首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
I. Katsura  K. Kondo  T. Amano  T. Ishihara    M. Kawakami 《Genetics》1994,136(1):145-154
We have isolated 13 fluoride-resistant mutants of the nematode Caenorhabditis elegans. All the mutations are recessive and mapped to five genes. Mutants in three of the genes (class 1 genes: flr-1 X, flr-3 IV, and flr-4 X) are resistant to 400 μg/ml Naf. Furthermore, they grow twice as slowly as and have smaller brood size than wild-type worms even in the absence of fluoride ion. In contrast, mutants in the other two genes (class 2 genes: flr-2 V and flr-5 V) are only partially resistant to 400 μg/ml NaF, and they have almost normal growth rates and brood sizes in the absence of fluoride ion. Studies on the phenotypes of double mutants showed that class 2 mutations are epistatic to class 1 mutations concerning growth rate and brood size but hypostatic with respect to fluoride resistance. We propose two models that can explain the epistasis. Since fluoride ion depletes calcium ion, inhibits some protein phosphatases and activates trimeric G-proteins, studies on these mutants may lead to discovery of a new signal transduction system that controls the growth of C. elegans.  相似文献   

2.
M. Nguyen  A. Alfonso  C. D. Johnson    J. B. Rand 《Genetics》1995,140(2):527-535
We characterized 18 genes from Caenorhabditis elegans that, when mutated, confer recessive resistance to inhibitors of acetylcholinesterase. These include previously described genes as well as newly identified genes; they encode essential as well as nonessential functions. In the absence of acetylcholinesterase inhibitors, the different mutants display a wide range of behavioral deficits, from mild uncoordination to almost complete paralysis. Measurements of acetylcholine levels in these mutants suggest that some of the genes are involved in presynaptic functions.  相似文献   

3.
S. W. L''Hernault  D. C. Shakes    S. Ward 《Genetics》1988,120(2):435-452
Mutations affecting Caenorhabditis elegans spermatogenesis can be used to dissect the processes of meiosis and spermatozoan morphological maturation. We have obtained 23 new chromosome I mutations that affect spermatogenesis (spe mutations). These mutations, together with six previously described mutations, identify 11 complementation groups, of which six are defined by multiple alleles. These spe mutations are all recessive and cause normally self-fertile hermaphrodites to produce unfertilized oocytes that can be fertilized by wild-type male sperm. Five chromosome I mutation/deficiency heterozygotes have similar phenotypes to the homozygote showing that the probable null phenotype of these genes is defective sperm. Spermatogenesis is disrupted at different steps by mutations in these genes. The maturation of 1 degree spermatocytes is disrupted by mutations in spe-4 and spe-5. Spermatids from spe-8 and spe-12 mutants develop into normal spermatozoa in males, but not in hermaphrodites. fer-6 spermatids are abnormal, and fer-1 spermatids look normal but subsequently become abnormal spermatozoa. Mutations in five genes (fer-7, spe-9, spe-11, spe-13 and spe-15) allow formation of normal looking motile spermatozoa that appear to be defective in either sperm-spermathecal or sperm-oocyte interactions.  相似文献   

4.
M. Sundaram  I. Greenwald 《Genetics》1993,135(3):755-763
The lin-12 gene of Caenorhabditis elegans is thought to encode a receptor for intercellular signals that specify certain cell fates during development. We describe several alleles of lin-12 that reduce but do not eliminate lin-12 activity (hypomorphic alleles). These alleles cause a novel egg-laying defective (Egl) phenotype in hermaphrodites as well as incompletely penetrant cell fate transformations seen with high penetrance in lin-12 null mutants. Characterization of the Egl phenotype revealed additional roles of lin-12 in the development of the egg-laying system that were not apparent from studying lin-12 null mutants: lin-12 activity is required for proper early vulval morphogenesis as well as for some unknown later aspect of egg-laying system development. Reversion of the Egl phenotype caused by one lin-12 hypomorphic allele was used to identify potential interacting genes as described in the accompanying paper.  相似文献   

5.
J. J. Vowels  J. H. Thomas 《Genetics》1994,138(2):303-316
Phenotypic analysis of the daf-11 and daf-21 mutants of Caenorhabditis elegans suggests that they have defects in components shared by processes analogous to vertebrate taste and olfaction. daf-11 and daf-21 mutations were previously shown to cause inappropriate response to the dauer-inducing pheromone. By mutational analysis and by disabling specific chemosensory sensilla with a laser, we show that neurons in the amphid sensilla are required for this pheromone response. Using behavioral assays, we find that daf-11 and daf-21 mutants are not defective in avoidance of certain non-volatile repellents, but are defective in taxis to non-volatile attractants. In addition, both mutants are defective in taxis to volatile attractants detected primarily by the amphid neuron AWC, but respond normally to volatile attractants detected primarily by AWA. We propose that daf-11 and daf-21 mediate sensory transduction for both volatile and non-volatile compounds in specific amphid neurons.  相似文献   

6.
作为模式生物,秀丽线虫(Caenorhabditis elegans)已经成功地用于许多生命过程的研究,尤其被广泛应用于现代发育生物学、行为与神经生物学、基因组学、正向和反向的遗传学研究中,近年来,秀丽线虫更成为了一个进行蛋白质组学研究的优良体系,诠释了基于基因组学和RNA干涉研究中的基因功能。许多比较蛋白质组学表达谱的建立可以更好地理解线虫在不同发育阶段、不同温度下基因的表达,在与人类神经疾病相关的疾病研究中,线虫对帕金森疾病、阿尔茨海默症、衰老与寿命、胰岛素通路都有所揭示。另外,线虫的亚蛋白质组学和翻译后修饰如糖基化和磷酸化也已经鉴定,其数据库也在不断地完善。本文介绍了秀丽线虫的蛋白质表达谱建立的历史,尤其是神经科学研究中的应用及翻译后修饰表达谱的建立等方面的研究现状,因此,结合其它分子生物学和基因工程技术,线虫蛋白质组学研究已成为提供一个新的全面的系统分析基因功能的重要工具,提示线虫是"蠕虫蛋白质组学"的一个丰富宝藏。  相似文献   

7.
C. Desai  H. R. Horvitz 《Genetics》1989,121(4):703-721
We have isolated and characterized 45 Caenorhabditis elegans mutants presumed to be defective in the functioning of the hermaphrodite-specific neurons (HSNs). Like hermaphrodites that lack the HSN motor neurons, these mutants are egg-laying defective and do not lay eggs in response to exogenous imipramine but do lay eggs in response to exogenous serotonin. Twenty of the 45 mutations define 10 new egl genes; the other 25 mutations are alleles of five previously defined genes, four of which are known to affect the HSNs. Seven mutations in three genes cause the HSNs to die in hermaphrodites, as they normally do in males. These genes appear to be involved in the determination of the sexual phenotype of the HSNs, and one of them (egl-41) is a newly identified gene that may function generally in sex determination. Five of the 15 genes are defined only by mutations that have dominant effects on egg laying. One gene egl(n1108), is defined by a temperature-sensitive allele that has a temperature-sensitive period after HSN development is complete, suggesting that egl(n1108) may be involved in HSN synaptic transmission. Four of the genes are defined by single alleles, which suggests that other such genes remain to be discovered. Mutations in no more than 4 of the 15 genes specifically affect the HSNs, indicating that there are few genes with functions needed only in this single type of nerve cell.  相似文献   

8.
9.
Mutations in the unc-52 locus of Caenorhabditis elegans have been classified into three different groups based on their complex pattern of complementation. These mutations result in progressive paralysis (class 1 mutations) or in lethality (class 2 and 3 mutations). The paralysis exhibited by animals carrying class 1 mutations is caused by disruption of the myofilaments at their points of attachment to the cell membrane in the body wall muscle cells. We have determined that mutations of this class also have an effect on the somatic gonad, and this may be due to a similar disruption in the myoepithelial sheath cells of the uterus, or in the uterine muscle cells. Mutations that suppress the body wall muscle defects of the class 1 unc-52 mutations have been isolated, and they define a new locus, sup-38. Only the muscle disorganization of the Unc-52 mutants is suppressed; the gonad abnormalities are not, and the suppressors do not rescue the lethal phenotype of the class 2 and class 3 mutations. The suppressor mutations on their own exhibit a variable degree of gonad and muscle disorganization. Putative null sup-38 mutations cause maternal-effect lethality which is rescued by a wild-type copy of the locus in the zygote. These loss-of-function mutations have no effect on the body wall muscle structure.  相似文献   

10.
We previously identified Caenorhabditis elegans mutants in which certain of the six vulval precursor cells adopt fates normally expressed by other vulval precursor cells. These mutants define genes that appear to function in the response to an intercellular signal that induces vulval development. The multivulva (Muv) phenotype of one such mutant, CB1322, results from an interaction between two unlinked mutations, lin-8(n111) II and lin-9(n112) III. In this paper, we identify 18 new mutations, which are alleles of eight genes, that interact with either lin-8(n111) or lin-9(n112) to generate a Muv phenotype. None of these 20 mutations alone causes any vulval cell lineage defects. The "silent Muv" mutations fall into two classes; hermaphrodites carrying a mutation of each class are Muv, while hermaphrodites carrying two mutations of the same class have a wild-type vulval phenotype. Our results indicate that the Muv phenotype of these mutants results from defects in two functionally-redundant pathways, thereby demonstrating that redundancy can occur at the level of gene pathways as well as at the level of gene families.  相似文献   

11.
Recessive mutations in three autosomal genes, him-1, him-5 and him-8, cause high levels of X chromosome nondisjunction in hermaphrodites of Caenorhabditis elegans, with no comparable effect on autosomal disjunction. Each of the mutants has reduced levels of X chromosome recombination, correlating with the increase in nondisjunction. However, normal or elevated levels of recombination occur at the end of the X chromosome hypothesized to contain the pairing region (the left end), with recombination levels decreasing in regions approaching the right end. Thus, both the number and the distribution of X chromosome exchange events are altered in these mutants. As a result, the genetic map of the X chromosome in the him mutants exhibits a clustering of genes due to reduced recombination, a feature characteristic of the genetic map of the autosomes in non-mutant animals. We hypothesize that these him genes are needed for some processive event that initiates near the left end of the X chromosome.  相似文献   

12.
We identified and characterized 14 extragenic mutations that suppressed the dominant egg-laying defect of certain lin-12 gain-of-function mutations. These suppressors defined seven genes: sup-17, lag-2, sel-4, sel-5, sel-6, sel-7 and sel-8. Mutations in six of the genes are recessive suppressors, whereas the two mutations that define the seventh gene, lag-2, are semi-dominant suppressors. These suppressor mutations were able to suppress other lin-12 gain-of-function mutations. The suppressor mutations arose at a very low frequency per gene, 10-50 times below the typical loss-of-function mutation frequency. The suppressor mutations in sup-17 and lag-2 were shown to be rare non-null alleles, and we present evidence that null mutations in these two genes cause lethality. Temperature-shift studies for two suppressor genes, sup-17 and lag-2, suggest that both genes act at approximately the same time as lin-12 in specifying a cell fate. Suppressor alleles of six of these genes enhanced a temperature-sensitive loss-of-function allele of glp-1, a gene related to lin-12 in structure and function. Our analysis of these suppressors suggests that the majority of these genes are part of a shared lin-12/glp-1 signal transduction pathway, or act to regulate the expression or stability of lin-12 and glp-1.  相似文献   

13.
Chromosome I Duplications in Caenorhabditis Elegans   总被引:1,自引:7,他引:1       下载免费PDF全文
K. S. McKim  A. M. Rose 《Genetics》1990,124(1):115-132
We have isolated and characterized 76 duplications of chromosome I in the genome of Caenorhabditis elegans. The region studied is the 20 map unit left half of the chromosome. Sixty-two duplications were induced with gamma radiation and 14 arose spontaneously. The latter class was apparently the result of spontaneous breaks within the parental duplication. The majority of duplications behave as if they are free. Three duplications are attached to identifiable sequences from other chromosomes. The duplication breakpoints have been mapped by complementation analysis relative to genes on chromosome I. Nineteen duplication breakpoints and seven deficiency breakpoints divide the left half of the chromosome into 24 regions. We have studied the relationship between duplication size and segregational stability. While size is an important determinant of mitotic stability, it is not the only one. We observed clear exceptions to a size-stability correlation. In addition to size, duplication stability may be influenced by specific sequences or chromosome structure. The majority of the duplications were stable enough to be powerful tools for gene mapping. Therefore the duplications described here will be useful in the genetic characterization of chromosome I and the techniques we have developed can be adapted to other regions of the genome.  相似文献   

14.
The usefulness of genomic physical maps is greatly enhanced by linkage of the physical map with the genetic map. We describe a ``macrorestriction mapping' procedure for Caenorhabditis elegans that we have applied to this endeavor. High molecular weight, genomic DNA is digested with infrequently cutting restriction enzymes and size-fractionated by pulsed field gel electrophoresis. Southern blots of the gels are probed with clones from the C. elegans physical map. This procedure allows the construction of restriction maps covering several hundred kilobases and the detection of polymorphic restriction fragments using probes that map several hundred kilobases away. We describe several applications of this technique. (1) We determined that the amount of DNA in a previously uncloned region is <220 kb. (2) We mapped the mes-1 gene to a cosmid, by detecting polymorphic restriction fragments associated with a deletion allele of the gene. The 25-kb deletion was initially detected using as a probe sequences located ~400 kb away from the gene. (3) We mapped the molecular endpoint of the deficiency hDf6, and determined that three spontaneously derived duplications in the unc-38-dpy-5 region have very complex molecular structures, containing internal rearrangements and deletions.  相似文献   

15.
P. M. Meneely 《Genetics》1994,137(2):467-481
In Caenorhabditis elegans triploid animals with two X chromosomes (symbolized 3A;2X) are males. However, these triploid males can be feminized by making them mutant for recessive dosage compensation mutations, by adding X chromosome duplications or by microinjecting particular DNA sequences termed feminizing elements. None of these treatments affects diploid males. This study explores several aspects of these treatments in polyploids. The dosage compensation mutants exhibit a strong maternal effect, such that reduction of any of the dosage compensation gene functions in the mother leads to sex reversal of 3A;2X animals. Likewise, all X chromosome duplications tested cause both sex reversal and intersexual development of many 3A;2X animals. Microinjected feminizing element DNA does not cause extensive sex reversal, but does result in intersexual development in 3A;2X animals. Neither X chromosome duplications nor microinjected feminizing elements show the extreme maternal effect of the dosage compensation mutants, although there is indirect evidence for a maternal effect of the feminizing elements. In particular, very little feminizing element DNA needs to be microinjected in order to feminize triploid males, far less than what is needed for stable inheritance, implying that feminizing elements can work within the mother's gonad. However, even very high concentrations of microinjected feminizing elements do not affect sex determination in diploid males, suggesting that they are not part of the numerator of the X/A ratio. In addition, no pair of X chromosome duplications feminizes diploid males, suggesting that none of these duplications contains a numerator of the X/A ratio. Instead, I infer that an X-linked locus, as yet undefined, must be present in two copies for hermaphrodite development to ensue or that the two X chromosomes might interact.  相似文献   

16.
Genetic Analysis of Defecation in Caenorhabditis Elegans   总被引:9,自引:2,他引:7       下载免费PDF全文
J. H. Thomas 《Genetics》1990,124(4):855-872
Defecation in the nematode Caenorhabditis elegans is achieved by a cyclical stereotyped motor program. The first step in each cycle is contraction of a set of posterior body muscles (pBoc), followed by contraction of a set of anterior body muscles (aBoc), and finally contraction of specialized anal muscles that open the anus and expel intestinal contents (Exp). By testing existing behavioral mutants and screening for new mutants that become constipated due to defects in defecation, I have identified 18 genes that are involved in defecation. Mutations in 16 of these genes affect specific parts of the motor program: mutations in two genes specifically affect the pBoc step; mutations in four genes affect the aBoc step; mutations in four genes affect the Exp step; and mutations in six genes affect both aBoc and Exp. Mutations in two other genes affect the defecation cycle period but have a normal motor program. Sensory inputs that regulate the cycle timing in the wild type are also described. On the basis of the phenotypes of the defecation mutants and of double mutants, I suggest a formal genetic pathway for the control of the defecation motor program.  相似文献   

17.
Caenorhabditis elegans has a single deoxynucleoside kinase-like gene. The sequence is similar to that of human TK1, but besides accepting thymidine as a substrate, the C. elegans TK1 (CeTK1) also phosphorylates deoxyguanosine. In contrast to human TK1, the CeTK1 exclusively exists as a dimer with a molecular mass of ~60 kDa, even if incubated with ATP. Incubation with ATP induces a transition into a more active enzyme with a higher kcat but unchanged Km. This activation only occurs at an enzyme concentration in the incubation buffer of 0.5 μg/ml (8.42 nM) or higher. C-terminal deletion of the enzyme results in lower catalytic efficiency and stability.  相似文献   

18.
The Genetics of Feeding in Caenorhabditis Elegans   总被引:2,自引:1,他引:1       下载免费PDF全文
L. Avery 《Genetics》1993,133(4):897-917
  相似文献   

19.
Omnipotent suppressors decrease translational fidelity and cause misreading of nonsense codons. In the presence of the non-Mendelian factor [eta+], some alleles of previously isolated omnipotent suppressors are lethal. Thus the current search was conducted in an [eta+] strain in an effort to identify new suppressor loci. A new omnipotent suppressor, SUP39, and alleles of sup35, sup45, SUP44 and SUP46 were identified. Efficiencies of the dominant suppressors were dramatically reduced in strains that were cured of non-Mendelian factors by growth on guanidine hydrochloride. Wild-type alleles of SUP44 and SUP46 were cloned and these clones were used to facilitate the genetic analyses. SUP44 was shown to be on chromosome VII linked to cyh2, and SUP46 was clearly identified as distinct from the linked sup45.  相似文献   

20.
Mutations Affecting the Chemosensory Neurons of Caenorhabditis Elegans   总被引:5,自引:0,他引:5  
We have identified and characterized 95 mutations that reduce or abolish dye filling of amphid and phasmid neurons and that have little effect on viability, fertility or movement. Twenty-seven mutations occurred spontaneously in strains with a high frequency of transposon insertion. Sixty-eight were isolated after treatment with EMS. All of the mutations result in defects in one or more chemosensory responses, such as chemotaxis to ammonium chloride or formation of dauer larvae under conditions of starvation and overcrowding. Seventy-five of the mutations are alleles of 12 previously defined genes, mutations which were previously shown to lead to defects in amphid ultrastructure. We have assigned 20 mutations to 13 new genes, called dyf-1 through dyf-13. We expect that the genes represented by dye-filling defective mutants are important for the differentiation of amphid and phasmid chemosensilla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号