首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The icosahedral bacteriophage PM2 has a circular double-stranded DNA (dsDNA) genome and an internal lipid membrane. It is the only representative of the Corticoviridae family. How the circular supercoiled genome residing inside the viral membrane is translocated into the gram-negative marine Pseudoalteromonas host has been an intriguing question. Here we demonstrate that after binding of the virus to an abundant cell surface receptor, the protein coat is most probably dissociated. During the infection process, the host cell outer membrane becomes transiently permeable to lipophilic gramicidin D molecules proposing fusion with the viral membrane. One of the components of the internal viral lipid core particle is the integral membrane protein P7, with muralytic activity that apparently aids the process of peptidoglycan penetration. Entry of the virion also causes a limited depolarization of the cytoplasmic membrane. These phenomena differ considerably from those observed in the entry process of bacteriophage PRD1, a dsDNA virus, which uses its internal membrane to make a cell envelope-penetrating tubular structure.  相似文献   

2.
The genetic manipulation of marine double-stranded DNA (dsDNA) bacteriophage PM2 (Corticoviridae) has been limited so far. The isolation of an autonomously replicating DNA element of Pseudoalteromonas haloplanktis TAC125 and construction of a shuttle vector replicating in both Escherichia coli and Pseudoalteromonas enabled us to design a set of conjugative shuttle plasmids encoding tRNA suppressors for amber mutations. Using a host strain carrying a suppressor plasmid allows the introduction and analysis of nonsense mutations in PM2. Here, we describe the isolation and characterization of a suppressor-sensitive PM2 sus2 mutant deficient in the structural protein P10. To infect and replicate, PM2 delivers its 10-kbp genome across the cell envelopes of two gram-negative Pseudoalteromonas species. The events leading to the internalization of the circular supercoiled dsDNA are puzzling. In a poorly understood process that follows receptor recognition, the virion capsid disassembles and the internal membrane fuses with the host outer membrane. While beginning to unravel the mechanism of this process, we found that protein P10 plays an essential role in the host cell penetration.  相似文献   

3.
Icosahedral double-stranded DNA (dsDNA) bacterial viruses are known to package their genomes into preformed procapsids via a unique portal vertex. Bacteriophage PRD1 differs from the more commonly known icosahedral dsDNA phages in that it contains an internal lipid membrane. The packaging of PRD1 is known to proceed via preformed empty capsids. Now, a unique vertex has been shown to exist in PRD1. We show in this study that this unique vertex extends to the virus internal membrane via two integral membrane proteins, P20 and P22. These small membrane proteins are necessary for the binding of the putative packaging ATPase P9, via another capsid protein, P6, to the virus particle.  相似文献   

4.
Recent, primarily structural observations indicate that related viruses, harboring no sequence similarity, infect hosts of different domains of life. One such clade of viruses, defined by common capsid architecture and coat protein fold, is the so-called PRD1-adenovirus lineage. Here we report the structure of the marine lipid-containing bacteriophage PM2 determined by crystallographic analyses of the entire approximately 45 MDa virion and of the outer coat proteins P1 and P2, revealing PM2 to be a primeval member of the PRD1-adenovirus lineage with an icosahedral shell and canonical double beta barrel major coat protein. The view of the lipid bilayer, richly decorated with membrane proteins, constitutes a rare visualization of an in vivo membrane. The viral membrane proteins P3 and P6 are organized into a lattice, suggesting a possible assembly pathway to produce the mature virus.  相似文献   

5.
Cytomegalovirus (CMV) is distinct among members of the Herpesviridae family for having the largest dsDNA genome (230 kb). Packaging of large dsDNA genome is known to give rise to a highly pressurized viral capsid, but molecular interactions conducive to the formation of CMV capsid resistant to pressurization have not been described. Here, we report a cryo electron microscopy (cryoEM) structure of the murine cytomegalovirus (MCMV) capsid at a 9.1 ? resolution and describe the molecular interactions among the ~3000 protein molecules in the CMV capsid at the secondary structure level. Secondary structural elements are resolved to provide landmarks for correlating with results from sequence-based prediction and for structure-based homology modeling. The major capsid protein (MCP) upper domain (MCPud) contains α-helices and β-sheets conserved with those in MCPud of herpes simplex virus type 1 (HSV-1), with the largest differences identified as a “saddle loop” region, located at the tip of MCPud and involved in interaction with the smallest capsid protein (SCP). Interactions among the bacteriophage HK97-like floor domain of MCP, the middle domain of MCP, the hook and clamp domains of the triplex proteins (hoop and clamp domains of TRI-1 and clamp domain of TRI-2) contribute to the formation of a mature capsid. These results offer a framework for understanding how cytomegalovirus uses various secondary structural elements of its capsid proteins to build a robust capsid for packaging its large dsDNA genome inside and for attaching unique functional tegument proteins outside.  相似文献   

6.
The unusual bacteriophage PRD1 features a membrane beneath its icosahedral protein coat. The crystal structure of the major coat protein, P3, at 1.85 A resolution reveals a molecule with three interlocking subunits, each with two eight-stranded viral jelly rolls normal to the viral capsid, and putative membrane-interacting regions. Surprisingly, the P3 molecule closely resembles hexon, the equivalent protein in human adenovirus. Both viruses also have similar overall architecture, with identical capsid lattices and attachment proteins at their vertices. Although these two dsDNA viruses infect hosts from very different kingdoms, their striking similarities, from major coat protein through capsid architecture, strongly suggest their evolutionary relationship.  相似文献   

7.
Biological membranes are notoriously resistant to structural analysis. Excellent candidates to tackle this problem in situ are membrane-containing viruses where the membrane is constrained by an icosahedral capsid. Cryo-EM and image reconstruction of bacteriophage PM2 revealed a membrane bilayer following the internal surface of the capsid. The viral genome closely interacts with the inner leaflet. The capsid, at a resolution of 8.4 A, reveals 200 trimeric capsomers with a pseudo T = 21 dextro organization. Pentameric receptor-binding spikes protrude from the surface. It is evident from the structure that the PM2 membrane has at least two important roles in the life cycle. First, it acts as a scaffold to nucleate capsid assembly. Second, after host recognition, it fuses with the host outer membrane to promote genome entry. The structure also sheds light on how the viral supercoiled circular double-stranded DNA genome might be packaged and released.  相似文献   

8.
Herpes simplex type 1 virus (HSV-1) and bacteriophage λ capsids undergo considerable structural changes during self-assembly and DNA packaging. The initial steps of viral capsid self-assembly require weak, non-covalent interactions between the capsid subunits to ensure free energy minimization and error-free assembly. In the final stages of DNA packaging, however, the internal genome pressure dramatically increases, requiring significant capsid strength to withstand high internal genome pressures of tens of atmospheres. Our data reveal that the loosely formed capsid structure is reinforced post-assembly by the minor capsid protein UL25 in HSV-1 and gpD in bacteriophage λ. Using atomic force microscopy nano-indentation analysis, we show that the capsid becomes stiffer upon binding of UL25 and gpD due to increased structural stability. At the same time the force required to break the capsid increases by ∼70% for both herpes and phage. This demonstrates a universal and evolutionarily conserved function of the minor capsid protein: facilitating the retention of the pressurized viral genome in the capsid. Since all eight human herpesviruses have UL25 orthologs, this discovery offers new opportunities to interfere with herpes replication by disrupting the precise force balance between the encapsidated DNA and the capsid proteins crucial for viral replication.  相似文献   

9.
Infection of Alteromonas espejiana at restrictive temperature with mutant ts1 of bacteriophage PM2 resulted in the intracellular accumulation of virus-sized empty-appearing membrane vesicles. The DNA associated with purified vesicles was fully susceptible to digestion with DNase. Sedimentation analysis and electron microscopy suggested a full-length linear form of the normally circular viral genome. A pulse-chase-shift experiment suggested that [3H]thymidine-labeled DNA made under restrictive conditions is assembled into virions after shift to permissive temperature. A defective structural protein in the ts1 virion appears to be the cause of a rapid rate of thermal inactivation of infectivity. Analysis of the proteins of ts1 by isoelectric focusing indicated a more alkaline isoelectric mobility of the major capsid protein, sp27. Six spontaneous revertants of ts1 showed reversion to the wild-type isoelectric form of sp27. These results identify sp27 as the defective gene product of ts1. Taken together, these results suggest that the membrane of PM2 is formed without the aid of an inner core or an outer scaffolding.  相似文献   

10.
11.
The double-stranded DNA bacteriophage PRD1 uses an IncP plasmid-encoded conjugal transfer complex as a receptor. Plasmid functions in the PRD1 life cycle are restricted to phage adsorption and DNA entry. A single phage structural protein, P2, located at the fivefold capsid vertices, is responsible for PRD1 attachment to its host. The purified recombinant adsorption protein was judged to be monomeric by gel filtration, rate zonal centrifugation, analytical ultracentrifugation, and chemical cross-linking. It binds to its receptor with an apparent K(d) of 0.20 nM, and this binding prevents phage adsorption. P2-deficient particles are unstable and spontaneously release the DNA with concomitant formation of the tail-like structure originating from the phage membrane. We envisage the DNA to be packaged through one vertex, but the presence of P2 on the other vertices suggests a mechanism whereby the injection vertex is determined by P2 binding to the receptor.  相似文献   

12.
Scaffolding proteins are required for high fidelity assembly of most high T number dsDNA viruses such as the large bacteriophages, and the herpesvirus family. They function by transiently binding and positioning the coat protein subunits during capsid assembly. In both bacteriophage P22 and the herpesviruses the extreme scaffold C terminus is highly charged, is predicted to be an amphipathic alpha-helix, and is sufficient to bind the coat protein, suggesting a common mode of action. NMR studies show that the coat protein-binding domain of P22 scaffolding protein exhibits a helix-loop-helix motif stabilized by a hydrophobic core. One face of the motif is characterized by a high density of positive charges that could interact with the coat protein through electrostatic interactions. Results from previous studies with a truncation fragment and the observed salt sensitivity of the assembly process are explained by the NMR structure.  相似文献   

13.
BACKGROUND: The dsDNA bacteriophage PRD1 has a membrane inside its icosahedral capsid. While its large size (66 MDa) hinders the study of the complete virion at atomic resolution, a 1.65-A crystallographic structure of its major coat protein, P3, is available. Cryo-electron microscopy (cryo-EM) and three-dimensional reconstruction have shown the capsid at 20-28 A resolution. Striking architectural similarities between PRD1 and the mammalian adenovirus indicate a common ancestor. RESULTS: The P3 atomic structure has been fitted into improved cryo-EM reconstructions for three types of PRD1 particles: the wild-type virion, a packaging mutant without DNA, and a P3-shell lacking the membrane and the vertices. Establishing the absolute EM scale was crucial for an accurate match. The resulting "quasi-atomic" models of the capsid define the residues involved in the major P3 interactions, within the quasi-equivalent interfaces and with the membrane, and show how these are altered upon DNA packaging. CONCLUSIONS: The new cryo-EM reconstructions reveal the structure of the PRD1 vertex and the concentric packing of DNA. The capsid is essentially unchanged upon DNA packaging, with alterations limited to those P3 residues involved in membrane contacts. These are restricted to a few of the N termini along the icosahedral edges in the empty particle; DNA packaging leads to a 4-fold increase in the number of contacts, including almost all copies of the N terminus and the loop between the two beta barrels. Analysis of the P3 residues in each quasi-equivalent interface suggests two sites for minor proteins in the capsid edges, analogous to those in adenovirus.  相似文献   

14.
The Raman spectrum of a virus contains the structural signature of each of its molecular components (Thomas, 1987). We report the first Raman spectrum obtained from an intact, lipid-containing virus--the icosahedral bacteriophage PRD1--and show that this spectrum contains characteristic structure markers for the major capsid protein, the packaged double-stranded DNA genome, and the viral membrane which resides between the capsid and DNA. We find that the packaged genome of PRD1 exhibits Raman markers typical of the B-DNA secondary structure. Comparison of the Raman spectrum of the packaged DNA with that of protein-free DNA extracted from the virion shows further that the B-form secondary structure is not significantly perturbed by packaging in the virion. The Raman signature of the PRD1 membrane, monitored within the virion at 4 degrees C, is that of a phospholipid liquid-crystalline phase. The PRD1 capsid, which comprises several hundred copies of the major coat protein P3 (product of viral gene III) and a few copies of minor proteins, incorporates P3 capsomers predominantly in the beta-sheet conformation. The beta-sheet structure of P3 is maintained in the fully assembled PRD1 virion, as well as in the empty capsid. The present results demonstrate the feasibility of obtaining structural information from the three different classes of biomolecules--nucleic acid, protein, and lipid--which constitute a membrane-lined virus particle. Our results also demonstrate that the coat protein and double-stranded DNA components of a lipid-containing bacteriophage share many structural features in common with bacteriophage lacking a lipid membrane.  相似文献   

15.
The satellite bacteriophage P4 does not have genes coding for any major structural proteins, but assembles a capsid from the gene products of bacteriophage P2. The capsid assembled under control of P4 is smaller (45 nm) than the normal P2 capsid (60 nm). The low resolution (4.5 nm) structures of P2 and P4 capsids were determined by cryo-electron microscopy and image processing. The capsid of P2 shows T = 7 symmetry with most of the mass clustered as 12 pentamers and 60 hexamers. The P4 capsid has T = 4 symmetry with a similar distribution of mass to P2, but the hexamer geometry has changed. The major capsid protein has a two-domain structure. The major domains form the capsomers proper, while connecting domains form trivalent contacts between the capsomers. The size determination by P4 appears to function by altering hexamer geometry rather than by affecting the interdomain angle alone.  相似文献   

16.
Bacteriophage PRD1 is a prototype of viruses with an internal membrane. The icosahedral capsid and major coat protein share structural similarity with the corresponding structures of adenovirus. The present study further explores similarities between these viruses, considering the 5-fold vertex assemblies. The vertex structure of bacteriophage PRD1 consists of proteins P2, P5, and P31. The vertex complex mediates host cell binding and controls double-stranded DNA delivery. Quaternary structures and interactions of purified spike proteins were studied by synchrotron radiation x-ray solution scattering. Low resolution models of the vertex proteins P5, P2, and P31 were reconstructed ab initio from the scattering data. Protein P5 is a long trimer that resembles the adenovirus spike protein pIV. The receptor-binding protein P2 is a 15.5-nm long, thin monomer and does not have an adenovirus counterpart. P31 forms a pentameric base with a maximum diameter of 8.5 nm, which is thinner than the adenovirus penton pIII. P5 further polymerize into a nonameric form ((P5(3))(3)). In the presence of P31, P5 associates into a P5(6):P31 complex. The constructed models of these assemblies provided support for a model of vertex assembly onto the virion. Although similar in overall architecture, clear differences between PRD1 and adenovirus spike assemblies have been revealed.  相似文献   

17.
This article describes the structure and assembly of bacteriophage PRD1, a lipid-containing virus able to infect Escherichia coli. This phage, with an approximate diameter of 65 nm, is composed of an outer protein shell surrounding a lipid-protein membrane which, in turn, encloses the nucleic acid. The phage genome consists of a single linear dsDNA molecule of about 15 kb that has a protein covalently linked to each of its 5′ ends. This protein is used as a primer in DNA replication. During assembly membrane proteins are inserted into the host cytoplasmic membrane while major capsid protein multimers are found in the cytoplasm. Capsid multimers, assisted by two nonstructural assembly factors, are capable of translocating the virus-specific membrane resulting in the formation of cytoplasmic empty particles. Subsequent DNA packaging leads to the formation of infectious virus.  相似文献   

18.
This article describes the structure and assembly of bacteriophage PRD1, a lipid-containing virus able to infect Escherichia coli. This phage, with an approximate diameter of 65 nm, is composed of an outer protein shell surrounding a lipid-protein membrane which, in turn, encloses the nucleic acid. The phage genome consists of a single linear dsDNA molecule of about 15 kb that has a protein covalently linked to each of its 5' ends. This protein is used as a primer in DNA replication. During assembly membrane proteins are inserted into the host cytoplasmic membrane while major capsid protein multimers are found in the cytoplasm. Capsid multimers, assisted by two nonstructural assembly factors, are capable of translocating the virus-specific membrane resulting in the formation of cytoplasmic empty particles. Subsequent DNA packaging leads to the formation of infections virus.  相似文献   

19.
Chilo iridescent virus (CIV) is a large (∼ 1850 Å diameter) insect virus with an icosahedral, T = 147 capsid, a double-stranded DNA (dsDNA) genome, and an internal lipid membrane. The structure of CIV was determined to 13 Å resolution by means of cryoelectron microscopy (cryoEM) and three-dimensional image reconstruction. A homology model of P50, the CIV major capsid protein (MCP), was built based on its amino acid sequence and the structure of the homologous Paramecium bursaria chlorella virus 1 Vp54 MCP. This model was fitted into the cryoEM density for each of the 25 trimeric CIV capsomers per icosahedral asymmetric unit. A difference map, in which the fitted CIV MCP capsomers were subtracted from the CIV cryoEM reconstruction, showed that there are at least three different types of minor capsid proteins associated with the capsomers outside the lipid membrane. “Finger” proteins are situated at many, but not all, of the spaces between three adjacent capsomers within each trisymmetron, and “zip” proteins are situated between sets of three adjacent capsomers at the boundary between neighboring trisymmetrons and pentasymmetrons. Based on the results of segmentation and density correlations, there are at least eight finger proteins and three dimeric and two monomeric zip proteins in one asymmetric unit of the CIV capsid. These minor proteins appear to stabilize the virus by acting as intercapsomer cross-links. One transmembrane “anchor” protein per icosahedral asymmetric unit, which extends from beneath one of the capsomers in the pentasymmetron to the internal leaflet of the lipid membrane, may provide additional stabilization for the capsid. These results are consistent with the observations for other large, icosahedral dsDNA viruses that also utilize minor capsid proteins for stabilization and for determining their assembly.  相似文献   

20.
Bacteriophage PRD1 is a membrane-containing virus with an unexpected similarity to adenovirus. We mutagenized unassigned PRD1 genes to identify minor capsid proteins that could be structural or functional analogs to adenovirus proteins.We report here the identification of an amber mutant, sus525, in an essential PRD1 gene XXXI. The gene was cloned and the gene product was overexpressed and purified to near homogeneity. Analytical ultracentrifugation and gel filtration showed that P31 is a homopentamer of about 70 kDa. The protein was shown to be accessible on the virion surface and its absence in the sus525 particles led to the deficiency of two other viral coat proteins, protein P5 and the adsorption protein P2. Cryo-electron microscopy and image reconstruction of the sus525 particles indicate that these proteins are located on the capsid vertices, because in these particles the entire vertex structure was missing along with the peripentonal major capsid protein P3 trimers. Sus525 particles package DNA effectively but loose it upon purification.All of the PRD1 vertex structures are labile and potentially capable of mediating DNA delivery; this is in contrast to other dsDNA phages which employ a single vertex for packaging and delivery. We propose that this arises from a symmetry mismatch between protein P2 and the pentameric P31 in analogy to that between the adenovirus penton base and the receptor-binding spike.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号