首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Guo WL  Wu R  Zhang YF  Liu XM  Wang HY  Gong L  Zhang ZH  Liu B 《Plant cell reports》2007,26(8):1297-1307
We have reported recently that tissue culture induced a high level of genetic variation at the primary nucleotide sequence in regenerants of medicinal plant Codonopsis lanceolata. It is not known, however, whether epigenetic variation in the form of alteration in DNA methylation also occurred in these plants. Here, we investigated possible alterations in level and pattern of cytosine methylation at the CCGG sites in the same set of regenerants relative to the donor plant, by the MSAP method employing a pair of isoschizomers, HpaII and MspI, which recognize the same restriction site but are differentially sensitive to cytosine methylation at the CCGG sites. A total of 1,674 MSAP profiles were resolved using 39 primer combinations. Of these, 177 (10.5%) profiles were polymorphic among the regenerants and/or between the regenerant(s) and the donor plant, in EcoRI + HpaII or EcoRI + MspI digest but not in both, indicating alteration in cytosine methylation patterns of specific loci, though their estimated total level of methylation remained more or less the same as the donor plant. Gel blot analysis validated most of the variant MSAP profiles as bona fide alteration in methylation patterns. Correlation analysis between the MSAP data and the previously reported ISSR and RAPD data revealed significant correlations, suggesting their possible intrinsic interrelatedness. Thirty-seven typical variant MSAP profiles were isolated and sequenced, of which 5 showed significant homology to known-function genes, 2 to chloroplast sequences, whilst the rest 30 did not find a match in the database. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. W. L. Guo and R. Wu contributed equally to this work.  相似文献   

2.
Freesia hybrida is an important worldwide cut flower, especially in America and Europe. For efficient regeneration of this flower from young inflorescence and rachillae in tetraploid, we developed a simple in vitro micropropagation protocol. Explants of Freesia hybrida can regenerate plantlets through somatic embryogenesis via two kinds of pathways, that is, directly from the epidermal cells or indirectly from an embryonic callus, depending on the exogenous plant growth regulators (PGRs) used in the culture media. In direct embryogenesis, when the explants were cultured on Murashige and Skoog (MS) medium supplemented with 11.43 μM indole acetic acid (IAA) and 4.44 μM 6-benzylaminopurine (6-BA), the induction rate was 84% for young inflorescence and 100% for rachillae. After the multishoots were subcultured on the rooting MS medium containing 1.08 μM α-naphthalene acetic acid (NAA), the rooting rate was close to 100%. In indirect embryogenesis, embryonic calluses were formed when the culture medium contained 22.22 μM 6-BA and 4.52 μM 2,4-dichlorophenoxy acetic acid (2,4-D), and the induction rate was 92.4% for young inflorescence and 100% for rachillae. After the embryonic calluses were transferred to the medium supplemented with 11.43 μM IAA and 13.33 μM 6-BA, they could develop into plantlets with roots. In assessing the two regeneration pathways in terms of genetic and epigenetic fidelity of the regenerants, two kinds of molecular markers [amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified polymorphism (MSAP)] were employed. The AFLP analysis used 20 primer pairs that yielded 916 scorable bands among the donor plant and 11 regenerants from direct embryogenesis, of which 8 (0.87%) were polymorphic. The regenerants from indirect embryogenesis had 1075 clear bands of which 3 (0.27%) were polymorphic scorable bands from 18 primer pairs. Moreover, the variant band patterns included two types, that is, loss-of-original and gain-of-novel bands. MSAP analysis revealed that tissue culturing of the flower induced DNA cytosine methylation alterations in both CG and CNG levels and patterns compared with the donor plant. The variation rate was 1.1 and 1.3% for the direct and indirect embryogenesis pathways, respectively. The findings show that tissue culture of flowering plants is a form of stress which can induce some heritable epigenetic variations and should be considered in future long-term genotype preservation programs of Freesia hybrida.  相似文献   

3.
Organogenic calli induced from internodal segments were subcultured three times. Regenerated plants obtained from each subculture were analysed by molecular methods. No major genetic rearrangements were detected in the callus-derived plants since none of the amplified fragment-length polymorphism (AFLP) loci were found to be polymorphic. However, epigenetic changes due to a demethylation process were detected by methylation-sensitive amplified polymorphism (MSAP) technique. The results allowed inference of the possible relationship among the plants derived from different calli subcultures and the in vitro control. The plants recovered from the first and second callus subcultures clustered with the in vitro control pools in the phenogram while the regenerants from the third callus subculture showed the highest genetic distance with the controls. This is the first study reporting data about the genetic stability of callus-derived Humulus lupulus L. plants.  相似文献   

4.
DNA-methylation profiles of leaf tissues of Rosa hybrida cv. Carefree Beauty collected from in vivo-grown greenhouse plants, in vitro-grown proliferating shoots at different passages, regenerants of embryogenic callus, regenerants of organogenic callus, as well as calli from undifferentiated callus (UC), embryogenic callus, and organogenic callus were investigated using an amplified fragment-length polymorphism (AFLP)-based detection technique. Three types of AFLP bands were recovered. Type I bands were observed with both isoschizomers Msp and HpaII, while type II and type III bands were observed only with MspI and HpaII, respectively. Sequence analysis of the three types of AFLP bands revealed that a nonmethylated MspI/HpaII-recognition site 5-CCGG-3 resulted in a type I band, while an inner 5-methylcytosine generated most type II and type III bands. About 40% of inner and 20% of outer cytosines in 5-CCGG-3 sequences were fully methylated, and only a few hemimethylated outer cytosines were observed. Changes in types of AFLP bands among different tissues were frequently observed, including appearance and disappearance of type I, II, and III AFLP bands, as well as exchanges between either type I and type II or type I and type III AFLP bands. Methylation alterations of outer cytosines in 5-CCGG-3 sequences triggered appearance and disappearance of type I and II AFLP bands. Methylation changes of both outer and inner cytosines resulted in either removal or generation of type III AFLP bands. Methylation alteration of an inner cytosine was responsible for exchange between type I and type II, while hemimethylation of an outer cytosine accounted for exchange between type I and type III AFLP bands. During UC induction, a significant DNA-methylation alteration was detected in both inner and outer cytosines. Variations in methylation profiles significantly differed between somatic embryogenesis and in vitro organogenesis. Demethylation of outer cytosines occurred at a high frequency during somatic embryogenesis, and most altered AFLP bands in embryogenic callus were passed on to its regenerants. However, most methylation-altered AFLP bands during organogenesis were recovered in shoot regenerants derived via organogenic callus. Seven tissue-specific bands were isolated, cloned, and sequenced. Blast search revealed that two of these might be derived from functional genes.Mingliang Xu and Xiangqian Li contributed equally to this paper  相似文献   

5.
Pilar Bazaga 《Molecular ecology》2014,23(20):4926-4938
The ecological significance of epigenetic variation has been generally inferred from studies on model plants under artificial conditions, but the importance of epigenetic differences between individuals as a source of intraspecific diversity in natural plant populations remains essentially unknown. This study investigates the relationship between epigenetic variation and functional plant diversity by conducting epigenetic (methylation‐sensitive amplified fragment length polymorphisms, MSAP) and genetic (amplified fragment length polymorphisms, AFLP) marker–trait association analyses for 20 whole‐plant, leaf and regenerative functional traits in a large sample of wild‐growing plants of the perennial herb Helleborus foetidus from ten sampling sites in south‐eastern Spain. Plants differed widely in functional characteristics, and exhibited greater epigenetic than genetic diversity, as shown by per cent polymorphism of MSAP fragments (92%) or markers (69%) greatly exceeding that for AFLP ones (41%). After controlling for genetic structuring and possible cryptic relatedness, every functional trait considered exhibited a significant association with at least one AFLP or MSAP marker. A total of 27 MSAP (13.0% of total) and 12 AFLP (4.4%) markers were involved in significant associations, which explained on average 8.2% and 8.0% of trait variance, respectively. Individual MSAP markers were more likely to be associated with functional traits than AFLP markers. Between‐site differences in multivariate functional diversity were directly related to variation in multilocus epigenetic diversity after multilocus genetic diversity was statistically accounted for. Results suggest that epigenetic variation can be an important source of intraspecific functional diversity in H. foetidus, possibly endowing this species with the capacity to exploit a broad range of ecological conditions despite its modest genetic diversity.  相似文献   

6.
Salinity is an important limiting environmental factor for rapeseed production worldwide. In this study, we assessed the extent and pattern of DNA damages caused by salt stress in rapeseed plants. Amplified fragment length polymorphism (AFLP) analysis revealed dose-related increases in sequence alterations in plantlets exposed to 10-1000 mmol/L sodium chloride. In addition, individual plantlets exposed to the same salt concentration showed different AFLP and selected region amplified polymorphism banding patterns. These observations suggested that DNA mutation in response to salt stress was random in the genome and the effect was dose-dependant. DNA methylation changes in response to salt stress were also evaluated by methylation sensitive amplified polymorphism (MSAP). Three types of MSAP bands were recovered. Type Ⅰ bands were observed with both isoschizomers Hpa Ⅱ and Msp Ⅰ, while type Ⅱ and type Ⅲ bands were observed only with Hpa Ⅱ and Msp Ⅰ, respectively. Extensive changes in types of MSAP bands after NaCI treatments were observed, including appearance and disappearance of type Ⅰ, Ⅱ and Ⅲ bands, as well as exchanges between either type Ⅰand type Ⅱ or type Ⅰ and type Ⅲ bands. An increase of 0.2-17.6% cytosine methylated CCGG sites were detected in plantlets exposed to 10- 200 mmol/L salt compared to the control, and these changes included both de novo methylation and demethylation events. Nine methylation related fragments were also recovered and sequenced, and one sharing a high sequence homology with the ethylene responsive element binding factor was identified. These results demonstrated clear DNA genetic and epigenetic alterations in planUets as a response to salt stress, and these changes may suggest a mechanism for plants adaptation under salt stress.  相似文献   

7.
Gardenia jasminoides Ellis is an evergreen tropical plant and favorite to gardeners throughout the world. Several studies have documented that in vitro micropropagation can be used for clonal propagation of G. jasminoides Ellis, the efficiency remained low. In addition, no information is available on the genetic and epigenetic fidelity of the micropropagated plants. Here, we report on a simplified protocol for high efficient micropropagation of G. jasminoides Ellis cv. “Kinberly” based on enhanced branching of shoot-tips as explants. The protocol consisted of sequential use of three media, namely, bud-induction, elongation and root-induction. By using two molecular markers, amplified fragment length polymorphism (AFLP) and methylation sensitive amplified polymorphism (MSAP), we analyzed the genetic and DNA methylation pattern stability of 23 morphologically normal plants randomly taken from a sub-population (>100) of micropropagated plants originated from a single shoot-tip. We found that of >1,000 scored AFLP bands across the 23 micropropagated plants, no incident of genetic variation was detected. In contrast, of 750 scored MSAP bands, moderate but clear alteration in several DNA methylation patterns occurred in the majority of the 23 micropropagated plants. The changed methylation patterns involved both CG and CHG sites representing either hyper- or hypo-methylation, which occurred without altering the total methylation levels partly due to concomitant hyper- and hypo-methylation alterations. Our results indicated that epigenetic instability in the form of DNA methylation patterns can be susceptible to the in vitro micropropagation process for G. jasminoides Ellis, and needs to be taken into account in the process of large-scale commercial propagation of this plant.  相似文献   

8.
Methylation of DNA cytosines affects whether transposons are silenced and genes are expressed, and is a major epigenetic mechanism whereby plants respond to environmental change. Analyses of methylation‐sensitive amplification polymorphism (MS‐AFLP or MSAP) have been often used to assess methyl‐cytosine changes in response to stress treatments and, more recently, in ecological studies of wild plant populations. MSAP technique does not require a sequenced reference genome and provides many anonymous loci randomly distributed over the genome for which the methylation status can be ascertained. Scoring of MSAP data, however, is not straightforward, and efforts are still required to standardize this step to make use of the potential to distinguish between methylation at different nucleotide contexts. Furthermore, it is not known how accurately MSAP infers genome‐wide cytosine methylation levels in plants. Here, we analyse the relationship between MSAP results and the percentage of global cytosine methylation in genomic DNA obtained by HPLC analysis. A screening of literature revealed that methylation of cytosines at cleavage sites assayed by MSAP was greater than genome‐wide estimates obtained by HPLC, and percentages of methylation at different nucleotide contexts varied within and across species. Concurrent HPLC and MSAP analyses of DNA from 200 individuals of the perennial herb Helleborus foetidus confirmed that methyl‐cytosine was more frequent in CCGG contexts than in the genome as a whole. In this species, global methylation was unrelated to methylation at the inner CG site. We suggest that global HPLC and context‐specific MSAP methylation estimates provide complementary information whose combination can improve our current understanding of methylation‐based epigenetic processes in nonmodel plants.  相似文献   

9.
Guo WL  Gong L  Ding ZF  Li YD  Li FX  Zhao SP  Liu B 《Plant cell reports》2006,25(9):896-906
Codonopsis lanceolata Benth. et Hook. f., commonly known as bonnet bellflower, is a high-valued herb medicine and vegetable. In this study, a large number of plants were regenerated via organogenesis from immature seed-derived calli in C. lanceolata by a simple and efficient method. Compared with the mother donor plant, the regenerated plants did not exhibit visible phenotypic variations in six major morphological traits examined at the stage of one-season-maturity under field conditions. To gain insight into the genomic stability of these regenerated plants, 63 individuals were randomly tagged among a population of more than 2,000 regenerants, and were compared with the single mother donor plant by two molecular markers, the inter-simple sequence repeats (ISSR) and randomly amplified polymorphic DNA (RAPD). Apparent genomic variation was detected in the 63 regenerants, whereas preexisting heterozygosiy in the donor plant was deemed minimal by testing 30 seedlings germinated from selfed seeds of the same donor plant. The percentages of polymorphic bands (PPB) in the ISSR and RAPD analysis were respectively 15.7 and 24.9% for the 63 regenerated plants. Cluster analysis indicates that the genetic similarity values calculated on the basis of RAPD and ISSR data among the 64 plants (63 regenerated and one donor) were respectively 0.894 and 0.933, which allow classification of the plants into distinct groups. Nineteen randomly isolated bands underlying the changed RAPD or ISSR patterns were sequenced, and three of them showed significant homology to known-function genes. Detailed pairwise sequence comparison at one locus between the donor plant and a regenerant revealed that insertion of two short (24 and 19 bp) stretches of nucleotides in the regenerated plant relative to the donor plant occurred in an apparently stochastic manner.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

10.
Hybridization and introgression represent important means for the transfer and/or de novo origination of traits and play an important role in facilitating speciation and plant breeding. Two sets of introgression lines in Brassica napus L. were previously established by its intertribal hybridizations with two wild species and long-term selection. In this study, the methods of amplified fragment length polymorphisms (AFLP), sequence-specific amplification polymorphism (SSAP) and methylation-sensitive amplified polymorphism (MSAP) were used to determine their genomic change, retrotransposon mobilization and cytosine methylation alteration in these lines. The genomic change revealed by the loss or gain of AFLP bands occurred for ∼10% of the total bands amplified in the two sets of introgressions, while no bands specific for wild species were detected. The new and absent SSAP bands appeared for 9 out of 11 retrotransposons analyzed, with low frequency of new bands and their total percentage of about 5% in both sets. MSAP analysis indicated that methylation changes were common in these lines (33.4–39.8%) and the hypermethylation was more frequent than hypomethylation. Our results suggested that certain extents of genetic and epigenetic alterations were induced by hybridization and alien DNA introgression. The cryptic mechanism of these changes and potential application of these lines in breeding were also discussed.  相似文献   

11.
A random amplified polymorphic DNA (RAPD) analysis of spineless (variant phenotype) plants obtained from micropropagated dormant pineapple (Ananas comosus L., Merr.) axillary buds was performed using arbitrary 10-mer oligonucleotide primers. This was done to investigate the genetic fidelity of the regenerants and to distinguish these variants from regenerants bearing the normal spined phenotype. Of the 58 arbitrary primers used, 29 produced bands unique to the spineless phenotype, and 30 produced bands unique to the spined phenotype. A total of 914 bands were scored, 55 of which were polymorphic to the spineless phenotype and 51 of which were polymorphic to the spined phenotype. On the basis of RAPD amplification products, genetic similarity was estimated in both types of regenerants using similarity coefficients (Nei and Li, 1979). The characteristic finger-prints generated by each probe emphasize genetic variability of regenerants. This technique is suitable for analyzing variant regenerants induced in vitro.  相似文献   

12.
In this study msap, an R package which analyses methylation‐sensitive amplified polymorphism (MSAP or MS‐AFLP) data is presented. The program provides a deep analysis of epigenetic variation starting from a binary data matrix indicating the banding pattern between the isoesquizomeric endonucleases HpaII and MspI, with differential sensitivity to cytosine methylation. After comparing the restriction fragments, the program determines if each fragment is susceptible to methylation (representative of epigenetic variation) or if there is no evidence of methylation (representative of genetic variation). The package provides, in a user‐friendly command line interface, a pipeline of different analyses of the variation (genetic and epigenetic) among user‐defined groups of samples, as well as the classification of the methylation occurrences in those groups. Statistical testing provides support to the analyses. A comprehensive report of the analyses and several useful plots could help researchers to assess the epigenetic and genetic variation in their MSAP experiments. msap is downloadable from CRAN ( http://cran.r-project.org/ ) and its own webpage ( http://msap.r-forge.R-project.org/ ). The package is intended to be easy to use even for those people unfamiliar with the R command line environment. Advanced users may take advantage of the available source code to adapt msap to more complex analyses.  相似文献   

13.
Previous studies have shown rapid and extensive genomic instability associated with early stages of allopolyploidization in wheat.However, these studies are based on either a few pre-selected genomic loci or genome-wide analysis of a single plant individual for a given cross combination, thus making the extent and generality of the changes uncertain.To further study the generality and characteristics of allopolyploidization-induced genomic instability in wheat, we investigated genetic and epigenetic changes from a genome-wide perspective (by using the AFLP and MSAP markers) in four sets of newly synthesized allotetraploid wheat lines with various genome constitutions, each containing three randomly chosen individual plants at the same generation.We document that although general chromosomal stability was characteristic of all four sets of allotetraploid wheat lines, genetic and epigenetic changes at the molecular level occurred in all these plants, with both kinds of changes classifiable into two distinct categories, i.e., stochastic and directed.The abundant type of genetic change is loss of parental bands while the prevalent cytosine methylation pattern alteration is hypermethylation at the CHG sites.Our results have extended previous studies regarding allopolyploidization-induced genomic dynamics in wheat by demonstrating the generality of both genetic and epigenetic changes associated with multiple nascent allotetraploid wheat lines, and providing novel insights into the characteristics of the two kinds of induced genomic instabilities.  相似文献   

14.
采用扩增片段长度多态性(AFLP)和甲基化敏感扩增多态性(MSAP)技术分析红豆杉脱分化前后基因组DNA和DNA甲基化状态的变化。选用32个AFLP引物组合从红豆杉植株及其愈伤组织分别扩增出1834个片段,无多态性片段产生。这说明红豆杉植株在诱导形成愈伤组织的过程中基因组DNA保持高度的遗传稳定性。另用32个MSAP引物组合从红豆杉植株及其愈伤组织分别扩增出1197个片段,总扩增位点的甲基化水平由脱分化前的12.4%上升为16.2%,表明红豆杉在脱分化过程中的某些位点发生了甲基化。红豆杉脱分化前后的DNA甲基化模式也存在较大差异,说明DNA甲基化对愈伤组织形成有调控作用。  相似文献   

15.
There is an increasing interest in understanding the role of epigenetic variability in forest species and how it may contribute to their rapid adaptation to changing environments. In this study we have conducted a genome-wide analysis of cytosine methylation pattern in Pinus pinea, a species characterized by very low levels of genetic variation and a remarkable degree of phenotypic plasticity. DNA methylation profiles of different vegetatively propagated trees from representative natural Spanish populations of P. pinea were analyzed with the Methylation Sensitive Amplified Polymorphism (MSAP) technique. A high degree of cytosine methylation was detected (64.36% of all scored DNA fragments). Furthermore, high levels of epigenetic variation were observed among the studied individuals. This high epigenetic variation found in P. pinea contrasted with the lack of genetic variation based on Amplified Fragment Length Polymorphism (AFLP) data. In this manner, variable epigenetic markers clearly discriminate individuals and differentiates two well represented populations while the lack of genetic variation revealed with the AFLP markers fail to differentiate at both, individual or population levels. In addition, the use of different replicated trees allowed identifying common polymorphic methylation sensitive MSAP markers among replicates of a given propagated tree. This set of MSAPs allowed discrimination of the 70% of the analyzed trees.  相似文献   

16.
Both morphological characteristics and amplified fragment length polymorphism (AFLP) markers were used to validate the genetic fidelity of 1 080 field-grown Echinacea purpurea plants regenerated from leaf explants of donor T5-9. Morphological diagnosis revealed that 1 067 out of 1 080 regenerants were normal, while 13 regenerants were aberrant. AFLP analysis was further performed to assess DNA variations among donor, 43 sampled normal regenerants and all 13 aberrant regenerants. Seven primer combinations generated 471 fragments among donor and normal regenerants, of which 9 fragments were polymorphic. The same primer pairs generated 484 fragments for aberrant regenerants, of which 417 fragments were polymorphic. UPGMA clustering indicated that 42 normal regenerants and donor fell into same cluster at similarity scale of > 0.99, while all 13 aberrant regenerants and one morphologically normal regenerant comprised the other clusters. AFLP analysis indicated that these 14 regenerants are off-types.  相似文献   

17.
Rice is one of the most important food crops in the world. Genetic diversity is essential for cultivar improvement programs. We compared genetic diversity derived from insertion–deletion (in–del) or base substitutions by amplified fragment length polymorphism (AFLP), from transposon transposition mutations by transposon display (TD), and from cytosine methylation by methylation-sensitive amplified polymorphism (MSAP) in japonica, indica, and Tongil type varieties of Oryza sativa L. Polymorphic profiles from the three marker systems allowed us to clearly distinguish the three types of varieties. The indica type varieties showed the highest genetic diversity followed by the Tongil and japonica type varieties. Of the three marker systems, TD produced the highest marker indices, and AFLP and MSAP produced similar marker indices. Pair-wise comparisons of the three marker systems showed that the correlation between the two genetic markers systems (AFLP and TD, r = 0.959) was higher than the correlations between the genetic and epigenetic marker systems (AFLP and MSAP, r = 0.52; TD and MSAP, r = 0.505). Both genetic marker systems had similar levels of gene differentiation (G ST ) and gene flow (N m ), which differed in the epigenetic marker system. Although the G ST of the epigenetic marker system was lower than the genetic marker systems, the N m of the epigenetic marker system was higher than in the genetic marker systems, indicating that epigenetic variations have a greater influence than genetic variations among the O. sativa L. types.  相似文献   

18.
The best known and most thoroughly studied epigenetic phenomenon is DNA methylation, which plays an important role in regulating gene expression during plant regeneration and development. In this study, the methylation-sensitive amplified polymorphism (MSAP) technique was carried out to determine differences in methylation profiles between two forms of protocorm-like bodies (PLBs), continuously proliferating PLBs (cPLBs) and spontaneously-differenting PLBs (sdPLBs), derived from cultures of Cymbidium hybridium. A total of 72 selective primer combinations were used to assess the status of cytosine methylation of DNA in these tissues. Of 4,440 fragments obtained 911 fragments, each representing a recognition site cleaved by one or both of the isoschizomers (Hpa II and Msp I), were amplified and were significantly different between the two forms of PLBs. Frequency of total and full-methylation of cPLBs and sdPLBs were 26.7/12.2%, 24.1/11.1%, respectively. In addition, 14 types of MSAP patterns detected in the two forms of PLBs belonged to two classes, type I and II. Sequencing of 14 differentially methylated fragments and their subsequent blast search revealed that cytosine methylated 5′-CCGG-3′ sequences were equally distributed in the coding and non-coding regions. Southern blotting was conducted to verify the methylation polymorphism.  相似文献   

19.
Somaclones exhibiting variations with flower characteristics were recovered from the tissue-culture-derived plants of Doritaenopsis. Two molecular techniques, random amplified polymorphic DNA (RAPD) and methylation-sensitive amplification polymorphism (MSAP) analyses, were used to characterize the somaclones. RAPD analysis, using 100 randomly selected primers, failed to differentiate variants and normal plants, even though some primers (six out of 100 primers) exhibited 6–10 distinct banding patterns. However, MSAP analysis revealed the differences in the DNA methylation patterns in the normal and variant plants which were correlated with phenotypic variation. In all, 311, 337, 366, and 343 fragments were obtained with normal and V1, V2, and V3 variant plants, respectively; each representing recognition site cleaved by either or both of the isoshizomers were amplified using 12 combination of primers. A total of 36 (11.6%), 77 (22.9%), 73 (19.9%), and 47 (13.7%) sites were found to be methylated at cytosine in the genomes of normal and V1, V2, and V3 variant Doritaenopsis plants. This study demonstrates usefulness of MSAP to detect DNA methylation events in tissue cultured Doritaenopsis plants.  相似文献   

20.
Gene amplification is prevalent in many eukaryotes and has been found linked to various phenomena such as ontogenesis, carcinogenesis, in vitro culturing, neoplasia and drug resistance. Earlier, we reported a novel B chromosome in Plantago lagopus L., which was found to have arisen as a result of massive amplification of 5S rDNA. In addition, the chromosome is also composed of 45S rDNA and transposable elements. While the importance of gene amplification cannot be underestimated, its mechanism of origin is still unclear. Therefore, the aim of the present study was to determine whether amplification can be reactivated in the novel B chromosome. For this purpose, in vitro culture was used as stress. Three modes of tissue culture, i.e., direct, indirect and somatic embryogenesis were used for raising in vitro cultures. The variations due to genetic and epigenetic mechanisms were assessed in regenerants using molecular techniques, namely, PCR-RFLP, SSAP and MSAP. The retrotransposon-based molecular markers were applied to detect the polymorphism within transposable elements of in vitro regenerated and mother plants. We detected the variations that may be due to genetic changes either because of element recombination or activation of transposable elements which can lead to increase in the copy number. MSAP analysis revealed the differences in the DNA methylation pattern of the regenerants derived from novel chromosome bearing mother plants. Some regenerated plants were associated with increase and decrease in DNA methylation of both internal and external cytosine of the CCGG sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号