首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inonotus obliquus is a mushroom commonly known as Chaga that is widely used in folk medicine in Siberia, North America, and North Europe. Here, we evaluated the antimutagenic and antioxidant capacities of subfractions of Inonotus obliquus extract. The ethyl acetate extract was separated by vacuum chromatography into three fractions, and the fraction bearing the highest antimutagenic activity was subsequently separated into four fractions by reversed phase (ODS-C18) column chromatography. The most antimutagenic fraction was then separated into two subfractions (subfractions 1 and 2) by normal phase silica gel column chromatography. Ames test analysis revealed that the subfractions were not mutagenic. At 50 μg/plate, subfractions 1 and 2 strongly inhibited the mutagenesis induced in Salmonella typhimurium strain TA100 by the directly acting mutagen MNNG (0.4 μg/plate) by 80.0% and 77.3%, respectively. They also inhibited 0.15 μg/plate 4NQO-induced mutagenesis in TA98 and TA100 by 52.6-62.0%. The mutagenesis in TA98 induced by the indirectly acting mutagens Trp-P-1 (0.15 μg/plate) and B(α)P (10 μg/plate) was reduced by 47.0-68.2% by the subfractions, while the mutagenesis in TA100 by Trp-P-1 and B(α)P was reduced by 70.5-87.2%. Subfraction 1 was more inhibitory than subfraction 2 with regard to the mutagenic effects of 4NQO, Trp-P-1, and B(α)P. Subfractions 1 and 2 also had a strong antioxidant activity against DPPH radicals and were identified by MS, 1H NMR and 13C NMR analyses as 3β-hydroxy-lanosta-8, 24-dien-21-al and inotodiol, respectively. Thus, we show that the 3beta-hydroxy-lanosta-8, 24-dien-21-al and inotodiol components of Inonotus obliquus bear antimutagenic and antioxidative activities.  相似文献   

2.
Introduction – The sclerotia of Inonotus obliquus (Chaga) are effective therapeutic agents to treat several human malignant tumours and other diseases without unacceptable toxic side‐effects. Objective – To investigate solvent effects on metabolic profiles and antioxidant activities of extracts of Chaga. Methodology – Chaga was extracted by petroleum ether, chloroform, ethyl acetate, acetone, ethanol and water. Solvent effects on metabolites in the extracts were assayed by NMR‐based metabolomic analysis. Antioxidant activities were indicated as capacities for scavenging superoxide anion, DPPH and hydroxyl radicals. Results – Petroleum ether and chloroform extracts contained primarily lanostane‐type triterpenoids (LT), whereas the extracts of ethyl acetate, acetone and ethanol were characterised by the predominant presence of hispidin analogues and LT, and water extracts by polysaccharides and phenolic compounds. The ethyl acetate, acetone, ethanol and water extracts revealed remarkable potential for scavenging the tested radicals, while those of petroleum ether and chloroform did not. Polyphenols are the major contributors for quenching the tested free radicals, while in LT only compounds 16 , 17 and 22 participated in scavenging hydroxyl radicals. Conclusion – Polyphenols in Chaga are the principles for quenching free radicals while polysaccharides and a few LT compounds contribute partially in scavenging DPPH and hydroxyl radicals, respectively. NMR‐based metabolomic analysis is a useful method by which to correlate 1H‐NMR spectra of Chaga extracts with their antioxidant activities, and this allows the prediction of potentials for scavenging free radicals by 1H‐NMR spectroscopy. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Intercellular gap-junctional communication was measured using metabolic co-operation in co-cultures of argininosuccinate synthetase-deficient and argininosuccinate lyase-deficient human fibroblasts. 18-alpha-glycyrrhetinic acid (AGA) was found to inhibit communication by more than 95% at concentrations as low as 2 microM. Concentrations up to 100 microM were not cytotoxic over a period of 2 hours. Communication inhibition was of rapid onset and was readily reversible. Communication remained continuously yet reversibly blocked in cells cultured in the presence of AGA for 20 days. The related compounds 18-beta-glycyrrhetinic acid and carbenoxolone also caused communication inhibition. The effect is probably not mediated via mineralocorticoid or glucocorticoid receptors since aldosterone and glucocorticoids had no effect on communication. AGA thus has properties of a useful inhibitor in the study of intercellular junctional communication.  相似文献   

4.
Gap junctions serve as intercellular conduits that allow for the direct transfer of small molecular weight molecules (up to 1 kDa) including ions involved in cellular excitability, metabolic precursors, and second messengers. The observation of extensive intercellular coupling and large numbers of gap junctions in the central nervous system (CNS) suggests a syncytium-like organization of glial compartments. Inflammation is a hallmark of various CNS diseases such as bacterial and viral infections, multiple sclerosis, Alzheimer's disease, and cerebral ischemia. A general consequence of brain inflammation is reactive gliosis typified by astrocyte hypertrophy and proliferation of astrocytes and microglia. Changes in gap junction intercellular communication as reflected by alterations in dye coupling and connexin expression have been associated with numerous CNS inflammatory diseases, which may have dramatic implications on the survival of neuronal and glial populations in the context of neuroinflammation. A review of the effects of inflammatory products on glia-glia gap junctional communication and glial glutamate release is presented. In addition, the hypothesis of a "syncytial switch" based upon differential regulation of gap junction expression in astrocytes and microglia during normal CNS homeostasis and neuroinflammation is proposed.  相似文献   

5.
Involvement of gap junctional intercellular communication (GJIC) in bystander responses of confluent human fibroblasts irradiated with a carbon-ion beam was investigated. It was found that the lower the radiation dose, the higher the yield of radiation-induced micronuclei per nuclear traversal, suggesting the existence of bystander effects. This low-dose sensitivity was increased when GJIC was enhanced by treating cells with 8-Br-cAMP, but it was partly reduced by treating cells with DMSO, an effective scavenger of reactive oxygen species (ROS). Moreover, no low-dose sensitivity was observed when cells were treated with 100 micro M lindane, an inhibitor of GJIC. The survival of irradiated cells was increased by DMSO but was not influenced significantly by cAMP or lindane. On the other hand, G(1)-phase arrest was detected in the irradiated cells, and it was enhanced by cAMP. In contrast, this arrest was reduced or almost eliminated by DMSO or lindane, respectively, even when cells were irradiated with such a high dose that each cell received five nuclear traversals on average. Thus the bystander responses occurred after both low-dose and relatively high-dose irradiation. Our results indicated that both GJIC and ROS contributed to the radiation-induced bystander effect, but gap junctional channels might play an essential role by modulating the release of radiation-induced signaling factors.  相似文献   

6.
《The Journal of cell biology》1994,127(6):1895-1905
The effect of 12-O-tetradeconylphorbol-13-acetate (TPA) on gap junction assembly between Novikoff hepatoma cells was examined. Cells were dissociated with EDTA to single cells and then reaggregated to form new junctions. When TPA (25 nM) was added to the cells at the onset of the 60-min reaggregation, dye transfer was detected at only 0.6% of the cell-cell interfaces compared to 72% for the untreated control and 74% for 4-alpha TPA, an inactive isomer of TPA. Freeze-fracture electron microscopy of reaggregated control cells showed interfaces containing an average of more than 600 aggregated intramembranous gap junction particles, while TPA-treated cells had no gap junctions. However, Lucifer yellow dye transfer between nondissociated cells via gap junctions was unaffected by 60 min of TPA treatment. Therefore, TPA dramatically inhibited gap junction assembly but did not alter channel gating nor enhance disassembly of preexisting gap junction structures. Short term TPA treatment (< 30 min) increased phosphorylation of the gap junction protein molecular weight of 43,000 (Cx43), but did not change the cellular level of Cx43. Cell surface biotinylation experiments suggested that TPA did not substantially reduce the plasma membrane concentration of Cx43. Therefore, the simple presence of Cx43 in the plasma membrane is not sufficient for gap junction assembly, and protein kinase C probably exerts an effect on assembly of gap junctions at the plasma membrane level.  相似文献   

7.
Gap junctional intercellular communication (GJIC) is recognized as playing an important role in normal cell proliferation and development. Chemically induced alteration of GJIC has been proposed to be associated with abnormal cellular growth and/or tumor promotion. Several in vitro assays are currently used to determine the effects of chemicals on GJIC between cultured mammalian cells. One of these assays, the scrape-loading dye transfer (SLIDT) technique, is based on monitoring the transfer of the fluorescent dye Lucifer yellow from one cell into adjacent cells via functional gap junctions. The objective of our study was to evaluate and compare various approaches for quantifying results obtained with the SL/DT technique. Confluent cultures of either WB rat liver epithelial cells or LC-540 rat leydig cells were exposed to the animal tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA), solvent (0.1% ethanol), or culture medium for one hour at 37° C prior to analysis of GJIC. Inhibition of dye transfer was clearly evident following TPA exposure. Quantification of this dye transfer was assessed via four approaches: manually counting the number of labeled cells; measuring the distance of dye travel from the scrape line; quantifying the amount of cellular dye uptake; and determining the distribution of dye away from the scrape line. Our results suggest that while the SL/DT technique can be effectively used as a tool to determine the qualitative presence or absence of GJIC, its use in quantifying changes in GJIC following chemical exposure is limited. Since concentration-dependent responses are critical in chemical testing, application of the SLIDT method should be restricted to a screening assay for qualitatively assessing the presence or absence of GJIC. Another assay (e.g., electrical coupling, microinjection, metabolic cooperation, radioactive metabolite transfer, or fluorescence redistribution after photobleaching) should be considered to quantify changes in GJIC and construct chemical concentration-response curves.Abbreviations FBS, fetal bovine serum - GJIC, gap junctional intercellular communication - HBSS, Hank's balanced saline solution - SL/DT, scrape-loading/dye transfer - TPA, 12-O-tetradecanoylphorbol-13-acetate.  相似文献   

8.
To explore whether the extremely low frequency (ELF) electromagnetic fields (EMFs) may act as cancer promoters or be synergistic with 12-O-tetradecanoylphorbol-13-acetate (TPA) in cancer promotion, an experiment was conducted on the effects of 50 Hz magnetic fields (MFs) on gap junctional intercellular communication (GJIC) of Chinese hamster lung (CHL) cells. Lucifer dye was loaded into CHL cells by iontophoretic injection, and the number of dye-coupled cells (DCC) 5 min after the injection was adopted as the index of GJIC. The effects of TPA at different concentrations and magnetic fields at different intensities, combined with 5 ng/ml TPA, were studied. The results showed that the suppression of TPA on GJIC was dependent on TPA concentration; the threshold concentration of TPA for CHL cells was between 1 and 5 ng/ml. After exposure to 0.8 mT magnetic field for 24 h, the number of DCC decreased to 6.08 +/- 1.59, whereas the number of DCC in the control group was 9.84 +/- 2.27 (P < .05). When the cells were exposed at 0.2, 0.4, and 0.8 mT for 24 h, combined with 5 ng/ml TPA treatment during the last 1 h, the number of DCC decreased to 5.52 +/- 1.53, 5.00 +/- 1.22, and 4.00 +/- 1.29, respectively, which were significantly lower than the values for the group treated with 5 ng/ml TPA alone (6.38 +/- 1.39). It is suggested that certain intensities of 50 Hz magnetic field might act as cancer promoters, be additive with other promoters in cancer promotion, or both.  相似文献   

9.
Rats chronically exposed to acrylonitrile (ACN) have shown a dose-dependent increase in the incidence of astrocytomas in the brain. The mechanism(s) by which ACN induces cancer in rodents has not been established. ACN does not appear to be directly genotoxic in the brain and thus a nongenotoxic mode of action has been proposed. Inhibition of gap junctional intercellular communication (GJIC) has been shown to be a property of many nongenotoxic carcinogens. The present study examined the effects of ACN on GJIC in a rat astrocyte transformed cell line, DI TNC1 cells (a target cell for ACN carcinogenicity) and primary cultured hepatocytes (a nontarget cell for ACN carcinogenicity). ACN inhibited GJIC in rat astrocytes in a dose-dependent manner. Inhibition of GJIC was observed following 2 h treatment with 0.10 mmol/L and 1.00 mmol/L ACN. However, in primary cultured hepatocytes, ACN exposed did not result in inhibition of GJIC even after 48 h of continued treatment. In the astrocytes, GJIC inhibition plateaued after 4 h of treatment and remained blocked throughout the entire experimental period examined. Inhibition of GJIC in DI TNC1 cells was reversed by removal of ACN from the culture medium after 4 or 24 h of treatment. Cotreatment of astrocytes with vitamin E reduced the effect of ACN-induced inhibition of GJIC. Similarly, inhibition of GJIC was prevented by treatment with 2-oxothiazolidine-4-carboxylic acid (OTC), a precursor of glutathione synthesis. Decreasing cellular glutathione by treatment with buthionine sulfoxamine alone (without ACN) did not affect GJIC in astrocytes. Collectively, these results demonstrate that treatment with ACN caused a selective inhibition of GJIC in rat DI TNC1 astrocytes (the target cell type), but not in rat hepatocytes (a nontarget tissue). Inhibition of GJIC in astrocytes was reversed by treatment with antioxidants and suggests a potential role for oxidative stress in ACN-induced carcinogenesis.  相似文献   

10.
The phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), is a potent inhibitor of gap junctional intercellular communication (GJIC). This inhibition requires activation of protein kinase C (PKC), but the events downstream of this kinase are not known. Since PKC can activate extracellular signal regulated kinases (ERKs) and these also downregulate GJIC, we hypothesized that the inhibition of GJIC by TPA involved ERKs. TPA treatment (10 ng/ml for 30 min) of WB-F344 rat liver epithelial cells strongly activated p42 and p44 ERK-1 and -2, blocked gap junction-mediated fluorescent dye-coupling, and induced connexin43 hyperphosphorylation and gap junction internalization. These effects were completely prevented by inhibitors of PKC (bis-indolylmaleimide I; 2 microM) and ERK activation (U-0126; 10 microM). These data suggest that ERKs are activated by PKC in response to TPA treatment and are downstream mediators of the gap junction effects of the phorbol ester.  相似文献   

11.
The effects of connexin phosphorylation on gap junctional communication   总被引:13,自引:0,他引:13  
Gap junctions are specialized membrane domains composed of collections of channels that directly connect neighboring cells providing for the cell-to-cell diffusion of small molecules, including ions, amino acids, nucleotides, and second messengers. Vertebrate gap junctions are composed of proteins encoded by the "connexin" gene family. In most cases examined, connexins are modified post-translationally by phosphorylation. Phosphorylation has been implicated in the regulation of gap junctional communication at several stages of the connexin "lifecycle", such as the trafficking, assembly/disassembly, degradation, as well as, the gating of gap junction channels. Since connexin43 (Cx43) is widely expressed in tissues and cell lines, we understand the most about how it is regulated, and thus, connexin43 phosphorylation is a major focus of this review. Recent reports utilizing new methodologies combined with the latest genome information have shown that activation of several kinases including protein kinase A, protein kinase C, p34(cdc2)/cyclin B kinase, casein kinase 1, mitogen-activated protein (MAP) kinase and pp60(src) kinase can lead to phosphorylation at 12 of the 21 serine and two of the six tyrosine residues in the C-terminal region of connexin43. In several cases, use of site-directed mutants of these sites have shown that these specific phosphorylation events can be linked to changes in gap junctional communication.  相似文献   

12.
Effects of in vivo exposure with fenvalerate, esfenvalerate andDDT on hepatic gap junctional intercellular communication (GJIC) in Sprague-Dawley (SD) rats were examined by in vivolin vitro dye-transfer assay and by immunohistochemical staining of connexin 32 (C×32, major liver gap junction protein). Fenvalerate (75 mg/kg/day), esfenvalerate (25 mg/kg/day), DDT (50 mg/kg/day) and corn oil (vehicle control, 5mllkglday) were administered orally once a day. Animals were killed at weeks 1, 2, 4 and 6 after starting the experiment. In the fenvalerate- and esfenvalerate-groups, no compound-related changes in GJIC and C×32 expression were observed. On the contrary, in the DDT-group, average sizes of the dye spread after injection of Lucifer Yellow decreased at weeks 1, 2 and 4, and the area per GJ spot shown by C×32-immunohistochemical staining decreased at weeks 4 and 6. It is concluded that neither fenvalerate nor esfenvalerate inhibits hepatic GJIC with in vivo exposure.  相似文献   

13.
Gap junctional intercellular communication (GJIC) is an important function of metazoan cells and is believed to have beneficial effects in anti-tumor therapy. In this study, we found that, when neoplastic human salivary gland (HSG) cells were irradiated with a 100 keV/microm carbon-ion beam, micronuclei, G(2)/M-phase arrest, and cell killing were induced and that their induction increased with dose. Treatment of confluent HSG cells with 8-Br-cAMP increased GJIC between cells. After release from this treatment, the cell cycle progress and the formation of binucleated cells were still similar to those of untreated cells. However, radiation-induced cellular damage, including micronucleus (MN) formation and G(2)/M-phase arrest of that cAMP-treated population, was less than that of the untreated population and that the surviving fraction was slightly enhanced by cAMP treatment, suggesting that increased GJIC protects HSG cells from lethal radiation damage. Moreover, when confluent HSG cells were treated with 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO), a scavenger of nitric oxide (NO) free radical, MN induction and cell killing in the irradiated population were increased. Our results indicate that NO may be involved in GJIC-mediated radioprotection of HSG cells, which may have implications for radiotherapy.  相似文献   

14.
Additional extraction of biologically active compounds from a chaga shred has been carried out after completion of the aqueous extraction. The extraction was carried out using ethanol. We have shown that the antioxidant activity of the ethanolic extracts and their components is higher than that of the aqueous extracts.  相似文献   

15.
A new reporter-based assay for the evaluation of gap junctional intercellular communication (GJIC) is presented. This assay was applied to the study of endogenous GJIC as well as to the evaluation of cell-to-cell communication exogenously induced in non-coupling cells by transfection with connexin 32. The results obtained with 18--glycyrrhetinic acid indicate that this assay system can be used to monitor the GJIC induced by transport of cAMP induced by activation of the dopamine 1 receptor cascade.  相似文献   

16.
Innumerable toxic substances present in the environment inhibit gap junctions, intercellular membrane channels that play fundamental roles in coordinated function of cells and tissues. Included are persistent organochlorine compounds, which pose health risks to humans and animals owing to their widespread use, bioaccumulation, and ability to inhibit gap junction channel-mediated intercellular communication in liver, lung, skin, heart, and brain cells. In this study, the organochlorine xenobiotics dieldrin and endosulfan, at micromolar concentrations, were found to inhibit gap junction-mediated intercellular communication and induce hypophosphorylation of connexin 43 in cultured rat astrocytes, the predominant cell type in the brain coupled through gap junctions. This inhibition of gap junctional communication was substantially reduced by preincubation with chaetoglobosin K (ChK), a bioactive natural produce previously shown to have ras tumor suppressor activity. Chaetoglobosin K also prevented dieldrin and endosulfan-induced hypophosphorylation of connexin 43 and prevented dieldrin-induced connexin 43 plaque dissolution in both astrocytes and cultured liver epithelial cells. The results suggest that stabilization of the native, phosphorylated form of connexin 43 by ChK may contribute to its ability to prevent organochlorine-induced inhibition of gap junction-mediated communication and dissolution of gap junction plaques within the plasma membrane. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Gap junction channels are made of a family proteins called connexins. The best-studied type of connexin, Connexin43 (Cx43), is phosphorylated at several sites in its C-terminus. The tumor-promoting phorbol ester TPA strongly inhibits Cx43 gap junction channels. In this study we have investigated mechanisms involved in TPA-induced phosphorylation of Cx43 and inhibition of gap junction channels. The data show that TPA-induced inhibition of gap junction intercellular communication (GJIC) is dependent on both PKC and the MAP kinase pathway. The data suggest that PKC-induced activation of MAP kinase partly involves Src-independent trans-activation of the EGF receptor, and that TPA-induced shift in SDS-PAGE gel mobility of Cx43 is caused by MAP kinase phosphorylation, whereas phosphorylation of S368 by PKC does not alter gel migration of Cx43. We also show that TPA, in addition to phosphorylation of S368, also induces phosphorylation of S255 and S262, in a MAP kinase-dependent manner. The data add to our understanding of the molecular mechanisms involved in the interplay between signaling pathways in regulation of GJIC.  相似文献   

18.
Corpora lutea (CL) from Days 5, 10, and 15 after superovulation were enzymatically dispersed, and a portion of the cells were elutriated to obtain fractions enriched with small or large luteal cells. Mixed, small, and large luteal cell fractions were incubated with no treatment or with agonists or antagonists of cAMP (dbcAMP or Rp-cAMPS), protein kinase C (PKC; TPA or H-7), or calcium (A23187, EGTA, or A23187 + EGTA). The rate of contact-dependent gap junctional intercellular communication (GJIC) was evaluated by laser cytometry. Media were collected for progesterone (P(4)) radioimmunoassay, and luteal cells cultured with no treatment were fixed for immunocytochemistry or frozen for Western blot analysis. Luteal cells from each stage of the estrous cycle exhibited GJIC. The dbcAMP increased (P < 0.05) GJIC for all cell types across the estrous cycle. The Rp-cAMPS decreased (P < 0.05) GJIC for small luteal cells on Day 5 and for all cell types on Days 10 and 15. The TPA inhibited (P < 0.01), but H-7 did not affect, GJIC for all cell types across the estrous cycle. The A23187 decreased (P < 0.05) GJIC for large luteal cells touching only small or only large luteal cells, whereas A23187 + EGTA decreased (P < 0.05) GJIC for all cell types across the estrous cycle. For the mixed and large luteal cell fractions, dbcAMP increased (P < 0.05), but TPA and A23187 + EGTA decreased (P < 0.05), P(4) secretion. The A23187 alone decreased (P < 0.05) P(4) secretion by large, but not by mixed, luteal cells. For all days and cell types, the rate of GJIC and P(4) secretion were correlated (r = 0.113-0.249; P < 0.01). Connexin 43 was detected in cultured luteal cells by immunofluorescence and Western immunoblotting. Thus, intracellular regulators like cAMP, PKC, or calcium appear to regulate GJIC, which probably is an important mechanism for coordinating function of the ovine CL.  相似文献   

19.
Disruption of gap junctional intercellular communication (GJIC) is associated with tumor progression during multistage carcinogenesis. A coordinated interaction of epithelial tumor cells with the stromal environment via growth factors is a prerequisite for tumor invasion. Here, the involvement of growth factors in downregulation of homologous GJIC of dermal fibroblasts, used as model for stromal cells, was examined. Tumor cell derived transforming growth factor-beta1 (TGF-beta1), having oncogenic activities at late stages of carcinogenesis, was identified as being responsible for downregulation of GJIC via an increase in the level of reactive oxygen species in stromal fibroblasts. Lowering the level of reactive oxygen species by antioxidants, such as the cell-permeable N-acetyl-L-cysteine, prevented TGF-beta1-mediated downregulation of intercellular communication between confluent fibroblasts.  相似文献   

20.
Geng S  Sun B  Liu S  Wang J 《Cell biology international》2007,31(11):1420-1427
Gap junctions, formed by connexin (Cx) family proteins, permit direct exchange of regulatory ions and small signal molecules between neighbouring cells. Gap junctional intercellular communication (GJIC) plays an important role in maintaining the homeostasis and preventing cell transformation. Most of the tumour cells feature deficient or aberrant connexin expression and GJIC level, and restoration of connexin expression and GJIC is correlated with cell growth control. Numerous researches has suggested the possibility of connexins as potential anti-tumour targets for chemoprevention and chemotherapy. We investigated the ability of Coleusin Factor (CF, also named FSK88) to regulate the Cx43 expression and GJIC level in rat osteosarcoma UMR106 cells. The results have demonstrated that CF increased the mRNA and protein expression of Cx43 in both in a dose- and timedependent manner, and concomitant with up-regulation of Cx43, CF treatment up-regulated the diminished GJIC level in UMR106 cells as assayed by dye transfer experiments. In addition, Cx43 distribution at the plasma membrane was also enhanced dramatically by CF treatment. Furthermore, we discovered that CF was potent to inhibit the growth and proliferation of UMR106 cells. These results provide the first evidence that CF can regulate connexin and GJIC, indicating that Cx43 may be a target of CF to exert its anti-tumour effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号