首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
抗大肠埃希氏菌K88ab,K88ac和K88ad特异单克隆抗体   总被引:6,自引:0,他引:6  
李毅  刘秀梵 《微生物学报》1989,29(5):348-353
A panel of twelve hybridoma cell lines, secreting specific antibodies to K88 adhesin antigens of enterotoxigenic Escherichia coli (ETEC) were established from eight separate fusions between mouse myeloma cell line Sp 2/0-Ag-14 and spleen cells from mice immunized with purified K88 antigens. Among the 12 monoclonal antibodies (MCA), K-A, K-35, K-11, and K-15 were K88a specific and reacted with all K88 adhesin bearing Escherichia coli strains tested, whatever K88ab, K88ac or K88ad they might be, as shown either in enzyme-linked immunosorbent assay (ELISA) or in direct agglutination test, whereas K32, K-4, and K-3 were specific for G88ab, K88ac, and K88ad respectively. The antigen patterns of 33 K88 bearing Escherichia coli strains covering 3 serotypes of K88ab, K88ac, and K88ad were analyzed by the use of these MCAs. The preliminary results showed that all Escherichia strains with the same serotype of K88 antigen shared at least one common type-specific antigenic determinant, that K88ad and K88ac strains enjoyed one common antigenic determinant that did not exist on K88ab strains, and that there were a few K88 antigenic determinants that appeared only on limited Escherichia coli strains of the same K88 serotype.  相似文献   

2.
K88 fimbriae are ordered polymeric protein structures at the surface of enterotoxigenic Escherichia coli cells. Their production and assembly requires a molecular chaperone located in the periplasm (FaeE) and a molecular usher located in the outer membrane (FaeD). FaeC is the tip component of the K88 fimbriae. We studied the expression of the subcloned faeC gene, the subcellular localization of FaeC and its interaction with the chaperone and the outer membrane usher. In the absence of the chaperone or the usher, FaeC could not be detected in E. coli cells harbouring the faeC gene and its ribosome binding site under contol of the IPTG inducible lpp/lac promoter/operator. The expression of FaeC was detectable in the presence of chaperone FaeE, but a direct interaction between the chaperone and FaeC was not found. The expression of FaeC was also detectable in cells co-expressing the outer membrane usher FaeD. Overexpression of FaeC after changing the faeC ribosome binding site appeared to induce lethality. Expression of subcloned FaeC in the absence of FaeE or FaeD could be detected when faeC was cloned under the tight control of the ara promoter/operator and when lethality induction was avoided. The direct interaction of FaeC with outer membranes containing the usher FaeD was studied by cell fractionation, isopycnic sucrose density gradient centrifugation, SDS-PAGE and immunoblotting. FaeC was found to bind to outer membranes containing FaeD or a FaeD-PhoA hybrid construct containing 215 amino-terminal residues of FaeD. This binding was not observed when control outer membranes without FaeD were used. No other K88 specific proteins were required for this interaction. The direct interaction between FaeC and FaeD in the outer membranes was shown by affinity blotting experiments. FaeE was not required for this interaction. Together these data indicate that the minor fimbrial subunit FaeC, unlike FaeG, H and F, does not have a strong interaction with the chaperone FaeE in the E. coli periplasm, but directly binds to the outer membrane molecular usher FaeD.  相似文献   

3.
K88菌毛介导产肠毒索性大肠杆菌在小肠上皮细胞的粘附,是引起新生仔猪腹泻的主要致病因子之一.菌毛的合成与装配是由fae操纵子调控的,fae操纵子包含10个基,faeA-fae J,其中有些基因表达菌毛装配所需的各种结构蛋白、分子伴侣和调控因子.菌毛的装配过程是由fae操纵子调控,通过分子伴侣,锚定蛋白的相互协同作用完成,组装成结构蛋白的多聚体.继阐明K88菌毛装配调控机理之后,K88菌毛在非毒素源性大肠杆菌及其它原核生物中装配也取得成功,同时菌毛结构蛋白在真核生物中组装也取得了很大进展.  相似文献   

4.
Aptamer selection for the detection of Escherichia coli K88   总被引:2,自引:0,他引:2  
In this study, the first group of single-stranded DNA aptamers that are highly specific to enterotoxigenic Escherichia coli (ETEC) K88 was obtained from an enriched oligonucleotide pool by the SELEX (Systematic Evolution of Ligands by Exponential Enrichment) procedure, during which the K88 fimbriae protein was used as the target and bovine serum albumin as counter targets. These aptamers were applied successfully in the detection of ETEC K88. They were then grouped under different families based on the similarity of their secondary structure and the homology of their primary sequence. Four sequences from different families were deliberately chosen for further characterization by fluorescence analysis. Having the advantage of high sensitivity, fluorescence photometry was selected as single-stranded DNA quantification method during the SELEX process. Aptamers with the highest specificity and affinity were analyzed to evaluate binding ability with E. coli. Since ETEC K88 is the only type of bacterium that expressed abundant K88 fimbriae, the selected aptamers against the K88 fimbriae protein were able to specifically identify ETEC K88 among other bacteria. This method of detecting ETEC K88 by aptamers can also be applied to bacteria other than ETEC K88.  相似文献   

5.
The K88ab adhesin operon of Escherichia coli encodes for a fimbrial protein (the K88ab adhesin) which is involved in colonization of the porcine intestine. We characterized a structural gene (gene A) which is part of the K88ab adhesin operon and codes for an as yet unidentified polypeptide (pA). A mutation in gene A resulted in accumulation of K88ab adhesin subunits inside the cell. The nucleotide sequence of gene A was determined, and the deduced amino acid sequence suggested that pA is synthesized as a precursor containing a typical N-terminal signal peptide. The molecular weight of pA was calculated to be ca. 17,600. Gene A is preceded by a sequence showing homology with the consensus promoter. Fimbrial subunits from a number of E. coli strains have significant homology at their N- and C-termini. pA also contained some of these conserved sequences and showed a number of other similarities with fimbrial subunits. Therefore, it seems likely that the K88ab adhesin operon codes for a fimbrial subunit (pA) distinct from the K88ab adhesin subunit.  相似文献   

6.
Escherichia coli (E. coli) that expresses galactose-reactive lectins, like K88 adhesin, causes high mortality among piglets. Carbohydrates that compete for adhesion could serve as an alternative for disease prevention. Porcine serum albumin (PSA) was modified by non-enzymatic glycation with lactose to produce PSA-Lac or PSA-Glc β (1–4) Gal, as confirmed by reduction of available free amino groups, increased molecular mass and by Ricinus communis lectin recognition. E. coli K88 binds to PSA-Lac treatments containing three and four lactoses, respectively. In addition, PSA-Lac partially inhibited K88 strain adherence to mucins. These results suggest that neoglycoconjugates obtained by non-enzymatic glycation of proteins may serve in the prophylaxis of piglets’ diarrhea.  相似文献   

7.
采用液体培养基包括牛肉膏蛋白胨培养基和强化营养肉汤培养基对大肠杆菌K88进行发酵培养,采用不同摇瓶培养时间和不同pH值的培养基观察发酵结果,研究菌体和菌毛生产量的相关性,并通过紫外分光光度计UV751于600nm处测量菌体OD值以对菌种发酵情况进行检测.热激分离菌体和菌毛蛋白,(NH4)2SO4盐析分离纯化K88菌毛蛋白并用分光光度计于280nm处测定其OD值.透析后经SDSP-AGE检测菌毛蛋白纯度.根据实验结果优化发酵培养条件,确定菌种的最佳发酵工艺,以收获最多的K88菌毛蛋白.经过实验研究,最终确定了大肠杆菌K88在pH值为6.5、转速为250r/min的条件下发酵18个h,菌体和菌毛生产量均达到高峰,同时得出菌毛蛋白和菌体成正相关.  相似文献   

8.
Two nonfimbriate strains of Escherichia coli and their K88(+) counterparts, obtained by episomal transfer of this antigen, were studied with the electron microscope. Specimens were prepared with the spray drop method and were studied after shadow-casting. Under these conditions, the alteration in surface structure, due to the acquisition of K88 antigen, appeared as a fur of fine filaments, distinctly more flexible than fimbriae. Purified K88 antigen was also studied and found to have the same structure.  相似文献   

9.
Antipeptide antibodies were used to detect, purify, and characterize nonfilament F-pilin in the cell envelope of an F'tra+ strain of Escherichia coli. Affinity-purified goat antibodies raised against a peptide corresponding to the amino-terminal 14 amino acids of F-pilin detected F-pilin in immuno-overlay ("Western") blots of electrophoretically separated inner and outer membrane proteins. As expected, the molecule was absent from inner membrane preparations of F- or F'traA[Am] strains. Immunoreactive material was purified from inner membrane fractions and shown to be F-pilin by amino acid analysis. The anti-peptide antibodies also detected membrane forms of F-pilin produced by cells containing plasmid pTG801 (Grossman, T. & Silverman, P. (1989) J. Bacteriol. 171, 650-656). Most cell envelope pilin was in the inner membrane fraction, but a significant quantity fractionated with the outer membrane as well. The hydropathy profile of F-pilin suggested that the molecule is an integral membrane protein with two membrane-spanning domains. In confirmation, F-pilin and pTG801 pilins in inner membrane preparations were solubilized by a single extraction with the nonionic detergents Nonidet P-40 (2%) or Triton X-100 (2%), but not by 2 M KCl or 0.1 M NaOH. Moreover, analysis of traA'-'phoA constructs indicated that both the amino and carboxyl termini of F-pilin face the periplasm. The periplasmic location of the amino terminus was confirmed by immunoelectron microscopy of spheroplasts from F' and pTG801 strains, using a monoclonal antibody that recognizes an amino-terminal epitope. These data suggest a specific structure for membrane F-pilin. We discuss that structure in relation to the probable structure of filament F-pilin.  相似文献   

10.
The subcellular localization of the K88 usher FaeD was studied in Escherichia coli whole ceils by using iso-pycnic sucrose density gradient centrifugation of isolated membranes, the detergents Triton X-100 and sodium lauryl sarcosinate and immunoblotting with a specific FaeD antiserum. Cells containing the complete K88 operon, as well as cells containing the sub-cloned faeD gene in various expression vectors, were used. Most of the FaeD was present in the outer membranes in a detergent-resistant form. Agglutination experiments with E coli cells expressing FaeD confirmed an outer membrane localization and indicated the presence of FaeD at the cell surface. Automated Edman degradation indicated that the mature FaeD contained 777 amino acid residues and confirmed that FaeD is synthesized with a rather long signal sequence of 35 amino acid residues. Twelve different FaeD–PhoA fusion proteins were prepared and characterized by nucleotide sequencing and immuno-blotting. Most of these fusion sites were located in the amino-terminal and carboxyl-terminal regions of FaeD. Six amino-terminal fusion proteins were soluble proteins in the peripiasm, whereas the other fusion proteins were associated with the outer membrane. The protease accessibility of FaeD and of the six outer membrane-bound FaeD–PhoA fusion proteins was studied using whole cells, cells with permeabilized outer membranes, and isolated membranes. Collagenase H, kallikrein, trypsin and proteinase K were used. Based on the results of these experiments and computer predictions, a model for the membrane topology of FaeD was developed in which FaeD contains a large central domain containing 24 membrane-spanning segments and two relatively large periplasmic regions, at the amino-terminal and carboxyl-terminal end of the protein, respectively.  相似文献   

11.
It has previously been shown that Lactobacillus fermentum strain 104r releases compounds into its culture fluid that inhibit the adhesion of enterotoxigenic Escherichia coli K88. The aim of the present study was to purify and identify this compound. Judged by gel filtration, the compound was found to be approximately 1700 kDa. The amount of active compound increased upon prolonged incubation, while the number of viable cells reduced, suggesting that the activity was coming from dead cells. As the activity can be destroyed by lysozyme treatment and contains glucose, N -acetylglucosamine and galactose, it was concluded that cell wall fragments are the active agent, although cell wall preparations did not have the same effect. Adhesion to some mucus fractions could be inhibited by spent culture fluid, indicating specific interaction between mucus and the active compound. The compound was not able to interfere with the adhesion of E. coli 1107 to neutral lipids from mucus which contain a glycolipid receptor for K88 fimbriae.  相似文献   

12.
Segregation at the loci coding for the K88ab and K88ac small intestinal receptors to E. coli adhesins (K88abR, K88acR) and at the transferrin (TF) locus was studied in 38 pig families including 273 piglets. The TF locus showed a segregation deviation towards the B variant while each of the K88 receptors behaved as a single autosomal dominant gene. Recombinants between K88abR and K88acR provide evidence that they are under the control of two different loci. Thirty-two triple backcross families were selected to test linkage and estimate recombination rates (θ). Our results demonstrate that the two K88 receptor loci are closely linked (θ= 0.02) with a maximum lod score value (Zm) of 46.0. In addition, they are linked to the TF locus, θ= 0.14, Zm= 19.6 for the K88abR locus and θ= 0.16, Zm= 17.9 for the K88acR locus. The estimated recombination rates, smaller in males than in females, are consistent with the order TF-K88abR-K88acR. This linkage thus localizes the K88 loci, as the TF locus, on chromosome 13.  相似文献   

13.
The K88 antigen was carried by episomal transfer to D282, a nonmotile Escherichia coli strain without K antigen. D520, obtained by this episomal transfer, was used for the extraction of K88 antigen. It was shown by the agar gel precipitation technique that some K88 antigen was released from D520 into suspending aqueous medium. The amount of liberated material was increased by gentle heating (60 C) or treatment in a Waring Blendor. The antigen was obtained from the extracts in a purified form by making use of its insolubility between pH 3.5 and 5.5 and of its high sedimentation rate (S(0) (20,w) = 36.7S). The homogeneity of the material was demonstrated by agar gel precipitation with D520 antiserum, by analytical ultracentrifugation, and by moving-boundary electrophoresis. Chemical analysis revealed that K88 is a pure protein containing all the common amino acids with the exception of cysteine-cystine. Purified K88 selectively precipitated the K88 antibodies from D520 antiserum and was shown to be immunogenic in rabbits.  相似文献   

14.
The role of specific amino acid residues of the K88ab and K99 fibrillar adhesins in the binding to erythrocytes and antibodies has been studied by chemical modification. It appeared that: (1) The integrity of the single disulfide bridge in the K99 subunits is essential for the binding of the fibrillae to the glycolipid receptors, but not for the recognition and binding of specific anti-K99 antibodies. (2) Modification of one lysine residue per subunit with 4-chloro-3,5-dinitrobenzoate results in the loss of the adhesive capacity of K99 fibrillae. Lysine residue are not important for the adhesive activity of K88ab fibrillae. Three or five lysine residues per subunit, respectively, can be modified without an effect on the immunological properties of the K99 and K88ab fibrillae. (3) Limited reaction of K99 and K88ab fibrillae with 2,3-butanedione destroys the adhesive activity of both fibrillae. This inactivation corresponds with the loss of one (K99) or two (K88ab) arginine residues per subunit. Ultimately, in K99 three, and in K88ab four, arginine residues per subunit can be modified without affecting the binding of specific antibodies. (4) Modification of five out of the nine carboxyl groups contained in the K99 subunit suppresses the recognition of specific anti-K99 antibodies, but carboxylates are not important for the adhesive activity of K99 fibrillae. Modification of two additional carboxylates in K99 results in an insoluble product. (5) Tyrosine residues are most probably not present in the adhesive or antigenic sites of K99 fibrillae. Modification of six out of the ten tyrosine residues in the K88ab subunit results in a decrease in adhesive activity but has no effect on the reaction with anti-K88ab antibodies.  相似文献   

15.
16.
AIMS: Tempe is a traditional fungal fermented food made from soaked and cooked soya beans. It has been associated with antidiarrhoeal characteristics. This study investigated potential inhibitory effects of tempe on enterotoxigenic Escherichia coli (ETEC) K88. METHODS AND RESULTS: Soya beans were soaked, cooked and subsequently fermented using several Rhizopus spp. Water-soluble filter-sterile extracts were tested for their ability to inhibit growth of E. coli and several indicator microorganisms and to inhibit adhesion of ETEC K88. Antimicrobial activity was found against Bacillus stearothermophilus only. ETEC K88-induced haemagglutination of hamster red blood cells was strongly inhibited by a number of tempe extracts and hardly by the cooked soya bean extract. Furthermore, several tempe extracts were able to inhibit adhesion of ETEC K88 to piglet small intestinal brush-border membranes. CONCLUSIONS: Tempe appeared to interfere with ETEC K88 adhesion rather than showing growth inhibitory properties. SIGNIFICANCE AND IMPACT OF THE STUDY: The results indicate that tempe could exert an antagonistic effect against ETEC through inhibition of adhesion and might therefore have a protective effect against ETEC K88 infection in pigs. Hence, tempe could have potential to use as a feed supplement in the diet of weaned piglets.  相似文献   

17.
18.
The loci encoding the porcine intestinal receptors for Escherichia coli K88ab and K88ac (K88abR and K88acR) were firmly assigned to chromosome 13 by linkage analysis using a three-generation pedigree. The linear order of these loci and seven other markers on chromosome 13 was determined by multipoint analyses. The K88abR and K88acR loci were tightly linked with the K88abR locus localized 7·4 cM (sex average) proximal to the transferrin locus. The results, together with previous reports from two other groups, provide an unequivocal assignment of the K88 receptor loci to chromosome 13, and reject a previous assignment to chromosome 4. Pigs possessing the receptor had a slightly higher specific IgG response to the K88 antigen after an intramuscular immunization with an E. coli vaccine.  相似文献   

19.
A small-scale method for the extraction of the K88 major fimbrial subunit from enterotoxigenic Escherichia coli (ETEC) based on heat extraction has been developed. Variation in the buffer composition, time and temperature of extraction had negligible effect on the subsequent SDS-PAGE profile. There was, however, a correlation between the pH of the extraction buffer and the ensuing amount of K88 released. Reduction of the pH from 7 to 4 reduced by six-fold the amount of K88 released from the cells. We suggest that the relative stability of the K88 fimbriae at acid pH may influence the site of infection by ETEC in the intestine.  相似文献   

20.
The DNA sequence of the K99 fanF gene, encoding FanF, was determined. An open reading frame of 999 bp was found. The primary structure of FanF was deduced and analysis revealed the presence of a signal sequence of 22 amino acid residues. The mature protein contains 311 amino acid residues (Mr 33,905 D). The amino acid sequence of FanF showed similarity with the K88ab major subunit FaeG. A specific mouse antiserum against FanF was prepared by constructing and purifying a hybrid Cro-LacZ-FanF protein. Minicell analysis, immunoblotting and immunoelectronmicroscopy revealed a pool of FanF in the periplasm of K99-producing cells and showed, furthermore, that FanF is a minor component of K99 fibrillae, present at the top and in or along the shaft of the K99 fibrillar structures. A fanF mutant plasmid was constructed. Cells harbouring this plasmid produced all K99-specific proteins, except FanF, but produced 0.1% of the K99 fibrillae relative to 'normal' K99-producing cells. Electron microscopic observations showed that cells defective in fanF produce only a few (apparently short) K99 fibrillae. FanF, therefore, was supposed to play a role in initiation and elongation of K99 fibrillae formation. Thin-layer chromatography experiments involving purified receptor material showed that FanF is not required for binding of K99 fibrillae to the ganglioside receptor. Fibrillae produced by an adhesion-negative strain carrying a mutation in the K99 major fibrillar subunit were shown to contain a normal amount of FanF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号