首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A novel yeast strain, NCIM 3574, isolated from a decaying wood produced up to 570 IU ml–1 of xylanolytic enzymes when grown on medium containing 4% xylan. The yeast strain also produced xylanase activity (40–50 IU ml–1) in the presence of soluble carbon sources like xylose or arabinose. No xylanase activity was detected when the organism was grown on glucose. The crude xylanase preparation showed no activity towards cellulolytic substrates but low levels of -xylosidase (0.1 IU ml–1) and -l-arabinofuranosidase (0.05 IU ml–1) were detected. The temperature and pH optima for the crude xylanase preparation were 55°C and 4.5 respectively. The crude xylanase produced mainly xylose from xylan within 5 min. Prolonged hydrolysis of xylan produced xylobiose and arabinose, in addition to xylose, as the end products. The presence of arabinose as one of the end products in xylan hydrolysate could be due to the low levels of arabinofuranosidase enzyme present in the crude fermentation broth.  相似文献   

2.
Ex planta, bacteroids of the sulla-symbiont Rhizobium hedysari strain HCNT 1 terminated reduction of nitrite at nitrous oxide irrespective of the presence or absence of acetylene. Nitrate was not reduced during the experimental period, but slight nitrate reductase activity occurred if incubation with nitrate was prolonged (up to 15 h). As was observed in free-living cells, exposure of the bacteroids to the metal chelator, diethyldithiocarbamate, prevented reduction of nitrite, indicating the presence of a copper-containing nitrite reductase. Pulses of 10–75 M nitrite transiently impeded O2 uptake in bacteroids, which resumed consumption of O2 when the nitrite had been reduced. Exposure to >1.0 mM nitrite for 24h greatly inhibited nitrogenase activity (assayed as acetylene reduction activity) of bacteroids in planta. Exposure to the same concentrations of nitrite after 1h of incubation in the presence of acetylene almost completely stopped ongoing ethylene production in bacteroids of strain HCNT 1 extracted from nodules. Free cells of the non-nitrite-reducing R. hedysari strain CC 1335 were lacking in nitrogenase (acetylene-reduction) activity, whereas identically cultured (low-oxygen) strain HCNT 1 cells reduced both nitrite and acetylene.Abbreviations PMS phenazine methosulfate - DDC diethyldithiocarbamate  相似文献   

3.
Three human cytochrome P450s, 3A4, 2C9 and 1A2, were each co-expressed with NADPH-P450 reductase in Escherichia coli and used in the preparative synthesis of drug metabolites. Low dissolved oxygen (DO) concentration (<1%) during expression was found to be critical for producing active P450s. Control of temperature, pH and glycerol supplementation in 10-L fermentations enhanced enzyme expression 31–86%. Additional improvements were obtained by altering media formulations, resulting in bicistronic expression levels of 890, 1,800 and 1,010 nmol/L for 3A4, 2C9 and 1A2, respectively. The P450 titers achieved in fermentors exceeded those in flask fermentations by 3- to 6-fold in this study and up to 10-fold when compared with previously reported literature [FEBS Lett (1996) 397:210–214, Arch Biochem Biophys (1996) 327:254–259, Biochem Pharmacol (1998) 55:1315–1325, Drug Metab Pharmacokinet (2003) 18:42–47, Nat Biotechnol (1997) 15:784–788; Metab Eng (2000) 2:115–125]. Intact cells and isolated membranes obtained from 10-L fermentations were used to establish an efficient bioconversion system for the generation of metabolites. To demonstrate the utility of this approach, known metabolites of the anabolic steroid testosterone, the anti-inflammatory agent diclofenac and the analgesic agent phenacetin, were generated using 3A4, 2C9 and 1A2, respectively. The reaction conditions were optimized for pH, temperature, DO concentration, use of co-solvent and glucose supplementation. Conversion yields of 29–93% were obtained from 1-L reactions, enabling isolation of 59 mg 6-hydroxytestosterone, 110 mg 4-hydroxydiclofenac and 88 mg acetaminophen.  相似文献   

4.
A recombinant strain of Saccharomyces cerevisiae, secreting -galactosidase from Kluyveromyces lactis, grew efficiently with more than 60 g lactose l–1. The growth rate (0.23 h–1) in a cheese-whey medium was close to the highest reported hitherto for other recombinant S. cerevisiae strains that express intracellular -galactosidase and lactose-permease genes. The conditions for growth and -galactosidase secretion in this medium were optimized in a series of factorial experiments. Best results were obtained at 23 °C for 72 h. Since the recombinant strain produced less than 3% ethanol from the lactose, it was also assayed for the production of fructose 1,6-bisphosphate from cheese whey, and 0.06 g l–1 h–1 were obtained.  相似文献   

5.
Synechococcus sp. MA19, grown autotrophically under phosphate-limited conditions at 50 °C, produced poly--hydroxybutyrate (PHB) when intracellular phosphate content was 0.043–0.076mmol per g of cellular components. In the culture for 260h using Ca3(PO4)2 as a phosphate source, strain MA19 accumulated PHB at 55% (w/w) of the dry cells and the amount of PHB produced was 2.4gl–1 which was almost twice that without Ca3(PO4)2 addition.  相似文献   

6.
Summary Short peptides spanning the helicoidal sequences of the uteroglobin monomer (crystal forms P21 and C2221) were synthesized and studied by circular dichroism spectroscopy. None of them showed any secondary structure in the absence of HFIP. However, most peptides achieved a helical conformation when this structuring agent was used, with the exception of the analogue corresponding to the helicoidal fragment 19–24 (helix II, crystal P21). These results indicate that other factors, such as interchain interactions, have to contribute to helix stabilization in the molecule. On the other hand, while peptides corresponding to N- and C-terminal fragments that contain the first and fourth helices of the monomer, respectively (1–14 and 48–70) achieved a -like structure when 10–15% of HFIP was used, this behaviour was not observed when TFE was used. Moreover, substitution of cysteine by -aminobutyric acid at position 3 increased both the helicity of fragment 1–14 and its ability to adopt a -like structure, but the opposite effect was observed for fragment 48–70 when -aminobutyric acid was introduced at position 69. These results indicate that this part of the protein might be sensitive to the chemical environment it is exposed to and that the two cysteine residues at positions 3 and 69 of the monomer could play a different role in the folding process.  相似文献   

7.
Summary The inhibitors of DNA synthesis, 5-fluoro-2-deoxyuridine and hydroxyurea, caused an inhibition of thymidine kinase, replicative DNA polymerase and CDP reductase activities in stimulated lymphocytes when they were exposed to the inhibitors during the early transformation period (0–17 hr). However, the enzyme activities were unaffected when the inhibitors were added to cells stimulated for more than 17 hr. As opposed to these enzymes the deoxycytidylate deaminase activity was unaffected by the inhibitors during the entire transformation period (0–28 hr). This indicates a close regulatory mechanism in lymphocytes between DNA synthesis and induction of enzymes involved in DNA replication. The inhibitory mechanism exerted by the inhibitors is for the moment unknown. It might be independent of the well-known inhibition of the target enzymes, thymidylate synthetase and ribonucleoside diphosphate reductase, since there was no immediate apparent correlation in time between depletion of the pool sizes and the inhibition of the enzyme activities.  相似文献   

8.
The thermophilic fungus,Humicola sp isolated from soil, secreted extracellular -galactosidase in a medium cotaining wheat bran extract and yeast extract. Maximum enzyme production was found in a medium containing 5% wheat bran extract as a carbon source and 0.5% beef extract as a carbon and nitrogen source. Enzyme secretion was strongly inhibited by the presence of Cu2+, Ni2+ and Hg2+ (1mM) in the fermentation medium. Production of enzyme under stationary conditions resulted in 10-fold higher activity than under shaking conditions. The temperature range for production of the enzyme was 37° C to 55°C, with maximum activity (5.54 U ml–1) at 45°C. Optimum pH and temperature for enzyme activity were 5.0 and 60° C respectively. One hundred per cent of the original activity was retained after heating the enzyme at 60°C for 1 h. At 5mM Hg2+ strongly inhibited enzyme activity. TheK m andV max forp-nitrophenyl--d-galactopyranoside were 60M and 33.6 mol min–1 mg–1, respectively, while for raffinose those values were 10.52 mM and 1.8 mol min–1 mg–1, respectively.  相似文献   

9.
Alcaligenes faecalis G utilized 95–97% of 5–15 g -caprolactam l–1 in 24–48 h over a pH range of 6–8.5 and at 23–40 °C, without complex nutrient requirement. In the absence of KH2PO4 and K2HPO4/MgSO4 in the medium, only 7.6% and 0.2% of 10 g caprolactam l–1 was utilized, respectively. The chemical oxygen demand (COD) of the wastewater of nylon-6 plant was mainly due to its caprolactam content. A. faecalis G decreased the caprolactam content and COD of the wastewater by 80–90% of the original in spite of the wastewater having higher caprolactam content (3600 mg l–1) and COD (7700 mg l–1) than those of any of the previous reports.  相似文献   

10.
A commercial preparation of -amylase, Biotempase, obtained from Biocon India Pvt. Ltd., and crude glucoamylase produced from Aspergillus sp. NA21 were used to hydrolyse sorghum powder, a non-conventional starchy substrate. Among various concentrations of starch (15–35%, dry weight/volume) tried for maximum liquefaction; slurry made with 25% substrate concentration proved optimal. An economical process of liquefaction was carried out using steam under pressure (0.2–0.3 bar, 104–105 °C) to liquefy a 25% slurry in just 45 min, contrary to a slower process carried out at 95 °C in a water bath. For liquefaction of starch a pH of 5.0 proved to be optimum. The dose of Biotempase as prescribed by the supplier could be reduced by 33% achieving the same degree of liquefaction, by addition of CaCl2 to the starch slurry at the concentration of 200 mg/l. The conditions for the saccharification of liquefied starch were optimized to be 45 °C and pH 5.0, producing 90% saccharification in 24 h. Supplementation of divalent ions Ca2+, Mg2+ and Zn2+ in the process of saccharification showed no effect. Finally glucose was found to be the main hydrolysis product in the saccharification of sorghum starch.  相似文献   

11.
Caffeine (1,3,7-trimethylxanthine), a ubiquitous component of human diet has been suggested as a chemical indicator of ecosystem impacts of sewage spills and treated effluent discharges because it is not sufficiently metabolized by wastewater microorganisms. This study identified enzymes responsible for caffeine metabolism in sewage bacteria. Pseudomonas putida biotype A (ATCC 700097) originally isolated as a rare caffeine-degrading organism in domestic wastewater exhibited diauxic growth on caffeine, concomitant with the expression of a P450-type cytochrome and peroxidase enzyme activities. Initial growth phase lasted 13.8 ± 1.4 h with a growth rate that was five times slower than the secondary growth phase that lasted 5.5 ± 1.2 h. Molecular and enzymatic characteristics of the cytochrome P450-type enzyme differ from the previously described cytochrome P450 (P450cam) of P. putida (ATCC 17453) involved in camphor metabolism. The caffeine-inducible cytochrome P450-type enzyme exhibited a carbon monoxide difference spectrum peak at 450 nm, but does not allow growth on camphor. Caffeine induced production of haem-associated peroxidase activity was confirmed with 3,3, 5,5-tetramethylbenzidine–H2O2 reaction in polyacrylamide gels. Polymerase chain reaction (PCR) primers derived from the gene for cytochrome P450cam (camC) of P. putida (ATCC 17453) did not yield an amplification product when DNA extracted from P. putida strain ATCC 700097 was used as template. The data demonstrate that caffeine is metabolized through a specific biphasic pathway driven by oxygen-demanding enzymes.  相似文献   

12.
A commercial preparation of -amylase, Biotempase, obtained from Biocon India Pvt. Ltd., and crude glucoamylase produced from Aspergillus sp. NA21 were used to hydrolyse tapioca powder, a non-conventional starchy substrate. Among various concentrations of starch (15–35%, dry weight/volume) tried for maximum liquefaction; slurry made with 25% substrate concentration proved optimal. An economical process of liquefaction was carried out using steam under pressure (0.2–0.3 bar, 104–105 °C) to liquefy a 25% slurry in just 45 min, contrary to a slower process carried out at 95 °C in a water bath. For liquefaction of starch a pH of 5.0 proved to be optimum. The dose of Biotempase as prescribed by the supplier could be reduced by 33% achieving the same degree of liquefaction, by addition of CaCl2 to the starch slurry at the concentration of 120 mg/l. The conditions for the saccharification of liquefied starch were optimized to be 60 °C and pH 5.0, producing 90% saccharification in 24 h. Supplementation of divalent ions Ca2+, Mg2+ and Zn2+ in the process of saccharification showed no effect. Finally glucose was found to be the main hydrolysis product in the saccharification of tapioca starch.  相似文献   

13.
In the present study we investigated the effects of L-pyroglutamic acid (PGA), which predominantly accumulates in the inherited metabolic diseases glutathione synthetase deficiency (GSD) and -glutamylcysteine synthetase deficiency (GCSD), on some in vitro parameters of energy metabolism and lipid biosynthesis. We evaluated the rates of CO2 production and lipid synthesis from [U-14C]acetate, as well as ATP levels and the activities of creatine kinase and of the respiratory chain complexes I-IV in cerebral cortex of young rats in the presence of PGA at final concentrations ranging from 0.5 to 3 mM. PGA significantly reduced brain CO2 production by 50% at the concentrations of 0.5 to 3 mM, lipid biosynthesis by 20% at concentrations of 0.5 to 3 mM and ATP levels by 52% at the concentration of 3 mM. Regarding the enzyme activities, PGA significantly decreased NADH:cytochrome c oxireductase (complex I plus CoQ plus complex III) by 40% at concentrations of 0.5–3.0 mM and cytochrome c oxidase activity by 22–30% at the concentration of 3.0 mM, without affecting the activities of succinate dehydrogenase, succinate:DCPIP oxireductase (complex II), succinate:cytochrome c oxireductase (complex II plus CoQ plus complex III) or creatine kinase. The results strongly indicate that PGA impairs brain energy production. If these effects also occur in humans, it is possible that they may contribute to the neuropathology of patients affected by these diseases.  相似文献   

14.
A recombinant CHO cell line in which the expresison of human follicle stimulating hormone (hFSH) was under the control of the actin promoter was maintained in steady state perfusion cultures on a protein free medium. The level of expression of the hFSH was controlled by varying the steady state level of dissolved oxygen (10–90% of air saturation) and of sodium butyrate (0–1.5mM). Under these conditions, the specific productivity of hFSH (qFSH) varied from 0.7 to 4.8 ng hFSH/106 cells/h. As the specific productivity of hFSH increased, there was a shift in the FSH isoforms to the lower pI fractions, corresponding to increased sialic acid content. As the specific productivity of hFSH increased, shifting the isoform distribution towards the lower pI isoforms, that the sialyltransferase enzymic activity also increased.  相似文献   

15.
The effect of -alanyl-L-histidinato zinc (AHZ) on protein components in osteoblastic MC3T3-E1 cells was investigated. Cells were cultured for 3 days at 37°C in CO2 incubator in plastic dishes containing -modified minimum essential medium supplemented with 10% fetal bovine serum. After the cultures, the medium was exchanged for that containing 0.1% bovine serum albumin plus various concentrations of AHZ or other reagents, and the cells were cultured further 3 or 6 days. The homgenate of cells was analyzed with SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The presence of AHZ (10–7 to 10–5 M) caused an appreciable increase of many protein components in cells. Especially, the 67 killo-dalton (kDa) and 44 kDa proteins which are the major components from control cells were clearly increased by the presence of AHZ. Furthermore, the concentrations of osteocalcin, insulin-like growth factor-I and transforming growth factor- in the culture medium secreted from osteoblastic cells were markedly increased by the presence of AHZ (10–6 and 10–5 M). The effect of AHZ was a greater than that of zinc sulfate (10–6 and 10–5 M). The present findings suggest that AHZ can increase many proteins which are involved in the stimulation of bone formation and cell proliferation in osteoblastic cells.  相似文献   

16.
The effect of zinc compounds on osteoclast-like cell formation in rat marrow culture in vitro was investigated. The bone marrow cells were cultured for 7 days in -minimal essential medium containing a well-known bone resorbing hormone (1, 25-dihydroxyvitamin D3 and parathyroid hormone [1–34]). Osteoclast-like cell formation was estimated by staining for tartrateresistant acid phosphatase (TRACP), a marker enzyme of osteoclasts. The presence of 1, 25-dihydroxyvitamin D3 (10–8 M) or parathyroid hormone (PTH; 10–8 M) induced a remarkable increase in osteoclast-like multinucleated cells (MNC). These increases were clearly inhibited by the presence of zinc sulfate or zinc-chelating dipeptide (-alanyl-L-histidinato zinc; AHZ) in the concentration range of 10–7 to 10–5 M. The inhibitory effect was seen at the earlier stage of osteoclast-like MNC formation. However, zinc compounds (10–6 M) did not have an effect on PTH (10–8 M)-induced osteoclast-like cell formation in the presence of EGTA (5 × 10–4 M), dibucaine (10–5 M) or staurosporine (10–9 M). Moreover, when osteoclasts isolated from rat femoraldiaphyseal tissues were cultured for 24 h in the presence of zinc compounds (10–7 to 10–5 M), the compounds did not have an effect on cell numbers or lysosomal enzymes activity (acid phosphatase and -glucuronidase) in the cells. The present study clearly demonstrates that zinc compounds inhibit osteoclast-like cell formation at the earlier stage with differentiation of marrow cells.  相似文献   

17.
The parental strain (A+T+) of Saccharomyces cerevisiae and mutants, deficient in catalase T (A+T), catalase A (AT+) or both catalases (AT), grew on ethanol and oleic acid with comparable doubling times. Specific activities of catalase were low in glucose- and ethanol-grown cells. In the two oleic acid-grown A+-strains (A+T+ and A+T) high catalase activities were found; catalase activity invariably remained low in the AT+ strain and was never detected in the AT strain. The levels of -oxidation enzymes in oleic acid-grown cells of the parental and all mutant strains were not significantly different. However, cytochrome C peroxidase activity had increased 8-fold in oleic acid grown A strains (AT+ and AT) compared to parental strain cells. The degree of peroxisomal proliferation was comparable among the different strains. Catalase A was shown to be located in peroxisomes. Catalase T is most probably cytosolic in nature and/or present in the periplasmic space.  相似文献   

18.
The biosynthesis of polyhydroxyalkanoates (PHAs) was studied, for the first time, in the thermophilic bacterium Thermus thermophilus. Using sodium gluconate (1.5% w/v) or sodium octanoate (10 mM) as sole carbon sources, PHAs were accumulated to approximately 35 or 40% of the cellular dry weight, respectively. Gas chromatographic analysis of PHA isolated from gluconate-grown cells showed that the polyester (Mw: 480,000 g.mol–1) was mainly composed of 3-hydroxydecanoate (3HD) with a molar fraction of 64%. In addition, 3-hydroxyoctanoate (3HO), 3-hydroxyvalerate (3HV) and 3-hydroxybutyrate (3HB) occurred as constituents. In contrast, the polyester (Mw: 391,000 g mol–1) from octanoate-grown cells was composed of 24.5 mol% 3HB, 5.4 mol% 3HO, 12.3 mol% 3-hydroxynonanoate (3HN), 14.6 mol% 3HD, 35.4 mol% 3-hydroxyundecanoate (3HUD) and 7.8 mol% 3-hydroxydodecanoate (3HDD). Activities of PHA synthase, a -ketothiolase and an NADPH-dependent reductase were detected in the soluble cytosolic fraction obtained from gluconate-grown cells of T. thermophilus. The soluble PHA synthase was purified 4271-fold with 8.5% recovery from gluconate-grown cells, presenting a Km of 0.25 mM for 3HB-CoA. The optimal temperature of PHA synthase activity was about 70°C and acts optimally at pH near 7.3. PHA synthase activity was inhibited 50% with 25 M CoA and lost all of its activity when it was treated with alkaline phosphatase. PHA synthase, in contrary to other reported PHA synthases did not exhibit a lag phase on its kinetics, when low concentration of the enzyme was used. Incubation of PHA synthase with 1 mM N-ethyl-maleimide inhibits the enzyme 56%, indicating that cysteine might be involved in the catalytic site of the enzyme. Acetyl phosphate (10 mM) activated both the native and the dephosphorylated enzyme. A major protein (55 kDa) was detected by SDS-PAGE. When a partially purified preparation was analyzed on native PAGE the major band exhibiting PHA synthase activity was eluted from the gel and analyzed further on SDS-PAGE, presenting the first purification of a PHA synthase from a thermophilic microorganism.  相似文献   

19.
    
The production of endo--1,4-glucanase by a Bacillus strain isolated from a hot spring in Zimbabwe was studied in batch culture, chemostat culture, and carbon dioxide-regulated auxostat (CO2-auxostat). The bacteria produced the enzyme in the presence of excess glucose or sucroso, but not under carbon-limited conditions in a chemostat using mineral medium. There was a specific growth rate dependent linear increase in enzyme production in glucose excess, nitrogen-limited chemostat cultures. A high specific growth rate of 2.2 h-1 and a high rate of enzyme production of 362 nkat (mg dry mass h)-1 were attained under nutrient rich conditions in the CO2-auxostat. The bacteria had the highest specific growth rate and endo--1,4-glucanase enzyme production at 50° C. The maximum specific growth rate and the rate of enzyme production increased when yeast extract and tryptone were added in increasing amounts to the mineral medium used for cultivation in separate experiments. Increasing the glucose concentration in the CO2-auxostat cultures increased the rate of enzyme production but did not affect the specific growth rate.  相似文献   

20.
The effect of amyloid (A), the major constituent of the Alzheimer's (AD) brain on lipid metabolism was investigated in cultured nerve cells and in a fetal rat brain model. Differentiated (NGF) and undifferentiated PC12 cells or primary cerebral cell cultures were incubated with [14C]acetate in the absence or presence of A1–40. Incorporation of label into lipid species was determined after lipid extraction and TLC separation. Phosphatidylcholine (PC) and phosphatidylserine (PS) synthesis was increased by A1–40, in a dose dependent manner, an effect which was more pronounced in differentiated PC12 cells. A significant proportion of radioactivity (5–6%) was released into the medium with a radioactivity distribution similar to that of the cellular lipids. Cholesterol and PC were the highest labeled medium lipids. Increasing A1–40 concentration up to 0.1 g/ml in cerebral cells but not in PC12 cells, caused a relative increase (1.5 fold) in release of PS, while that of PE decreased. Stimulation of PS release may possibly be associated with apoptotic cell death. A1–40 peptide (5 g) was administered intraperitonealy into rat fetuses (18 days gestation) along with [14C]acetate (2Ci/fetus). After 24 h, the maternal-fetal blood supply was occluded for 20 min (ischemia) followed by 15 min reperfusion. Fetuses were killed and liver and brain tissue subjected to lipid extraction and radioactivity determination after TLC. A1–40 peptide increased synthesis of different classes of lipids up to 20–40% in brain tissue compared to controls. Labeling of liver lipids was decreased by A1–40 by 20–30%. A general decrease in synthesis of lipids was observed after ischemia/reperfusion. Our data suggest that A1–40 peptide regulates normal lipid biosynthesis but under ischemia it compromises it. The latter finding may confirm the oxidative stress etiology in AD and suggests that A1–40 modulation of lipid metabolism may have Alzheimer's pathological relevance, particularly at high peptide concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号