首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin-like growth factor 1 (IGF-1) has poor anabolic efficacy in cartilage in osteoarthritis (OA), partly because of its sequestration by abnormally high levels of extracellular IGF-binding proteins (IGFBPs). We studied the effect of NBI-31772, a small molecule that inhibits the binding of IGF-1 to IGFBPs, on the restoration of proteoglycan synthesis by human OA chondrocytes. IGFBPs secreted by human OA cartilage or cultured chondrocytes were analyzed by western ligand blot. The ability of NBI-31772 to displace IGF-1 from IGFBPs was measured by radiobinding assay. Anabolic responses in primary cultured chondrocytes were assessed by measuring the synthesis of proteoglycans in cetylpyridinium-chloride-precipitable fractions of cell-associated and secreted 35S-labeled macromolecules. The penetration of NBI-31772 into cartilage was measured by its ability to displace 125I-labeled IGF-1 from cartilage IGFBPs. We found that IGFBP-3 was the major IGFBP secreted by OA cartilage explants and cultured chondrocytes. NBI-31772 inhibited the binding of 125I-labeled IGF-1 to IGFBP-3 at nanomolar concentrations. It antagonized the inhibitory effect of IGFBP-3 on IGF-1-dependent proteoglycan synthesis by rabbit chondrocytes. The addition of NBI-31772 to human OA chondrocytes resulted in the restoration or potentiation of IGF-1-dependent proteoglycan synthesis, depending on the IGF-1 concentrations. However, NBI-31772 did not penetrate into cartilage explants. This study shows that a new pharmacological approach that uses a small molecule inhibiting IGF-1/IGFBP interaction could restore or potentiate proteoglycan synthesis in OA chondrocytes, thereby opening exciting possibilities for the treatment of OA and, potentially, of other joint-related diseases.  相似文献   

2.
Alterations in growth caused by neonatal malnutrition may be mediated in part by changes in insulin-like growth factor (IGF) and IGF binding protein (IGFBP) expression. Since the neonatal rat cerebellum undergoes a transient, proliferative growth phase in the first two weeks of life, this structure was used to determine whether alterations in circulating and tissue IGFs and IGFBPs may mediate effects of impaired nutrition on the developing central nervous system. Gravid rats were placed on a 4% (protein-calorie deprived, D) or 20% (control, C) protein diets one day prior to delivery and allowed to nurse their pups postpartum. Pups nursing from D mothers received a limited volume of milk and were calorically deprived. Some litters of D pups were foster fed by C mothers from day 8 to day 13 to constitute a recovery group (R). Cerebellar weight, protein, and DNA content in D pups were less than C, p<0.001. In R pups, DNA and protein returned to C levels by day 13. Between days 6 and 13, serum IGF-I levels rose from 158±18 to 210±18 ng/ml in C but remained low in D (47±6 ng/ml and 25±3 ng/ml), respectively. In R pups, serum IGF-I partially recovered during this time, and increased from 49±5 to 110±7 ng/ml. In cerebellar extracts, IGF-I levels in both C and D were lower at 13 days than at 6 days, p<0.05 and p<0.005, respectively. IGF-I levels in C were similar at day 9 and day 11 and were consistently higher than D (11.84±0.83 vs 8.56±0.92 ng/g, p<0.02 C vs D). In R, IGF-I was reduced on day 11, but was similar to C on day 13. Serum IGF-II in D was lower than C, p<0.01, and did not increase in the R group. Cerebellar IGF-II was virtually undetectable in either group. Immunoprecipitation and ligand blotting studies of serum demonstrated that circulating levels of 32–34 K IGFBPs were increased 3–4 fold in D vs C, reflecting high levels of IGFBP-1 and/or-2, while levels of 24 K IGFBP-4 were lower in D vs C. By contrast, immunoprecipitation and ligand blotting of cerebellar extracts detected IGFBP-2 and-4, but did not detect IGFBP-1. Further, tissue levels of IGFBP-2 were not increased in D vs C, and levels of IGFBP-4 also were not markedly affected by nutritional deprivation. These results suggest that alterations in tissue content and the availability of IGF-I only modestly contributed to the effects of impaired nutrition in the developing central nervous system.  相似文献   

3.
Insulin-like growth factors (IGF), IGF receptors and IGF binding proteins (IGFBPs) play an important role in cell growth and differentiation. The liver is the major source of IGF-1 and at least two IGFBPs (IGFBP-1 and IGFBP-3). IGFBPs most often serve to attenuate the effects of IGF at the receptor level and thereby limit IGF-induced cell growth and differentiation. Although changes in IGFBP expression have been described during controlled liver growth such as hepatic regeneration following partial hepatectomy, there is limited knowledge of IGFBPs gene expression in uncontrolled growth or hepatocellular carcinoma. In the present study, we employed Northern blotting techniques to document the expression of IGFBP-1, 3 and 4 in normal human livers, cirrhotic and hepatocellular carcinoma tissues. The results revealed no differences in IGFBP-1, 3 and 4 mRNA levels between normal and cirrhotic tissues. However, the expression of all three IGFBPs mRNA were significantly down regulated in hepatocellular carcinoma tissues. These findings are in keeping with IGFBPs playing an important inhibitory role in the development and/or growth of hepatocellular carcinoma in humans.  相似文献   

4.
Proteolytic modification of insulin-like growth factor binding proteins (IGFBPs) plays an important physiological role in regulating insulin-like growth factor (IGF) bioavailability. Recently, we demonstrated that matrix metalloproteinase-7 (MMP-7)/Matrilysin produced by various cancer cells catalyzes the proteolysis of IGFBP-3 in vitro and regulates IGF bioavailability, resulting in an anti-apoptotic effect against anchorage-independent culture. In the present study, we investigated whether MMP-7 contributes to proteolysis of the other five IGFBPs, IGFBP-1, IGFBP-2, IGFBP-4, IGFBP-5, and IGFBP-6, and whether this results in phosphorylation of the IGF type 1 receptor (IGF-1R). MMP-7 cleaved all six IGFBPs, resulting in IGF-mediated IGF-1R phosphorylation, which was inhibited by EDTA treatment. These results suggest that MMP-7 derived from cancer cells can regulate IGF bioavailability in the microenvironment surrounding the tumor, where various kinds of IGF/IGFBP complexes are found, thereby favoring cancer cell growth and survival during the processes of invasion and metastasis.  相似文献   

5.
Interest in the role of the insulin-like growth factor (IGF) axis in growth control and carcinogenesis has recently been increased by the finding of elevated serum insulin-like growth factor I (IGF-I) levels in association with three of the most prevalent cancers in the United States: prostate cancer, colorectal cancer, and lung cancer. IGFs serve as endocrine, autocrine, and paracrine stimulators of mitogenesis, survival, and cellular transformation. These actions are mediated through the type 1 IGF-receptor (IGF-1R), a tyrosine kinase that resembles the insulin receptor. The availability of free IGF for interaction with the IGF-1R is modulated by the insulin-like growth factor-binding proteins (IGFBPs). IGFBPs, especially IGFBP-3, also have IGF-independent effects on cell growth. IGF-independent growth inhibition by IGFBP-3 is believed to occur through IGFBP-3-specific cell surface association proteins or receptors and involves nuclear translocation. IGFBP-3-mediated apoptosis is controlled by numerous cell cycle regulators in both normal and disease processes. IGFBP activity is also regulated by IGFBP proteases, which affect the relative affinities of IGFBPs, IGFs and IGF-1R. Perturbations in each level of the IGF axis have been implicated in cancer formation and progression in various cell types.  相似文献   

6.

Background

The insulin-like growth factor (IGF) system was documented to play a predominant role in neoplasia. As lung cancer is one of the most malignant cancers, we conducted a meta-analysis in order to investigate the strength of association between circulating IGF-1 and IGFBP-3 levels and lung cancer.

Methodology/Principal Findings

A systematic literature search was conducted to identify all prospective case-control studies and case-control studies on circulating IGFs and IGFBPs levels. Six nested case-control studies (1 043 case subjects and 11 472 control participants) and eight case-control studies (401 case subjects and 343 control participants) were included in this meta-analysis. Pooled measure was calculated as the inverse variance-weighted mean of the natural logarithm of multivariate adjusted OR with 95% CIs for highest vs. lowest levels to assess the association of circulating IGF-1 and IGFBP-3 concentrations and lung cancer. Standard mean difference (SMD) was also calculated to indicate the difference of the circulating IGF-1 and IGFBP-3 concentrations between the lung cancer case group and the control group. Of the nested case-control studies, ORs for the highest vs. lowest levels of IGF-1 and IGFBP-3 were 1.047 (95% CI: [0.802,1.367], P = 0.736) and 0.960 (95%CI: [0.591,1.559], P = 0.868) respectively; and SMDs were −0.079 (95%CI:[ −0.169, 0.011], P = 0.086) and −0.097 (95%CI:[ −0.264,0.071], P = 0.258) for IGF-1 and IGFBP-3 respectively. As to the case-control studies, SMDs were 0.568 (95%CI:[ −0.035, 1.171], P = 0.065) and −0.780 (95%CI:[ −1.358, −0.201], P = 0.008) for IGF-1 and IGFBP-3 respectively.

Conclusions/Significance

Inverse association was shown between IGFBP-3 and lung cancer in the case-control studies,and the circulating level of IGFBP-3 underwent a decline during tumorogenesis and development of lung cancer, which suggested IGFBP-3 a promising candidate for the biomarker of lung cancer.  相似文献   

7.
8.
The diverse biological activities of the insulin-like growth factors (IGF-1 and IGF-2) are mediated by the IGF-1 receptor (IGF-1R). These actions are modulated by a family of six IGF-binding proteins (IGFBP-1-6; 22-31 kDa) that via high affinity binding to the IGFs (KD ∼ 300-700 pM) both protect the IGFs in the circulation and attenuate IGF action by blocking their receptor access. In recent years, IGFBPs have been implicated in a variety of cancers. However, the structural basis of their interaction with IGFs and/or other proteins is not completely understood. A critical challenge in the structural characterization of full-length IGFBPs has been the difficulty in expressing these proteins at levels suitable for NMR/X-ray crystallography analysis. Here we describe the high-yield expression of full-length recombinant human IGFBP-2 (rhIGFBP-2) in Escherichia coli. Using a single step purification protocol, rhIGFBP-2 was obtained with >95% purity and structurally characterized using NMR spectroscopy. The protein was found to exist as a monomer at the high concentrations required for structural studies and to exist in a single conformation exhibiting a unique intra-molecular disulfide-bonding pattern. The protein retained full biologic activity. This study represents the first high-yield expression of wild-type recombinant human IGFBP-2 in E. coli and first structural characterization of a full-length IGFBP.  相似文献   

9.
Although several studies have shown that an induction of insulin-like growth factor (IGF) components occurs during hyperoxia-mediated lung injury, the role of these components in tissue repair is not well known. The present study aimed to elucidate the role of IGF system components in normal tissue remodeling. We used a rat model of lung injury and remodeling by exposing rats to > 95% oxygen for 48 h and allowing them to recover in room air for up to 7 days. The mRNA expression of IGF-I, IGF-II, and IGF-1 receptor (IGF-1R) increased during injury. However, the protein levels of these components remained elevated until day 3 of the recovery and were highly abundant in alveolar type II cells. Among IGF binding proteins (IGFBPs), IGFBP-5 mRNA expression increased during injury and at all the recovery time points. IGFBP-2 and -3 mRNA were also elevated during injury phase. In an in vitro model of cell differentiation, the expression of IGF-I and IGF-II increased during trans-differentiation of alveolar epithelial type II cells into type-I like cells. The addition of anti-IGF-1R and anti-IGF-I antibodies inhibited the cell proliferation and trans-differentiation to some extent, as evident by cell morphology and the expression of type I and type II cell markers. These findings demonstrate that the IGF signaling pathway plays a critical role in proliferation and differentiation of alveolar epithelium during tissue remodeling.  相似文献   

10.
Insulin-like growth factors (IGFs) play a fundamental role in cancer development by acting in both an endocrinal and paracrinal manner, and hormone breast cancer treatments affect the IGF system by modifying circulating growth factor levels. We evaluated total IGF-1, IGF-2, IGF binding protein (IGFBP)-1 and IGFBP-3 in the blood of 34 postmenopausal advanced breast cancer patients (median age 63 years, range 41–85) treated with anastrozole, a non-steroidal structure aromatase inhibitor (NSS-AI). The plasma samples were obtained at baseline, and after 2, 4, 8 and 12 weeks of treatment. The IGFs were quantitated by means of sensitive radioimmunoassays (RIAs). IGF-1 significantly increased during anastrozole treatment (baseline versus 12 weeks, P=0.031), IGF-2 showed a trend towards an increase, and IGFBP-1 constantly but not significantly decreased; IGFBP-3 did not seem to be affected at all. The anastrozole-induced changes in IGFs and IGFBP-1 appeared to be different in the patients receiving a clinical benefit from those observed in non-responders. We have previously shown that letrozole (a different type of NSS-AI) modifies blood IGF-1 levels, and the results of this study of the biological effects of anastrozole on the components of the IGF system confirm our previous observations.  相似文献   

11.

Background

Insulin-like growth factor binding proteins (IGFBPs) are six related secreted proteins that share IGF-dependent and -independent functions. If the former functions begin to be well described, the latter are somewhat more difficult to investigate and to characterize. At the cellular level, IGFBPs were shown to modulate numerous processes including cell growth, differentiation and apoptosis. However, the molecular mechanisms implicated remain largely unknown. We previously demonstrated that IGFBP-3, but not IGFBP-1 or IGFBP-5, increase intracellular calcium concentration in MCF-7 cells (Ricort J-M et al. (2002) FEBS lett 527: 293–297).

Methodology/Principal Findings

We perform a global analysis in which we studied, by two different approaches, the binding of each IGFBP isoform (i.e., IGFBP-1 to -6) to the surface of two different cellular models, MCF-7 breast adenocarcinoma cells and C2 myoblast proliferative cells, as well as the IGFBP-induced increase of intracellular calcium concentration. Using both confocal fluorescence microscopy and flow cytometry analysis, we showed that all IGFBPs bind to MCF-7 cell surface. By contrast, only four IGFBPs can bind to C2 cell surface since neither IGFBP-2 nor IGFBP-4 were detected. Among the six IGFBPs tested, only IGFBP-1 did not increased intracellular calcium concentration whatever the cellular model studied. By contrast, IGFBP-2, -3, -4 and -6, in MCF-7 cells, and IGFBP-3, -5 and -6, in C2 proliferative cells, induce a rapid and transient increase in intracellular free calcium concentration. Moreover, IGFBP-2 and -3 (in MCF-7 cells) and IGFBP-5 (in C2 cells) increase intracellular free calcium concentration by a pertussis toxin sensitive signaling pathway.

Conclusions

Our results demonstrate that IGFBPs are able to bind to cell surface and increase intracellular calcium concentration. By characterizing the IGFBPs-induced cell responses and intracellular couplings, we highlight the cellular specificity and complexity of the IGF-independent actions of these IGF binding proteins.  相似文献   

12.
Zinc (Zn(2+)) is a multifunctional micronutrient. The list of functions for this micronutrient expanded with the recent discovery that Zn(2+) retains insulin-like growth factors binding proteins (IGFBPs) on the surface of cultured cells, lowers the affinity of cell-associated IGFBPs, and increases the affinity of the cell surface insulin-like growth factor (IGF)-type 1 receptor (IGF-1R). However, currently there is no information concerning the effect of Zn(2+) on soluble IGFBPs. In the current study, the soluble IGFBP-5 secreted by BC(3)H-1 cells is shown to bind approximately 50% more [(125)I]-IGF-II than [(125)I]-IGF-I at pH 7.4. Zn(2+) is shown to depress the binding of both IGF-I and IGF-II to soluble secreted IGFBP-5; [(125)I]-IGF-I binding is affected more so than [(125)I]-IGF-II binding. Zn(2+) acts by lowering the affinity (K(a)) of IGFBP-5 for the IGFs. Scatchard plots are non-linear indicating the presence of high and low affinity binding sites; Zn(2+) affects only binding to the high affinity site. In contrast, Zn(2+) increases the affinity by which either [(125)I]-IGF-I or [(125)I]-R(3)-IGF-I binds to the IGF-1R, but depresses [(125)I]-IGF-II binding to the IGF-type 2 receptor (IGF-2R) on BC(3)H-1 cells. By depressing the association of the IGFs with soluble IGFBPs, Zn(2+) is shown to repartition either [(125)I]-IGF-I or [(125)I]-IGF-II from soluble IGFBP-5 onto cell surface IGF receptors. Zn(2+) was active at physiological doses depressing IGF binding to IGFBP-5 and the IGF-2R at 15-20 microM. Hence, a novel mechanism is further characterized by which the trace micronutrient Zn(2+) could regulate IGF activity.  相似文献   

13.
Benign prostatic hyperplasia (BPH) represents a pattern of non-malignant growth of prostatic fibromuscular stroma. Metabolic disturbances such us pre-diabetes and metabolic syndrome may have a role in BPH pathophysiology. A potential explanation for the above relationship involves the insulin-like growth factor (IGF) axis as well as IGF binding proteins, (IGFBPs) of which the most abundant form is IGFBP-3. Therefore, the aim of the present study was to investigate the association between intra-prostatic levels of IGF-1, IGF-2 as well as to evaluate the role of locally expressed IGFBP-3 in BPH development in pre-diabetes. A total of 49 patients admitted to the Urology department of a tertiary urban Greek hospital, for transurethral prostate resection, or prostatectomy and with pre-diabetes [impaired fasting glucose (IFG) and impaired glucose tolerance (IGT) or both] were finally included. The majority of the sample consisted of subjects with IGT (51.0%), followed by IFG and IGT (32.7%) and isolated IFG (16.3%). For all participants a clinical examination was performed and blood samples were collected. In addition, total prostate (TP) volume or transitional zone (TZ) volume were estimated by transrectal ultrasonography. The results of the multivariate analysis regarding TP volume showed that higher PSA (p<0.001), larger waist circumference (p=0.007) and higher IGFBP-3 expression levels (p<0.001) independently predicted higher TP volume. The results regarding the volume of the TZ showed that higher PSA (p<0.001), larger waist circumference (p<0.001) and higher IGFBP-3 expression levels (p=0.024) were independently associated with higher TZ volume. Our findings show that intra-prostatic levels of IGFBP-3, PSA and waist circumference, but not overall obesity, are positively associated with prostate volume. IGFBP-3 seems to be a multifunctional protein, which can potentiate or inhibit IGF activity.  相似文献   

14.
Insulin-like growth factor-I (IGF-I) is an important stimulator of collagen biosynthesis and prolidase activity in connective tissue cells. The disturbances in skin collagen metabolism (reflected by significant decrease in skin collagen content, collagen biosynthesis and prolidase activity) in fasted rats were accompanied by decrease in serum IGF-I level. Fasted rat serum was found to contain about 58% of IGF-I (101.6 +/- 15.4 ng/ml) as compared to control rat serum (175.7 +/- 19.8 ng/ml), while the skin of control and fasted rats contained similar concentrations of IGF-I (about 77 ng/g tissue). The insulin-like growth factor binding proteins (IGFBPs) of sera and tissue extracts (known to regulate IGF-I activity) were analysed by ligand blotting. In the serum of control rats one IGFBP band of about 46 kDa (corresponding to the acid-dissociated IGFBP-3) was detected. In the serum of fasted rats the 46 kDa IGFBP was not observed, however, an other IGFBP of about 30 kDa (corresponding to low molecular weight IGFBPs, e.g. IGFBP-1 or IGFBP-2) was found. The intensity of IGF-I binding to the 30 kDa IGFBP was much higher than that of IGFBP-3, found in control rat serum. Control and fasted rat skin contained similar IGFBPs, however their IGF-I binding abilities were much lower, compared to their serum counterparts. It was found that 46 kDa and 30 kDa proteins, observed in ligand blotting represent IGFBP-3 and IGFBP-1 or IGFBP-2. respectively as demonstrated by western immunoblot analysis. An increase in IGF-binding to 30 kDa IGFBP-1 and/or IGFBP-2 (known as an inhibitors of IGF-dependent functions) in the skin of fasted rats may explain the mechanism of reduced collagen biosynthesis and deposition in tissues during fasting.  相似文献   

15.
BACKGROUND: There is growing evidence that IGF-1 and binding proteins may be involved in prostate cancer promotion and progression. PATIENTS AND METHODS: IGF-1 and binding proteins (IGFBP-1 and 3) serum levels were measured at baseline and after 3 and 6 months of treatment in a selected group of patients with prostate cancer who were randomly assigned to treatment with bicalutamide, bicalutamide plus anastrozole or bicalutamide plus tamoxifen in a comparative study investigating the role of pharmacological medication in the development of bicalutamide-induced gynecomastia. RESULTS: Bicalutamide monotherapy does not appear to alter the IGF-1/IGFBP system. In fact, the increase in IGF-1 levels induced by this treatment was paralleled by comparable increases in binding protein (IGFBP-3). No major changes from baseline up to month 6 either in IGF-1 or in IGFBP-1 and 3 were observed in the bicalutamide plus anastrozole arm. The addition of tamoxifen to bicalutamide produced a sharp decrease in IGF-1 levels (p<0.001) coupled with an increase in both IGFBP-1 (p=0.001) and, to a lesser extent, IGFBP-3 (p=0.5). CONCLUSIONS: The concurrent administration of tamoxifen and bicalutamide reduces the synthesis and bioavailability of IGF-1. Moreover, increased binding protein levels might exert antiproliferative and proapoptotic effects on prostate cancer cells, independently of the IGF-1/IGF receptor-mediated survival system. Both effects might have a synergistic inhibitory influence on prostate cancer growth.  相似文献   

16.
The binding kinetics of human insulin-like growth factor binding protein (IGFBP) 1-6 for recombinant human insulin-like growth factor (IGF) I and II were measured and compared in the present study using surface plasmon resonance biosensor technique. Different concentrations of IGFBPs (5-100 nM) were allowed to interact with the immobilized IGF-I or IGF-II on sensor chip surface. Both des(1-3)IGF-I and insulin are known to bind weakly to the IGFBPs and therefore are used as negative controls for the binding experiments. The resultant sensorgrams were analyzed by using simple 1:1 binding model to derive both the association rate (k(a)) and dissociation rate (k(d)) constants for IGFBP-IGF interactions. The k(a) values of IGFBPs are in the range of 1x10(4) to 9x10(5) M(-1) s(-1) for IGF-I and 7x10(3) to 1.7x10(6) M(-1) s(-1) for IGF-II, respectively. The orders of k(a) for both IGF-I and IGF-II are IGFBP-3>IGFBP-5>IGFBP-6>IGFBP-4>IGFBP-2>++ +IGFBP-1. The k(d) values of IGFBPs are in the range of 1.5x10(-5) to 2x10(-4) s(-1) for IGF-I and 3.6x10(-5) to 3.7x10(-4) s(-1) for IGF-II, respectively. The order of k(d) for IGF-I is IGFBP-6>IGFBP-5>IGFBP-4>IGFBP-3>IGFBP-2>++ +IGFBP-1 and that for IGF-II is IGFBP-5>IGFBP-6>IGFBP-2>IGFBP-4>IGFBP-3>++ +IGFBP-1, respectively. The equilibrium affinity constants (K(A)) were calculated based on the ratio of k(a)/k(d) and were more precise than the published literature values based on competitive radioligand binding assays. The systematic study enables a direct comparison on the IGF-binding properties among the various IGFBPs, and the kinetic data provide additional information to delineate the physiological role of different IGFBPs in vivo.  相似文献   

17.
A segregating F(2) pedigree based on two mouse lines (DU6i and DBA/2) with extremely different growth characteristics was generated to search for loci affecting serum levels of insulin-like growth factor (IGF) binding proteins (IGFBPs) and to estimate their effects on growth and body composition. DU6i is characterized by high body mass and obesity associated with hyperinsulinemia, hyperleptinemia, and elevated serum IGF-I concentrations. Furthermore, significantly elevated serum levels of IGFBP-2, IGFBP-3, and IGFBP-4 were found in DU6i vs. DBA/2 mice. Linkage analysis identified loci with major effects on the serum level of IGFBP-3 on Chromosome 5 at 58 cM (Igfbp3q1; F = 9.9) and on Chromosome 10 at 46 cM (Igfbp3q2; F = 33.8). A locus significantly influencing serum IGFBP-2 levels in males was found on Chromosome 7. Additional linkage was detected in males and females for IGFBP-2 on Chromosomes 8, 11, 14, 17, and X, and for IGFBP-4 on Chromosome 4. Additional loci affecting IGFBPs acted in a sex-specific manner. The identified loci coincide in part with chromosomal regions controlling growth and obesity. Thus, multiple genes or pleiotropic gene effects may be assumed for these chromosomal regions. The identification of quantitative trait loci for IGFBPs as subcomponents of growth regulation and differentiation will further improve the understanding of complex trait regulation.  相似文献   

18.
Insulin-like growth factor-1, IGF-1, is believed to be an important anabolic modulator of cartilage metabolism whose action is mediated by high affinity cell surface receptors and bioactivity and bioavailability regulated, in part, by IGF-1 binding proteins (IGFBPs). Prostaglandin E2 (PGE2) stimulates collagen and proteoglycan synthesis in cartilage via an autocrine feedback loop involving IGF-1. We determined whether the eicosanoid could regulate IGFBP-4, a major form expressed by chondrocytes and, as such, act as a modifier of IGF-1 action at another level. Using human articular chondrocytes in high-density primary culture, Western and Western ligand blotting to measure secreted IGFBP-4 protein, and Northern analysis to monitor IGFBP-4 mRNA levels, we demonstrated that PGE2 provoked a 2.7 ± 0.3- and 3.8 ± 0.5- (n = 3) fold increase in IGFBP-4 mRNA and protein, respectively. This effect was reversed by the Ca++ channel blocker, verapamil, and the Ca++/calmodulin inhibitor, W-7. The Ca++ ionophore, ionomycin, mimicked the effects of PGE2. The phorbol ester, PMA, which activated phospholipid-dependent protein kinase C (PKC) in chondrocytes, had no effect on IGFBP-4 production. Cyclic AMP mimetics and PKA activators, IBMX, and Sp-cAMP, inhibited the expression of the binding protein as did the PGE2 secretagogue, interleukin-1β (IL-β). The inhibitory effect of the latter cytokine was mediated by a erbstatin/genistein (tyrosine) sensitive kinase. Dexamethasone, an inhibitor of cyclooxygenase (COX-2) expression and PGE2 synthesis, down-regulated control, constitute levels of IGFBP-4 mRNA and protein, eliminating the previously demonstrated possibility of cross-talk between glucocorticoid receptor (GR) and PGE2-receptor signalling pathways. The results suggest that extracellular signals control IGFBP-4 production by a number of different transducing networks with changes in Ca++ and calmodulin activity exerting a strong positive influence, possibly maintaining the constitutivity of IGFBP-4 synthesis under basal conditions. PGE2 activation of the IGF-1/IGFBP axis may play a pivotal role in the metabolism of cartilage and possibly connective tissues in general. Eicosanoid biosynthesis may be a rate-limiting step in cartilage repair processes. J. Cell. Biochem. 65:408–419. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Insulin-like growth factor binding proteins (IGFBPs) in pregnant baboon serum and tissue culture media obtained following explant culture of uteri from pregnant baboons were characterized by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (2D SDS-PAGE) followed by Western ligand blot analysis using 125I-labeled IGF-I. IGFBP-1 (Mr 30,000; pI 4-4.2), IGFBP-2 (Mr 34,000, pI 5.7-6.2), IGFBP-3 (doublet Mr 42-48,000; pI 6.2-6.8), and IGFBP-4 (Mr 24,000; pI 5.7-6.0) were clearly separated from one another. The authenticity of IGFBP-1, -2, and -3 was verified by immunoprecipitation using polyclonal antibodies followed by ligand blotting. Specificity of 125I-labeled IGF-I binding to IGFBPs was also determined by competitive binding studies using unlabeled IGF-I and -II. This technique allows for the identification of IGFBPs in complex biological fluids on the basis of their characteristic Mr and pI with or without the availability of specific antibodies and can be done rapidly using the mini 2D SDS-PAGE systems.  相似文献   

20.
Cultured hepatic stellate cells (HSCs), the cell type primarily involved in the progression of liver fibrosis, secrete insulin-like growth factor-I (IGF-I) and IGF binding protein (IGFBP) activity. IGF-I exerts a mitogenic effect on HSCs, thus potentially contributing to the fibrogenic process in an autocrine fashion. However, IGF-I action is modulated by the presence of specific IGFBPs that may inhibit and/or enhance its biologic effects. Therefore, we examined IGFBP-1 through IGFBP-6 mRNA and protein expression in HSCs isolated from human liver and activated in culture. Regulation of IGFBPs in response to IGF-I and other polypeptide growth factors involved in the hepatic fibrogenic process was also assessed. RNase protection assays and ligand blot analysis demonstrated that HSCs express IGFBP-2 through IGFBP-6 mRNAs and release detectable levels of IGFBP-2 through IGFBP-5. Because IGF-I, platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-β (TGF-β) stimulate HSC proliferation and/or matrix production, we tested their effect on IGFBPs released by HSCs. IGF-I induced IGFBP-3 and IGFBP-5 proteins in a time-dependent manner without an increase in the corresponding mRNAs. IGFBP-4 protein levels decreased in response to IGF-I. TGF-β stimulated IGFBP-3 mRNA and protein but decreased IGFBP-5 mRNA and protein. In contrast, PDGF-BB failed to regulate IGFBPs compared with controls. Recombinant human IGFBP-3 (rhIGFBP-3) was then tested for its effect on IGF-I-induced mitogenesis in HSCs. rhIGFBP-3 inhibited IGF-I-stimulated DNA synthesis in a dose-dependent manner, with a peak effect observed at 25 nM IGFBP-3. Because TGF-β is highly expressed in cirrhotic liver tissue, we determined whether IGFBP-3 mRNA expression is increased in liver biopsies obtained from patients with an active fibroproliferative response due to viral-induced chronic active hepatitis. In the majority of these samples, IGFBP-3 mRNA was increased compared with normal controls. These findings indicate that human HSCs, in their activated phenotype, constitutively produce IGFBPs. IGF-I and TGF-β differentially regulate IGFBP-3, IGFBP-4, and IGFBP-5 expression, which, in turn, may modulate the in vitro and in vivo action of IGF-I. J. Cell. Physiol. 174:240–250, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号