首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytoplasmic male sterility (CMS) is a maternally inherited trait in which plants do not produce viable pollen. Fertility in plants with CMS can be recovered by nuclear restorer genes. Most restorer genes cloned so far are members of the pentatricopeptide repeat (PPR) protein family. The objective of our study was to use the CMS-D8 and restoration (Rf2) system of cotton (Gossypium hirsutum L.) to develop more DNA markers for the Rf2 gene. In a backcross population with 112 plants, segregation of male fertility was 1 fertile : 1 sterile. Three new RAPD markers were identified for Rf2, one of which was converted to a CAPS marker. In addition, 2 AFLP markers and 1 SSR marker were identified to be linked to the fertility restorer gene (Rf2). PPR motif primers were designed based on the conserved PPR motifs and used in combination with AFLP primers to test the mapping population, and 1 PPR-AFLP marker was identified. A linkage map with 9 flanking markers including 1 from a previous study was constructed.  相似文献   

2.
Up to now a single cytoplasmic male sterility (CMS) source, PET1, is used worldwide for hybrid breeding in sunflower. Introgression of the restorer gene Rf1, responsible for fertility restoration, into new breeding material requires tightly linked markers to perform an efficient marker-assisted selection. A survey of 520 decamer primers by bulked segregant analyses identified five RAPD markers linked to the restorer gene Rf1. In a F(2) population of 183 individuals one of the RAPD markers, OPK13_454, mapped 0.8 cM from Rf1, followed by OPY10_740 with 2 cM. Bulked segregant analyses using 48 AFLP primer combinations identified 17 polymorphisms, which could be mapped in the same linkage group as Rf1. E33M61_136, and E41M48_113 were mapped 0.3 cM and 1.6 cM from the gene, respectively. Conversion of E41M48_113 into a sequence-specific marker resulted in a monomorphic pattern. However, two of the RAPD markers, OPK13_454 and OPY10_740, were successfully converted into SCAR markers, HRG01 and HRG02, which are now available for marker-assisted selection. To investigate the utility of these SCAR markers in other cross-combinations they were tested in a set of 20 lines. Comparison of the patterns of 11 restorer and nine maintainer lines of PET1 demonstrated that the markers OPK13_454/HRG01 and HRG02 were absent in all maintainer lines but present in all restorer lines, apart from the high oleic line RHA348 and the dwarf line Gio55. In addition, restorer lines developed from the interspecific hybrids Helianthus annuus x Helianthus mollis and H. annuus x Helianthus rigidus gave the same characteristic amplification products.  相似文献   

3.
普通小麦D2型CMS系恢复基因的遗传分析   总被引:1,自引:0,他引:1  
在育性基因遗传特征研究的基础上,通过测交筛选出遗4060,M8003,6D/6R,GR1,960789,保769-22-6等几个高恢复系,F2代,F1BC1代的遗传分析结果和等位性测验,F1代自交可育株的连续选择结果证明这些恢复系的育性恢复受两对独立遗传的主效基因控制,同时存在剂量不等的微效基因,建议将这两对主效恢复基因定名为D^2Rf1,D^2Rf1,D^2Rf2,D^2Rf2。恢复系的选育应以模式C2(主效恢复基因+微效恢复基因)为首选。  相似文献   

4.
The Rf3 gene restores the pollen fertility disturbed by S male sterile cytoplasm. In order to develop molecular markers tightly linked to Rf3, we used amplified fragment length polymorphism (AFLP) technique with near isogenic lines (NILs) and bulk segregant analysis (BSA). A BC1F1 population from a pair of NILs with different Rf3 locus was constructed and 528 primer combinations was screened. A linkage map was constructed around the Rf3 locus, which was mapped on the distal region of chromosome 2 long arm with the help of SSR marker UMC2184. The closest marker E7P6 was 0.9 cM away from Rf3. Marker E3P1, 2.4 cM from Rf3, and E12M7, 1.8 cM from Rf3, were converted into a codominant CAPS and a dominant SCAR marker, and designated as CAPSE3P1 and SCARE12M7, respectively. These markers are useful for marker-assisted selection and map-based cloning of the Rf3 gene.  相似文献   

5.
Kim DS  Kim DH  Yoo JH  Kim BD 《Molecules and cells》2006,21(1):135-140
Cytoplasmic male sterility (CMS) in plants, which is due to failure to produce functional pollen, is a maternally inherited trait. Specific nuclear genes that sup-press CMS, termed fertility restorer (Rf) genes, have been identified in several plants. In this study, Rf-linked molecular markers in pepper (Capsicum annuum L.) were detected by bulked segregant analysis of eight amplified fragment length polymorphisms (AFLPs). Only AFRF8 was successfully converted to a cleaved amplified polymorphic sequence (CAPS) marker. This was named AFRF8CAPS and genotype determination using it agreed with that obtained with the original AFRF8. A linkage map with a total size of 54.1 cM was constructed with AFRF8CAPS and the seven AFLP markers using the Kosambi function. The AFRF8CAPS marker was shown to be closest to Rf with a genetic distance of 1.8 cM. These markers will be useful for fast and reliable detection of restorer lines during F(1) hybrid seed production and breeding programs in pepper.  相似文献   

6.
Iso-cytoplasmic restorers possess the same male sterile cytoplasm as the cytoplasmic male sterile (CMS) lines, thereby minimizing the potential cyto-nuclear conflict in the hybrids. Restoration of fertility of the wild abortive CMS is governed by two major genes namely, Rf3 and Rf4. Therefore, assessing the allelic status of these restorer genes in the iso-cytoplasmic restorers using molecular markers will not only help in estimating the efficiency of these genes either alone or in combination, in fertility restoration in the hybrids in different environments, but will also be useful in determining the efficacy of these markers. In the present study, the efficiency of molecular markers in identifying genotypes carrying restorer allele of the gene(s) Rf3 and Rf4, restoring male fertility of WA cytoplasm in rice was assessed in a set of 100 iso-cytoplasmic rice restorers using gene linked as well as candidate gene based markers. In order to validate the efficacy of markers in identifying the restorers, a sub-set of selected 25 iso-cytoplasmic rice restorers were crossed with four different cytoplasmic male sterile lines namely, IR 79156A, IR 58025A, Pusa 6A and RTN 12A, and the pollen and spikelet fertility of the F1s were evaluated at three different locations. Marker analysis showed that Rf4 was the predominant fertility restorer gene in the iso-cytoplasmic restorers and Rf3 had a synergistic effect on fertility restoration. The efficiency of gene based markers, DRCG-RF4-14 and DRRM-RF3-10 for Rf4 (87%) and Rf3 (84%) genes was higher than respective gene-linked SSR markers RM6100 (80%) and RM3873 (82%). It is concluded that the gene based markers can be effectively used in identifying fertility restorer lines obviating the need for making crosses and evaluating the F1s. Though gene based markers are more efficient, there is a need to identify functional polymorphisms which can provide 100% efficiency. Three iso-cytoplasmic restorers namely, PRR 300, PRR 363 and PRR 396 possessing both Rf4 and Rf3 genes and good fertility restoration have been identified which could be used further in hybrid rice breeding.  相似文献   

7.
The A1 cytoplasmic–nuclear male sterility system in sorghum is used almost exclusively for the production of commercial hybrid seed and thus, the dominant genes that restore male fertility in F1 hybrids are of critical importance to commercial seed production. The genetics of fertility restoration in sorghum can appear complex, being controlled by at least two major genes with additional modifiers and additional gene–environment interaction. To elucidate the molecular processes controlling fertility restoration and to develop a marker screening system for this important trait, two sorghum recombinant inbred line populations were created by crossing a restorer and a non-restoring inbred line, with fertility phenotypes evaluated in hybrid combination with three unique cytoplasmic male sterile lines. In both populations, a single major gene segregated for restoration which was localized to chromosome SBI-02 at approximately 0.5 cM from microsatellite marker, Xtxp304. In the two populations we observed that approximately 85 and 87% of the phenotypic variation in seed set was associated with the major Rf gene on SBI-02. Some evidence for modifier genes was also observed since a continuum of partial restored fertility was exhibited by lines in both RIL populations. With the prior report (Klein et al. in Theor Appl Genet 111:994–1012, 2005) of the cloning of the major fertility restoration gene Rf1 in sorghum, the major fertility restorer locus identified in this study was designated Rf2. A fine-mapping population was used to resolve the Rf2 locus to a 236,219-bp region of chromosome SBI-02, which spanned ~31 predicted open reading frames including a pentatricopeptide repeat (PPR) gene family member. The PPR gene displayed high homology with rice Rf1. Progress towards the development of a marker-assisted screen for fertility restoration is discussed.  相似文献   

8.
用微卫星标记定位小麦T型CMS的恢复基因   总被引:18,自引:1,他引:17  
以T型细胞质雄性不育系 75 336 9A×恢复系 72 6 9 10的F2 群体作为育性调查和基因定位群体。通过育性分析 ,确定该恢复系含有 2个主效恢复基因 ;结合群分法 ,对恢复基因进行了SSR分子标记定位 ,在 2 30对微卫星引物中 ,微卫星标记Xgwm136和Xgwm5 5 0分别与 2个主效恢复基因连锁。这两个标记与Rf基因之间的遗传距离分别为 6 7cM和 5 1cM ,从而将该恢复基因定位在 1AS、1BS染色体上。  相似文献   

9.
In indica rice, the HongLian (HL)-type combination of cytoplasmic male sterility (CMS) and fertility restoration (Rf) is widely used for the production of commercial hybrid seeds in China, Laos, Vietnam and other Southeast Asian countries. Generally, any member of the gametophytic fertility restoration system, 50% of the pollen in hybrid F(1) plants displays recovered sterility. In this study, however, a HL-type hybrid variety named HongLian You6 had approximately 75% normal (viable) pollen rather than the expected 50%. To resolve this discrepancy, several fertility segregation populations, including F(2) and BC(1)F(1) derived from the HL-CMS line Yuetai A crossed with the restorer line 9311, were constructed and subjected to genetic analysis. A gametophytic restoration model was discovered to involve two non-allelic nuclear restorer genes, Rf5 and Rf6. The Rf5 had been previously identified using a positional clone strategy. The Rf6 gene represents a new restorer gene locus, which was mapped to the short arm of chromosome 8. The hybrid F(1) plants containing one restorer gene, either Rf5 or Rf6, displayed 50% normal pollen grains with I(2)-KI solution; however, those with both Rf5 and Rf6 displayed 75% normal pollens. We also established that the hybrid F(1) plants including both non-allelic restorer genes exhibited an increased stable seed setting when subjected to stress versus the F(1) plants with only one restorer gene. Finally, we discuss the breeding scheme for the plant gametophytic CMS/Rf system.  相似文献   

10.
Sunflower oil is one of the major sources of edible oil. As the second largest hybrid crop in the world, hybrid sunflowers are developed by using the PET1 cytoplasmic male sterility system that contributes to a 20?% yield advantage over the open-pollinated varieties. However, sunflower production in North America has recently been threatened by the evolution of new virulent pathotypes of sunflower rust caused by the fungus Puccinia helianthi Schwein. Rf ANN-1742, an 'HA 89' backcross restorer line derived from wild annual sunflower (Helianthus annuus L.), was identified as resistant to the newly emerged rust races. The aim of this study was to elucidate the inheritance of rust resistance and male fertility restoration and identify the chromosome location of the underlying genes in Rf ANN-1742. Chi-squared analysis of the segregation of rust response and male fertility in F(2) and F(3) populations revealed that both traits are controlled by single dominant genes, and that the rust resistance gene is closely linked to the restorer gene in the coupling phase. The two genes were designated as R ( 11 ) and Rf5, respectively. A set of 723 mapped SSR markers of sunflower was used to screen the polymorphism between HA 89 and the resistant plant. Bulked segregant analysis subsequently located R ( 11 ) on linkage group (LG) 13 of sunflower. Based on the SSR analyses of 192 F(2) individuals, R ( 11 ) and Rf5 both mapped to the lower end of LG13 at a genetic distance of 1.6?cM, and shared a common marker, ORS728, which was mapped 1.3?cM proximal to Rf5 and 0.3?cM distal to R ( 11 ) (Rf5/ORS728/R ( 11 )). Two additional SSRs were linked to Rf5 and R ( 11 ): ORS995 was 4.5?cM distal to Rf5 and ORS45 was 1.0?cM proximal to R ( 11 ). The advantage of such an introduced alien segment harboring two genes is its large phenotypic effect and simple inheritance, thereby facilitating their rapid deployment in sunflower breeding programs. Suppressed recombination was observed in LGs 2, 9, and 11 as it was evident that no recombination occurred in the introgressed regions of LGs 2, 9, and 11 detected by 5, 9, and 22 SSR markers, respectively. R ( 11 ) is genetically independent from the rust R-genes R ( 1 ), R ( 2 ), and R ( 5 ), but may be closely linked to the rust R-gene R ( adv ) derived from wild Helianthus argophyllus, forming a large rust R-gene cluster of R ( adv )/R ( 11 )/R ( 4 ) in the lower end of LG13. The relationship of Rf5 with Rf1 is discussed based on the marker association analysis.  相似文献   

11.
We report the molecular mapping of a gene for pollen fertility in A1 (milo) type cytoplasm of sorghum using AFLP and SSR marker analysis. DNA from an F2 population comprised of 84 individuals was screened with AFLP genetic markers to detect polymorphic DNAs linked to fertility restoration. Fifteen AFLP markers were linked to fertility restoration from the initial screening with 49 unique AFLP primer combinations (+3/+3 selective bases). As many of these AFLP markers had been previously mapped to a high-density genetic map of sorghum, the target gene (rf1) could be mapped to linkage group H. Confirmation of the map location of rf1 was obtained by demonstrating that additional linkage group-H markers (SSR, STS, AFLP) were linked to fertility restoration. The closest marker, AFLP Xtxa2582, mapped within 2.4 cM of the target loci while two SSRs, Xtxp18 and Xtxp250, flanked the rf1 locus at 12 cM and 10.8 cM, respectively. The availability of molecular markers will facilitate the selection of pollen fertility restoration in sorghum inbred-line development and provide the foundation for map-based gene isolation. Received: 22 August 2000 / Accepted: 18 October 2000  相似文献   

12.
We report here the molecular mapping of a fertility restorer gene (named Rf1) for Owen cytoplasmic male sterility in sugar beet. Eight AFLP and two RAPD markers, tightly linked to the Rf1 locus, were identified using bulked segregant analysis. Three AFLP markers, mAFEM972, mAFEM976 and mAFEM985, were found to co-segregate with the Rf1 allele in our mapping populations. With the help of RFLP markers, previously mapped on the sugar beet genome, we showed that Rf1 is positioned in the terminal region of linkage group Kiel III/Koeln IV. This map location agrees well with that found for the restorer gene X, which suggests that the Rf1 locus corresponds to the X locus. The availability of the molecular markers will facilitate the selection of maintainer–pollinator lines in breeding program and provide the foundation for map-based cloning of the Rf1 gene.  相似文献   

13.
14.
通过研究普通小麦D^2型CMS-育性恢复体系中育性基因的种类及其遗传特性。结果表明:(1)D^2型不育系具有较好的不育性保持与恢复特征,在一般的普通小麦品种(系)中具有广泛的恢复(基因)源、可恢复度高(恢复度超过50%的品种或品质占到33.61%),也能较容易地转育出新的不育系(完全保持不育性的品种或品系占到25.21%),这一特征明显优于现有T、K、V型等不育系。(2)D^2型不育系的不育性受核内不育基因和抑制基因控制,相应的核基因型分为Al(不育基因)、A2(不育基因+抑制基因)两类;恢复纱的恢复性受核内主效恢复基因、微效恢复基因和抑制基因控制,相应的核基因型分为C1(主效恢复基因)、C2(驻效恢复基因+微效恢复基因)、C3(微效恢复基因)、C4(主效恢复基因+抑制基因)、C5(主效恢复基因+微效恢复基因+抑制基因)、C6(微效恢复基因+抑制基因)6种。环境条件的变化对育性基因、尤其是微效恢复基因和抑制基因的遗传效应有不同程度的影响。D^2型不育有效杂交组合的模型为:A1+C1`A1 C2、A2+C2。(3)D^2型不育系等位恢复基因的遗传表现为不完全显性,非等位恢复基因的遗传表现出积效应,这正是强恢复系德育的理论依据之一。  相似文献   

15.
Two major nuclear genes, Rf3 and Rf4, are known to be associated with fertility restoration of wild-abortive cytoplasmic male sterility (WA-CMS) in rice. In the present study, through a comparative sequence analysis of the reported putative candidate genes, viz. PPR9-782-(M,I) and PPR762 (for Rf4) and SF21 (for Rf3), among restorer and maintainer lines of rice, we identified significant polymorphism between the two lines and developed a set of PCR-based codominant markers, which could distinguish maintainers from restorers. Among the five markers developed targeting the polymorphisms in PPR9-782-(M,I), the marker RMS-PPR9-1 was observed to show clear polymorphism between the restorer (n = 120) and maintainer lines (n = 44) analyzed. Another codominant marker, named RMS-PPR762 targeting PPR762, displayed a lower efficiency in identification of restorers and maintainers, indicating that PPR9-782-(M,I) is indeed the candidate gene for Rf4. With respect to Rf3, a codominant marker, named RMS-SF21-5 developed targeting SF21, displayed significantly lower efficiency in identification of restorers and non-restorers as compared to the Rf4-specific markers. Validation of these markers in a F2 mapping population segregating for fertility restoration indicated that Rf4 has a major influence on fertility restoration and Rf3 is a minor gene. Further, the functional marker RMS-PPR9-1 was observed to be very useful in identification of impurities in a seed lot of the popular hybrid, DRRH3. Interestingly, when RMS-PPR9-1 and RMS-SF21-5 were considered in conjunction with analysis, near-complete, marker–trait co-segregation was observed, indicating that deployment of the candidate gene-specific markers both Rf4 and Rf3, together, can be helpful in accurate identification of fertility restorer lines and can facilitate targeted transfer of the two restorer genes into elite varieties through marker-assisted breeding.  相似文献   

16.
Rf1 is a nuclear gene that controls fertility restoration in cases of cytoplasmic male sterility caused by the Owen cytoplasm in sugar beet. In order to isolate the gene by positional cloning, a BAC library was constructed from a restorer line, NK198, with the genotype Rf1Rf1. The library contained 32,180 clones with an average insert size of 97.8 kb, providing 3.4 genome equivalents. Five AFLP markers closely linked to Rf1 were used to screen the library. As a result, we identified eight different BAC clones that were clustered into two contigs. The gap between the two contigs was filled by chromosome walking. To map the Rf1 region in more detail, we developed five cleaved amplified polymorphic sequence (CAPS) markers from the BAC DNAs identified, and carried out genotyping of 509 plants in the mapping population with the Rf1-flanking AFLP and CAPS markers. Thirteen plants in which recombination events had occurred in the vicinity of the Rf1 locus were identified and used to map the molecular markers relative to each other and to Rf1. In this way, we were able to restrict the possible location of the Rf1 gene to a minimum of six BAC clones spanning an interval of approximately 250 kb. The first two authors contributed equally to this work.  相似文献   

17.
水稻CMS-DA育性恢复基因定位及其互作分析   总被引:16,自引:0,他引:16  
在由210个测交组合组成的青早A/(协青早B/密阳46)F6群体中,构建了由129个RFLP、SSLP组成的连锁遗传图普。应用QTL分析方法,对水矮败型质雄性不育恢复基因进行了定位。检测到一个主效基因和3个效应较小的QTL(qRf-1、qRf-1、qRf-5),这些基因这宰存在复杂的相互作用。  相似文献   

18.
The restoration of the C-type cytoplasmic male sterility (Cms) has been a common agriculture practice in the production of hybrid seed for many years. In this study, a series of crosses between select sterile and restorer lines, as well as a backcross population of (Cms-C77 × 6233) × 6233, were used to investigate the restoration of C-type Cms. Our results demonstrated that there was an inhibitor of the Rf5 restorer gene. This inhibitor gene, Rf-I, maps to chromosome 7 and is tightly linked with SSR markers, umc2326 and umc2327, at a genetic distance 4.7 and 3.4 cM, respectively. After analyzing our data combined with previous studies, we propose that the restoration of C-type Cms has two dominant genes, Rf4 and Rf5. Rf4 has the ability to restore all genotypes of Cms-C lines; however, there exists an inhibitor for the other restorer gene, Rf5; thus, it can restore only those genotypes of Cms-C lines lacking the Rf-I inhibitor.  相似文献   

19.
A study on mode of inheritance and mapping of fertility restorer (Rf) gene(s) using simple sequence repeat (SSR) markers was conducted in a cross of male sterile line 2041A having Triticum timopheevi cytoplasm and a restorer line PWR4099 of common wheat (Triticum aestivum L.). The F1 hybrid was completely fertile indicating that fertility restoration is a dominant trait. Based on the pollen fertility and seed set of bagged spikes in F2 generation, the individual plants were classified into fertile and sterile groups. Out of 120 F2 plants, 97 were fertile and 23 sterile (based on pollen fertility) while 98 plants set ≥5 seeds/spike and 22 produced ≤4 or no seed. The observed frequency fits well into Mendelian ratio of 3 fertile: 1 sterile with χ2 value of 2.84 for pollen fertility and 2.17 for seed setting indicating that the fertility restoration is governed by a single dominant gene in PWR4099. The three linked SSR markers, Xwmc503, Xgwm296 and Xwmc112 located on the chromosome 2DS were placed at a distance of 3.3, 5.8 and 6.7 cM, respectively, from the Rf gene. Since, no known Rf gene is located on the chromosome arm 2DS, the Rf gene in PWR4099 is a new gene and proposed as Rf8. The closest SSR marker, Xwmc503, linked to the Rf8 was validated in a set of Rf, maintainer and cytoplasmic male sterile lines. The closely linked SSR marker Xwmc503 may be used in marker-assisted backcross breeding facilitating the transfer of fertility restoration gene Rf8 into elite backgrounds with ease.  相似文献   

20.
周元飞  薛庆中 《遗传》2005,27(6):1007-1012
细胞质雄性不育和恢复系统(CMS/Rf)在植物杂种优势利用中已被广泛应用。为阐明恢复基因在这一系统中的作用机理,众多研究者开展了恢复基因的定位和克隆研究。近年来,4个植物恢复基因的成功克隆有力地推动了这一研究领域的发展。本文综述了植物恢复基因的定位、克隆以及育性恢复分子机理的研究进展,并讨论了恢复基因在植物分子育种上的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号