首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vascular cells have a limited lifespan with limited cell proliferation and undergo cellular senescence. The functional changes associated with cellular senescence are thought to contribute to age-related vascular disorders. AMP-activated protein kinase (AMPK) has been discussed in terms of beneficial or harmful effects for aging-related diseases. However, the detailed functional mechanisms of AMPK are largely unclear. An aging model was established by stimulating vascular smooth muscle cell (VSMC) with adriamycin. Adriamycin progressively increased the mRNA and protein expressions of AMPK. The phosphorylation levels of LKB1 and acetyl-CoA carboxylase (ACC), the upstream and downstream of AMPK, were dramatically increased by adriamycin stimulation. The expressions of p53 and p21, which contribute to vascular senescence, were also increased. Inhibition of AMPK diminished senescence-associated β-galactosidase (SA-β-gal) staining, and restored VSMC proliferation. Cytosolic translocation of LKB1 by adriamycin could be a mechanism for AMPK activation in senescence. Furthermore, p53 siRNA and p21 siRNA transfection attenuated adriamycin-induced SA-β-gal staining. These results suggest that LKB1 dependent AMPK activation elicits VSMC senescence and p53–p21 pathway is a mediator of LKB1/AMPK-induced senescence.  相似文献   

2.
The Notch signaling pathway is an evolutionarily conserved signaling system which has been shown to be essential in cell fate specification and in numerous aspects of embryonic development in all metazoans thus far studied. We recently demonstrated that several components of the Notch signaling pathway, including the four Notch receptors and their five ligands known in mammals, are expressed in mouse oocytes, in mouse preimplantation embryos, or both. This suggested a possible implication of the Notch pathway in the first cell fate specification of the dividing mouse embryo, which results in the formation of the blastocyst. To address this issue directly, we generated zygotes in which both the maternal and the zygotic expression of Rbpsuh, a key element of the core Notch signaling pathway, were abrogated. We find that such zygotes give rise to blastocysts which implant and develop normally. Nevertheless, after gastrulation, these embryos die around midgestation, similarly to Rbpsuh-null mutants. This demonstrates that the RBP-Jkappa-dependent pathway, otherwise called the canonical Notch pathway, is dispensable for blastocyst morphogenesis and the establishment of the three germ layers, ectoderm, endoderm, and mesoderm. These results are discussed in the light of recent observations which have challenged this conclusion.  相似文献   

3.
Recent studies of cyclooxygenase-2 (COX-2) inhibitors suggest that the balance between thromboxane and prostacyclin is a critical factor in cardiovascular homeostasis. Disruption of prostacyclin signaling by genetic deletion of the receptor or by pharmacological inhibition of COX-2 is associated with increased atherosclerosis and restenosis after injury in animal models and adverse cardiovascular events in clinical trials (Vioxx). Human vascular smooth muscle cells (VSMC) in culture exhibit a dedifferentiated, migratory, proliferative phenotype, similar to what occurs after arterial injury. We report that the prostacyclin analog iloprost induces differentiation of VSMC from this synthetic, proliferative phenotype to a quiescent, contractile phenotype. Iloprost induced expression of smooth muscle (SM)-specific differentiation markers, including SM-myosin heavy chain, calponin, h-caldesmon, and SM alpha-actin, as determined by Western blotting and RT-PCR analysis. Iloprost activated cAMP/protein kinase A (PKA) signaling in human VSMC, and the cell-permeable cAMP analog 8-bromo-cAMP mimicked the iloprost-induced differentiation. Both myristoylated PKA inhibitor amide-(14-22) (PKI, specific PKA inhibitor), as well as ablation of the catalytic subunits of PKA by small interfering RNA, opposed the upregulation of contractile markers induced by iloprost. These data suggest that iloprost modulates VSMC phenotype via G(s) activation of the cAMP/PKA pathway. These studies reveal regulation of VSMC differentiation as a potential mechanism for the cardiovascular protective effects of prostacyclin. This provides important mechanistic insights into the induction of cardiovascular events with the use of selective COX-2 inhibitors.  相似文献   

4.
We investigated the effects of cyclic stretch on vascular smooth muscle cell (VSMC) alignment and potential overlap of signaling modalities with stretch-induced proliferation. VSMC were subjected to graded stretch (1 Hz at 100-124% of resting length) for 48 h. Graded stretch resulted in graded VSMC alignment from a minimum of completely random orientation to a maximum of ~80-85 degrees to the stretch vector. Alignment was reversible within 48 h of stretch cessation and independent of signaling modalities mediating stretch-induced proliferation: modulation of IGF-1, MAPK, phosphatidylinositol 3-kinase, tyrosine kinase, and stretch-activated calcium channels did not affect alignment. Nitric oxide (NO) synthase (NOS) blockade uncoupled alignment. Neither the NO donor, cytokine-induced NOS activity, nor L-citrulline affected alignment, but inhibited VSMC proliferation. Therefore, stretch-induced proliferation and alignment are differentially regulated, with NO a common signaling molecule for both. Targeting NOS in states such as restenosis and hypertension may prove to be beneficial.  相似文献   

5.
Myoendothelial gap junctions are involved in regulating systemic arterial smooth muscle cell phenotype and function, but their role in the regulation of pulmonary arterial smooth muscle cell (PASMC) phenotype is unknown. We therefore investigated in cocultured pulmonary arterial endothelial cells (PAECs) and PASMCs whether myoendothelial gap junctional signaling played a role in PAEC-dependent regulation of PASMC phenotype. Rat PAECs and PASMCs were cocultured on opposite sides of a porous Transwell membrane that permitted formation of heterotypic cell-cell contacts. Immunostaining showed expression of the gap junctional protein connexin 43 (Cx43) on projections extending into the membrane from both cell types. Dye transfer exhibited functional gap junctional communication from PAECs to PASMCs. PASMCs cocultured with PAECs had a more contractile-like phenotype (spindle shape and increased expression of the contractile proteins myosin heavy chain, H1-calponin, and α-smooth muscle cell-actin) than PASMCs cocultured with PASMCs or cocultured without direct contact with PAECs. Transforming growth factor (TGF)-β1 signaling was activated in PASMCs cocultured with PAECs, and the PASMC differentiation was inhibited by TGF-β type I receptor blockade. Inhibition of gap junctional communication pharmacologically or by knock down of Cx43 in PAECs blocked TGF-β signaling and PASMC differentiation. These results implicate myoendothelial gap junctions as a gateway for PAEC-derived signals required for maintaining TGF-β-dependent PASMC differentiation. This study identifies an alternative pathway to paracrine signaling to convey regulatory signals from PAECs to PASMCs and raises the possibility that dysregulation of this direct interaction is involved in the pathogenesis of hypertensive pulmonary vascular remodeling.  相似文献   

6.
7.
Cyclic AMP (cAMP) is a pleiotropic second messenger that regulates numerous cellular processes. In vascular smooth muscle cells (VSMCs), these include cell proliferation, migration, and contractility. Here we show that cAMP-elevating agents induce dramatic morphological changes in VSMCs, characterized by cell rounding and formation of long branching processes. The stellate morphology is associated with disassembly of actin stress fibers and lamellipodia, loss of focal adhesions, and the formation of small F-actin rings. Because of the importance of Rho family GTPases in regulating actin dynamics, we analyzed their individual roles in the cAMP phenotype. We found that pharmacological or genetic inhibition of Rac mimics cAMP effect in inducing a stellate morphology of VSMCs. Expression of activated Rac1 prevents forskolin-induced cAMP stellation, suggesting that cAMP affects cell morphology by inhibiting Rac function. Consistent with this, treatment with forskolin inhibits agonist-stimulated Rac activation in VSMCs. We further show that activated Rac1 containing the F37A effector loop substitution fails to rescue the cAMP phenotype. Our results suggest that cAMP modulates the morphology of VSMCs by inhibiting a Rac-dependent signaling pathway.  相似文献   

8.
9.
10.
Liao XB  Zhou XM  Li JM  Yang JF  Tan ZP  Hu ZW  Liu W  Lu Y  Yuan LQ 《Amino acids》2008,34(4):525-530
Vascular calcification develops within atherosclerotic lesions and results from a process similar to osteogenesis. Taurine is a free β-amino acid and plays an important physiological role in mammals. We have recently demonstrated that vascular smooth muscle cells (VSMCs) express a functional taurine transporter. To evaluate the possible role of taurine in vascular calcification, we assessed its effects on osteoblastic differentiation of VSMCs in vitro. The results showed that taurine inhibited the β-glycerophosphate-induced osteoblastic differentiation of VSMCs as evidenced by both the decreasing alkaline phosphate (ALP) activity and expression of the core binding factor α1 (Cbfα1). Taurine also activated the extracellular signal-regulated protein kinase (ERK) pathway. Inhibition of ERK pathway reversed the effect of taurine on ALP activity and Cbfα1 expression. These results suggested that taurine inhibited osteoblastic differentiation of vascular cells via the ERK pathway.  相似文献   

11.
12.
13.
14.
Guo RW  Yang LX  Wang H  Liu B  Wang L 《Regulatory peptides》2008,147(1-3):37-44
Angiotensin II (AngII) is widely recognized as a critical regulator of the development of atherosclerosis. Matrix metalloproteinases (MMPs) are thought to participate in plaque destabilization through degradation of the extracellular matrix. In the present study, we investigated the potential mechanism of AngII-induced MMP-9 expression in vascular smooth muscle cells (VSMC). AngII upregulated the expression of MMP-9 significantly in VSMC obtained from rat aorta. RNAi-mediated knockdown of p65 and losartan, an inhibitor of AngII receptors subtype-1 (AT1), could abolish AngII-induced MMP-9 expression. In addition, AngII induced the NF-κB binding activity via AT1 and AT2 receptors in VSMC, and AngII-induced activation of NF-κB is not associated with significant downregulation of IκB. In summary, this study demonstrates that AngII stimulates NF-κB nuclear translocation in VSMC via AT1 and AT2. AngII increases the expression of MMP-9 in VSMC, and AT1 and NF-κB pathways have an important role in this response.  相似文献   

15.
Aortic smooth muscle cell release of matrix metalloproteinase-2 (MMP-2) and tissue inhibitor of metalloproteinase-2 (TIMP-2) has been implicated in aortic aneurysm pathogenesis, but proximal modulation of release is poorly understood. Extracellular nucleotides regulate vascular smooth muscle cell metabolism in response to physiochemical stresses, but nucleotide modulation of MMP and/or TIMP release has not been reported. We hypothesized that nucleotides modulate MMP-2 and TIMP-2 release from human aortic smooth muscle cells (HASMCs) via distinct purinergic receptors and signaling pathways. We exposed HASMCs to exogenous ATP and other nucleotides with and without interleukin-1beta (IL-1beta). HASMCs were pretreated in some experiments with apyrase, which degrades ATP, and inhibitors of ERK1/2, JNK, and p38 MAPK. MMP-2 and TIMP-2 released into supernatant were assessed using ELISA and Western blotting. ATP, adenosine, and UTP significantly stimulated MMP-2 release in the presence of IL-1beta (300 nM ATP: 181 +/- 22%, P = 0.003; 30 microm adenosine: 244 +/- 150%, P = 0.001; and 200 microm UTP: 153 +/- 40%, P = 0.015; vs. 100% constitutive). ATP also stimulated MMP-2 release in the absence of IL-1beta (100 microm ATP: 148 +/- 38% vs. 100% constitutive). Apyrase significantly reduced ATP-stimulated MMP-2 release (apyrase + 500 nM ATP: 59 +/- 3% vs. 124 +/- 7% with 500 nM ATP). Rank-order agonist potency for MMP-2 release was consistent with ATP activation of PAY and PAY receptors. ATP induced phosphorylation of intracellular JNK, and inhibition of the JNK pathway blocked ATP-stimulated MMP-2 release, indicating signaling via this pathway. Nucleotides are thus novel stimulants of MMP-2 release from HASMCs and may provide a mechanistic link between physiochemical stress in the aorta and aneurysms, especially in the context of inflammation.  相似文献   

16.
IL-6, a proinflammatory cytokine, has been implicated in the development of vascular diseases. We previously demonstrated that mechanical stress can initiate signaling pathways leading to smooth muscle cell (SMC) proliferation and apoptosis, but little is known concerning cyclic stress-induced inflammatory response. To explore the role of stretch in the upregulation of cytokine expression in SMCs we performed RNase protection assay for a panel of cytokines and found that mechanical stress resulted in a time-dependent induction of IL-6 mRNA but not other cytokines, e.g., IL-1alpha, IL-1beta, IL-6, IL-10, IL-12p35, IL-12p40, IL-18, IFN-gamma, and macrophage migration inhibitory factor (MIF). This induction also correlated with elevated IL-6 protein levels in the supernatant. Pretreatment of the cells with NF-kappaB inhibitors inhibited NF-kappaB activity and resulted in marked inhibition (50%) of IL-6 protein. Moreover, SMC lines stably expressing dominant-negative Ras (RasN17) or Rac (RacN17) exhibited a remarkable decrease in p38 MAPK activity and IL-6 mRNA induction by mechanical stress. Furthermore, a significant inhibition of 30 and 40% in IL-6 protein was observed in SMCs pretreated with inhibitors of p38 MAPK and ERK1/2, respectively, but not JNK. Interestingly, SMCs isolated from PKC-delta-deficient mice exhibited higher levels of IL-6 compared with wild-type cells. Finally, high levels of IL-6 expression were observed in atherosclerotic lesions of vein bypass grafts, which are related to altered biomechanical stress. Our findings demonstrate that biomechanical stress-induced IL-6 expression occurs via a mechanism that involves Ras/Rac/p38 MAPK/NF-kappaB/NF-IL6 signaling pathways, which is downregulated by PKC-delta, and suggest that modulation of this event contributes to the pathogenesis of atherosclerosis.  相似文献   

17.
Foot-and-mouth disease virus (FMDV) binds to cellular integrins through an RGD motif in its capsid protein, VP1. It is unclear, however, what kind of cellular event(s) are triggered after the binding of VP1 to the cells. In this study, we show that aqueous soluble recombinant DNA-derived VP1 (rVP1) of FMDV induced apoptosis of BHK-21 cells after binding to integrins. In addition, treatment of BHK-21 cells with rVP1 resulted in deactivation of Akt and enhancement of several proapoptotic responses such as dephosphorylation of glycogen synthase kinase-3beta and cleavage of procaspase-3, -7, and -9. Additional studies revealed that the rVP1 treatment caused apoptosis of cancer cells, including MCF-7 (a breast carcinoma cell line with a functional deletion of the caspase-3 gene) and PC-3 (a sphingosine 1-phosphate receptor subtype 3-deficient androgen-independent prostate cancer cell line). These results suggest that rVP1 of FMDV may be used selectively as a potent apoptotic agent for human cancer by modulating the Akt signaling pathway and that its effect is not primarily dependent on either activation of procaspase-3 or deactivation of sphingosine 1-phosphate receptor subtype 3.  相似文献   

18.
Differentiated melanocytic cells produce melanin, through several redox reactions including tyrosinase-catalyzed DOPA oxidation to DOPA quinone. We now developed a method based on DOPA oxidase in-gel detection and Sypro Ruby fluorometric normalization to investigate induction of specific DOPA oxidase isoforms in response to hydrogen peroxide-mediated stress, and to ask whether this is associated with p53-dependent adaptive responses. This report shows that hydrogen peroxide leads to comparable induction of 60 and 55 kDa DOPA oxidases in poorly pigmented B16 melanoma, in contrast to sole induction of a major 55 kDa DOPA oxidase in their highly pigmented counterparts. In the latter cells, this response also increases p53 concomitant with joint induction of p53-activated proteins like the cell-cycle inhibitor p21WAF1 and pro-apoptotic bax, with no comparable effect on expression of anti-apoptotic bcl-2. Together, these data suggest that response to hydrogen peroxide involves p53-mediated growth-restrictive signaling and unequal induction of specific DOPA oxidases in melanocytic cells with unequal basal pigmentation.  相似文献   

19.
Extracellular matrix (ECM) accumulation plays a key role in the progression of bladder outlet obstruction (BOO). Muscarinic receptors have been widely reported to serve as pivotal regulators in lung tissue remodeling. However, the influence of them on human bladder smooth muscle cells (HBSMCs) and the underlying molecular mechanisms have not yet been evaluated. The purposes of the present study are to investigate the effect of muscarinic receptors on the synthesis of ECM in HBSMCs and the involvement of intracellular signal transducers. The results indicated that M1-M5 muscarinic receptors were all encoded in HBSMCs. The expression rank order was M2 > M1 > M5 > M3 > M4. The gene and protein expression of collagen I (COL1), TIMP-1, and TIMP-2 was carbachol (CCH) concentration-dependently enhanced. The synthesis of COL1 in the supernatant of cell culture medium was significantly elevated by exposure to CCH. The CCH-induced protein expression of COL1, TIMP-1, and TIMP-2, however, was obviously reduced by the pretreatment of muscarinic receptor antagonists, atropine, and M3-preferring antagonist (1,1-dimethyl-4-diphenyl-acetoxypiperidinium iodide [4-DAMP]). Furthermore, ERK1/2 was activated by 100 µM CCH when compared with the control group and the pretreatment of ERK1/2 inhibitor significantly suppressed the synthesis of COL1 induced by 100 µM CCH. Besides, CCH-induced phosphorylation of ERK1/2 was remarkably restrained by the pretreatment of 4-DAMP. All in all, these findings demonstrated that M3 receptor can modulate extracellular matrix synthesis via the ERK1/2 signaling pathway, which may provide potential novel therapeutic targets for BOO.  相似文献   

20.
Toll-like receptor (TLR) signaling is an important part of the innate immune response. One of the downstream responses to TLR4 signaling upon lipopolysaccharide (LPS) stimulation is the induction of autophagy, which is a key response to multiple stressors. An additional adaptive signaling molecule that is involved in the response to stress is heme oxygenase-1 (HO-1). HO-1 signaling is essential to limit inflammation and restore homeostasis. We found that LPS induced autophagic signaling in macrophages via a TLR4, HO-1 dependent pathway in macrophages. These data add to the developing contribution of autophagic signaling as part of the inflammatory response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号