in the absence of Bchl. When Bchl was present, the probe-labeled β-polypeptides interacted with Bchl to form subunit-type complexes much as those formed with the native polypeptides. Energy transfer from the probe to Bchl occurred with a high efficiency. The α-polypeptide from LH 1 of Rb. sphaeroides and that from Rhodospirillum rubrum were also derivatized in the same manner. Since these polypeptides do not oligomerize in the absence of a β-polypeptide, reversible binding of a single Bchl to a single polypeptide could be measured. Dissociation constants for complex formation were estimated. The relevance of these data to earlier studies of equilibria involving subunit complexes is discussed. Also involved in the photoreceptor complex of Rb. sphaeroides and Rhodobacter capsulatus is another protein referred to as PufX. Two large segments of this protein were chemically synthesized, one reproducing the amino acid sequence of the core segment predicted for Rb. sphaeroides PufX and the other reproducing the amino acid sequence predicted for the core segment of Rb. capsulatus PufX. Each polypeptide was covalently labeled with a fluorescent probe and tested for energy transfer to Bchl. Each was found to bind Bchl with an affinity similar to the affinity of the LH 1 polypeptides for Bchl. It is suggested that PufX binds Bchl and interacts with a Bchlċα-polypeptide component of LH 1 to truncate, or interupt, the LH 1 ring adjacent to the location of the QB binding site of the RC. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
12.
13.
We have reconstituted pigment-protein complexes isolated from Rhodopseudomonas palustris photosynthetic membranes into phospholipid liposomes. The various complexes were tested for their ability to promote adhesion of the liposome membrane in the presence and absence of Mg2+ ions. Samples containing a reaction center (RC)/light-harvesting I (LHI) complex appeared to stack in a manner resembling control thylakoids in 2 and 5 mM Mg2+. We also tested for the effects of Mg2+ on detergent extractablity of pigment-protein complexes from intact membranes. Mg2+ sharply reduced the amount of LHI solubilized from membranes, while having little effect on the extractability of the light harvesting II complex (LHII) and the RC. Based on these results we suggest that LHI is the principal adhesion factor of R. palustris thylakoids.Abbreviations LHC light harvesting complex - OG octyl glucoside - RC reaction center This paper is dedicated to Professor G. Drews on the occasion of his 60th birthday  相似文献   

14.
Picosecond absorption spectroscopy has been used to investigate energy-transfer dynamics within the LH1 and LH2 light-harvesting complexes of three mutants of Rhodobacter sphaeroides. We demonstrate that both complexes are inhomogeneous; each contains a specialized pigment pool which absorbs maximally at a longer wavelength. Within LH2 (mutant NF57), Bchl850 transfers energy to Bchl870 in 39 +/- 9 ps; within LH1 (mutants M21 and M2192), energy is transferred from Bchl875 to Bchl896 in 22 +/- 4 and 35 +/- 5 ps, respectively. Examination of the decay of induced absorption anisotropy indicates that each of these specialized pools exists in a state which is highly organized with respect to the remainder of the pigments. Such an arrangement may facilitate and direct energy migration toward the reaction center.  相似文献   

15.
The Fenna-Matthews-Olson (FMO)-protein and the FMO-reaction center (RC) core complex from the green sulfur bacterium Chlorobium tepidum were examined at 6 K by absorption and fluorescence spectroscopy. The absorption spectrum of the RC core complex was obtained by a subtraction method and found to have fiye peaks in the QY region, at 797, 808, 818, 834 and 837 nm. The efficiency of energy transfer from carotenoid to bacteriochlorophyll a in the RC core complex was 23% at 6 K, and from the FMO-protein to the core it was 35%. Energy transfer from the FMO-protein to the core complex was also measured in isolated membranes of Prosthecochloris aestuarii from the action spectra of charge separation. Again, a low efficiency of energy transfer was obtained, both at 6 K and at room temperature.Abbreviations BChl- bacteriochlorophyll - P840- primary electron donor - RC- reaction center - FMO-protein- Fenna-Matthews-Olson-protein  相似文献   

16.
Inhibition of electron transport and damage to the protein subunits by ultraviolet-B (UV-B, 280–320 nm) radiation have been studied in isolated reaction centers of the non-sulfur purple bacterium Rhodobacter sphaeroides R26. UV-B irradiation results in the inhibition of charge separation as detected by the loss of the initial amplitude of absorbance change at 430 nm reflecting the formation of the P+(QAQB) state. In addition to this effect, the charge recombination accelerates and the damping of the semiquinone oscillation increases in the UV-B irradiated reaction centers. A further effect of UV-B is a 2 fold increase in the half- inhibitory concentration of o-phenanthroline. Some damage to the protein subunits of the RC is also observed as a consequence of UV-B irradiation. This effect is manifested as loss of the L, M and H subunits on Coomassie stained gels, but not accompanied with specific degradation products. The damaging effects of UV-B radiation enhanced in reaction centers where the quinone was semireduced (QB ) during UV-B irradiation, but decreased in reaction centers which lacked quinone at the QB binding site. In comparison with Photosystem II of green plant photosynthesis, the bacterial reaction center shows about 40 times lower sensitivity to UV-B radiation concerning the activity loss and 10 times lower sensitivity concerning the extent of reaction center protein damage. It is concluded that the main effect of UV-B radiation in the purple bacterial reaction center occurs at the QAQB quinone acceptor complex by decreasing the binding affinity of QB and shifting the electron equilibration from QAQB to QA QB. The inhibitory effect is likely to be caused by modification of the protein environment around the QB binding pocket and mediated by the semiquinone form of QB. The UV-resistance of the bacterial reaction center compared to Photosystem II indicates that either the QAQB acceptor complex, which is present in both types of reaction centers with similar structure and function, is much less susceptible to UV damage in purple bacteria, or, more likely, that Photosystem II contains UV-B targets which are more sensitive than its quinone complex.Abbreviations Bchl bacteriochlorophyll - P Bchl dimer - QA primary quinone electron acceptor - QB secondary quinone electron acceptor - RC reaction center - UV-B ultraviolet-B  相似文献   

17.
Abstract The photosynthetic bacterium Rhodobacter sulfidophilus is able to grow chemotrophically and phototrophically at a broad range of light intensities. In contrast to other facultative phototrophs, R. sulfidophilus synthesizes reaction center and light-harvesting (LH) complexes, B870 (LHI) and B800–850 (LHII) even under full aerobic conditions in the dark. The content of bacteriochlorophyll (BChl) varied from 3.8 μg Bchl per mg cell protein when grown at high light intensity (20 000 lux) to 60 μg Bchl per mg cell protein when grown at low light intensities (6 lux). After a shift from high light to low light conditions, the size of the photosynthetic unit increased by a factor of 4. Chromatographie analysis of the LHII complex, isolated and purified from cells grown phototrophically (at high and low light intensities) and chemotrophically, could resolve only one type of a and one type of β polypeptide in the purified complex, of which the N-terminal sequences have been determined.  相似文献   

18.
The obligate aerobic bacteria Roseococcus thiosulfatophilus RB3 and Erythromicrobium ramosum E5 contain numerous polar carotenoids. The major carotenoid of the strain RB3 was the C30 carotene-dioate (4,4-diapocarotene-4,4-dioate) and the respective diglycosyl ester which have never been isolated before from a bacteriochlorophyll containing bacterium. Strain E5 contains the very polar erythroxanthin sulphate. The major carotenoid bound to reaction center and light-harvesting complexes is bacteriorubixanthinal. Most of the carotenoids of both strains are not bound to the pigment-protein complexes of the photosynthetic apparatus but to the envelope fraction (cytoplasmic membrane and cell wall).Abbreviations Bchl bacteriochlorophyll - MeOH methanol  相似文献   

19.
The photosynthetic unit includes the reaction centers (RC 1 and RC 2) and the light-harvesting complexes which contribute to evolution of one O2 molecule. The light-harvesting complexes, that greatly expand the absorptance capacity of the reactions, have evolved along three principal lines. First, in green plants distinct chlorophyll (Chl) a/b-binding intrinsic membrane complexes are associated with RC 1 and RC 2. The Chl a/b-binding complexes may add about 200 additional chromophores to RC 2. Second, cyanobacteria and red algae have a significant type of antenna (with RC 2) in the form of phycobilisomes. A phycobilisome, depending on the size and phycobiliprotein composition adds from 700 to 2300 light-absorbing chromophores. Red algae also have a sizable Chl a-binding complex associated with RC 1, contributing an additional 70 chromophores. Third, in chromophytes a variety of carotenoid-Chl-complexes are found. Some are found associated with RC 1 where they may greatly enhance the absorptance capacity. Association of complexes with RC 2 has been more difficult to ascertain, but is also expected in chromophytes. The apoprotein framework of the complexes provides specific chromophore attachment sites, which assures a directional energy transfer whithin complexes and between complexes and reaction centers. The major Chl-binding antenna proteins generally have a size of 16–28 kDa, whether of chlorophytes, chromophytes, or rhodophytes. High sequence homology observed in two of three transmembrane regions, and in putative chlorophyll-binding residues, suggests that the complexes are related and probably did not evolve from widely divergent polyphyletic lines.Abbreviations APC allophycocyanin - B phycoerythrin-large bangiophycean phycoerythrin - Chl chlorophyll - LCM linker polypeptide in phycobilisome to thylakoid - FCP fucoxanthin Chl a/c complex - LHC(s) Chl-binding light harvesting complex(s) - LHC I Chl-binding complex of Photosystem I - LHC II Chl-binding complex of Photosystem II - PC phycocyanin - PCP peridinin Chl-binding complex - P700 photochemically active Chl a of Photosystem I - PS I Photosystem I - PS II Photosystem II - RC 1 reaction center core of PS I - RC 2 reaction center core of PS II - R phycoerythrin-large rhodophycean phycoerythrin - sPCP soluble peridinin Chl-binding complex  相似文献   

20.
The phototrophic green bacterium Chloroflexus aurantiacus was grown anaerobically in batch culture with different amino acids at 56°C and constant illumination of 25 klx. The composition of the photosynthetic apparatus was measured by quantitation of the bacteriochlorophylls (Bchl) a and c (representing the membrane-bound and the chlorosomal moieties, respectively). Ser added at concentrations up to 15 mM stimulated protein formation and Bchl a and c syntheses. A comparable stimulation was found with Glu and Ala. Coproporphyrin accumulation approached saturation at 5 mM of Ala, Asp, Orn, and Ser, while with Glu and Arg saturating concentrations were above 5 mM. Protein and tetrapyrrole syntheses became saturated at 2.5 to 5 mM of Asp, Ile, and Val. However, with Arg and Orn Bchl c synthesis was stimulated up to 2.5 mM, growth and Bchl a synthesis up to 5 mM. At higher Arg or Orn concentrations these activities were inhibited. Coproporphyrin accumulation was highest with Arg or Orn, at concentrations which inhibited growth and Bchl formation. Stimulation of Bchl synthesis took place preferentially at the level of Bchl c, while Bchl a was more sensitive toward inhibition. In both cases however, the ratio of Bchl c to Bchl a increased with higher amino acid concentrations. Nevertheless, each amino acid induced a typical effect. To understand different effects exerted by different amino acids, chemostat cultures were grown limited by either Ser or Glu. With Ser, steady state protein levels and specific Bchl a contents decreased slightly when increasing the dilution rate (D). Concomitantly Bchl c and coproporphyrin levels as well as the ratio of Bchl a/Bchl c increased. With Glu as the limiting substrate, all of the above mentioned parameters decreased. Since all of the Ser was consumed and increasing amounts of Glu remained unutilized in the spent medium, it is concluded that differences in the formation of the three pyrrole derivatives tested are due to differences in the affinities of uptake systems for Ser and Glu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号