首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adaptation of insects to plant protease inhibitors   总被引:1,自引:0,他引:1  
Plants and herbivores have been co-evolving for thousands of years, and as a result, plants have defence mechanisms that offer protection against many herbivores such as nematodes, insects, birds and mammals. Only when a herbivore has managed to adapt to these defence mechanisms does it have the potential to become a pest. One such method of plant defence involves the production of protease inhibitors (PIs). These inhibitors are proteins that may be found constitutively in various parts of the plant, or may be induced in response to herbivore attack. PIs work at the gut level, by inhibiting the digestion of plant protein. This review focuses on insect herbivores and looks at the mechanisms involved in the role and function of PIs in plant defense against insects, as well as at the ability of well adapted species to overcome the effects of these plant PIs.  相似文献   

2.
Plants respond locally and systemically to herbivore attack. Most of the research conducted on plant–herbivore relationships at element and molecular levels have focused on the elemental composition or/and certain molecular compounds or specific families of defence metabolites showing that herbivores tend to select plant individuals or species with higher nutrient concentrations and avoid those with higher levels of defence compounds. We performed stoichiometric and metabolomics, both local and systemic, analyses in two subspecies of Pinus sylvestris under attack from caterpillars of the pine processionary moth, an important pest in the Mediterranean Basin. Both pine subspecies responded locally to folivory mainly by increasing relative concentrations of terpenes and some phenolics. Systemic responses differed between pine subspecies, and most of the metabolites presented intermediate concentrations between those of the affected parts and unattacked trees. Our results support the hypothesis that foliar nutrient concentrations are not a key factor for plant selection by adult female processionary moths for oviposition, since folivory was not associated with any of the elements analysed. Phenolic compounds generally did not increase in the attacked trees, questioning the suggestion of induction of phenolics following folivory attack and the anti‐feeding properties of phenolics. Herbivory attack produced a general systemic shift in pines, in both primary and secondary metabolism, which was less intense and chemically different from the local responses. Local pine responses were similar between pine subspecies, while systemic responses were more distant.  相似文献   

3.
Pinus sylvestris L. is known to activate indirect defence in response to attack by an herbivorous sawfly. Egg deposition by the sawfly Diprion pini L. induces pine to release, three days after egg laying, locally and systemically terpenoid volatiles that attract parasitoids to kill the eggs. The elicitor of the pine's response is located in the sawfly's oviduct secretion enveloping the eggs after deposition. Application of this secretion on twigs with artificially conducted ovipositional woundings mimics the effects of egg deposition. Furthermore, jasmonic acid (JA) induces a volatile pattern similar, but not identical, to the one induced by egg deposition. To gain deeper insight into the transduction of plant signals induced by herbivore egg deposition, it was investigated whether ethylene emission from pine is affected by sawfly egg deposition. Systemically induced ethylene emission from differently treated pine twigs was monitored for a period of 3 d after treatment. Ethylene emissions from untreated control twigs were compared with those from twigs treated as follows: (i) sawfly egg secretion [=oviduct secretion (OVI)] was transferred on artificially wounded pine needles (attractive volatiles), (ii) needles were artificially wounded (non-attractive volatiles), and (iii) the twig was supplied with JA (attractive volatiles). Ethylene emission from systemically OVI-induced twigs was significantly lower than from untreated controls, whereas artificial wounding had no detectable effect. JA-treated twigs released much more ethylene and showed higher variability of ethylene emission than artificially wounded twigs and OVI-treated ones. Ethylene emissions from pine after the various treatments studied here are discussed with respect to known effects of insect feeding on ethylene release from plants.  相似文献   

4.
The phytohormone jasmonic acid (JA) plays a core role in plant defence against herbivores. When attacked by herbivores, JA and its bioactive derivatives are accumulated at the damage site, and subsequently perceived by the jasmonate co-receptors COI1 and JAZ proteins. The (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile) is known to be the main active JA derivative controlling vascular plant responses to herbivores as well as other JA-regulated processes. However, whether other endogenous JA-amino acid conjugates (JA-AAs) are involved in herbivore-induced defence responses remain unknown. Here, we investigated the role of herbivore-elicited JA-AAs in the crop plant rice. The levels of five JA-AAs were significantly increased under the armyworm, leaf folder and brown planthopper attack. Of the elicited JA derivatives, JA-Ile, JA-Val and JA-Leu could serve as ligands to promote the interaction between rice COI1 and JAZs, inducing OsJAZ4 degradation in vivo. JA-Val or JA-Leu treatment increased the expression of JA- and defence-related pathway genes but not JA-Ile levels, suggesting that these JA-AAs may directly function in JA signalling. Furthermore, the application of JA-Val or JA-Leu resulted in JA-mediated plant growth inhibition, while enhancing plant resistance to herbivore attack. This study uncovers that JA-Val and JA-Leu also play a role in rice defence against herbivores.  相似文献   

5.
不同水稻品种对虫害胁迫的生理响应   总被引:15,自引:0,他引:15  
陈威  周强  李欣  何国锋 《生态学报》2006,26(7):2161-2166
以褐飞虱-水稻为模式,研究虫害胁迫下植物的化学防御生理生态特征,测定了可溶性糖含量、叶绿素含量、光合速率、蒸腾速率、气孔导度以及细胞间隙二氧化碳浓度、防御酶的时间变化特征.结果表明,经虫害诱导,不同品种水稻可溶性糖含量降低;同时,光合速率以及叶绿素含量也相应下降;蒸腾速率、气孔导度和细胞间隙二氧化碳浓度的变化不显著。虫害对水稻叶片多酚氧化酶、过氧化物酶和脂氧合酶均具有诱导作用.这种诱导作用具有时间效应,且不同品种诱导作用不一致.  相似文献   

6.
Plants defend against attack from herbivores by direct and indirect defence mechanisms mediated by the accumulation of phytoalexins and release of volatile signals, respectively. While the defensive arsenals of some plants, such as tobacco and Arabidopsis are well known, most of rice's (Oryza sativa) defence metabolites and their effectiveness against herbivores remain uncharacterized. Here, we used a non‐biassed metabolomics approach to identify many novel herbivory‐regulated metabolic signatures in rice. Most were up‐regulated by herbivore attack while only a few were suppressed. Two of the most prominent up‐regulated signatures were characterized as phenolamides (PAs), p‐coumaroylputrescine and feruloylputrescine. PAs accumulated in response to attack by both chewing insects, i.e. feeding of the lawn armyworm (Spodoptera mauritia) and the rice skipper (Parnara guttata) larvae, and the attack of the sucking insect, the brown planthopper (Nilaparvata lugens, BPH). In bioassays, BPH insects feeding on 15% sugar solution containing p‐coumaroylputrescine or feruloylputrescine, at concentrations similar to those elicited by heavy BPH attack in rice, had a higher mortality compared to those feeding on sugar diet alone. Our results highlight PAs as a rapidly expanding new group of plant defence metabolites that are elicited by herbivore attack, and deter herbivores in rice and other plants.  相似文献   

7.
1. Plants defend themselves from insect herbivore attack using a range of physical and chemical defences which are in many cases regulated by phytohormones such as jasmonates. While much more is known about how jasmonates regulate defence against above‐ground herbivores (e.g. herbivores of leaves), there is increasing interest in how they influence below‐ground defences. 2. For the Poaceae, most below‐ground studies focus on highly domesticated cereals. Here it is demonstrated how exogenous application of methyl jasmonate (MeJA) to the leaf blades of a non‐domesticated pasture grass (Microlaena stipoides) caused a more than two‐fold decrease in relative growth rate (RGR) of a root‐feeding chafer (Dermolepida albohirtum). MeJA treatment did not affect root consumption rates, but substantially reduced the efficiency of conversion of ingested food to body mass. 3. Non‐targeted metabolomics identified significant changes in the metabolome of MeJA‐induced plants, with three compounds (a galactolipid, a trihydroxy fatty acid and a lysophospholipid) found to be correlated with herbivore RGR, although their roles in herbivore defence remain uncertain. 4. This study suggests that an important Australian pasture grass can become better defended against root herbivores via enhanced jasmonate activity.  相似文献   

8.
Direct and indirect plant defences are well studied, particularly in the Brassicaceae. Glucosinolates (GS) are secondary plant compounds characteristic in this plant family. They play an important role in defence against herbivores and pathogens. Insect herbivores that are specialists on brassicaceous plant species have evolved adaptations to excrete or detoxify GS. Other insect herbivores may even sequester GS and employ them as defence against their own antagonists, such as predators. Moreover, high levels of GS in the food plants of non-sequestering herbivores can negatively affect the growth and survival of their parasitoids. In addition to allelochemicals, plants produce volatile chemicals when damaged by herbivores. These herbivore induced plant volatiles (HIPV) have been demonstrated to play an important role in foraging behaviour of insect parasitoids. In addition, biosynthetic pathways involved in the production of HIPV are being unraveled using the model plant Arabidopsis thialiana. However, the majority of studies investigating the attractiveness of HIPV to parasitoids are based on experiments mainly using crop plant species in which defence traits may have changed through artificial selection. Field studies with both cultivated and wild crucifers, the latter in which defence traits are intact, are necessary to reveal the relative importance of direct and indirect plant defence strategies on parasitoid and plant fitness. Future research should also consider the potential conflict between direct and indirect plant defences when studying the evolution of plant defences against insect herbivory.  相似文献   

9.
Rhizosphere microbes affect plant performance, including plant resistance against insect herbivores; yet, a direct comparison of the relative influence of rhizosphere microbes versus plant genetics on herbivory levels and on metabolites related to defence is lacking. In the crucifer Boechera stricta, we tested the effects of rhizosphere microbes and plant population on herbivore resistance, the primary metabolome, and select secondary metabolites. Plant populations differed significantly in the concentrations of six glucosinolates (GLS), secondary metabolites known to provide herbivore resistance in the Brassicaceae. The population with lower GLS levels experienced ~60% higher levels of aphid (Myzus persicae) attack; no association was observed between GLS and damage by a second herbivore, flea beetles (Phyllotreta cruciferae). Rhizosphere microbiome (disrupted vs. intact native microbiome) had no effect on plant GLS concentrations. However, aphid number and flea beetle damage were respectively about three‐ and seven‐fold higher among plants grown in the disrupted versus intact native microbiome treatment. These differences may be attributable to shifts in primary metabolic pathways previously implicated in host defence against herbivores, including increases in pentose and glucoronate interconversion among plants grown with an intact microbiome. Furthermore, native microbiomes with distinct community composition (as estimated from 16s rRNA amplicon sequencing) differed two‐fold in their effect on host plant susceptibility to aphids. The findings suggest that rhizosphere microbes, including distinct native microbiomes, can play a greater role than population in defence against insect herbivores, and act through metabolic mechanisms independent of population.  相似文献   

10.
Depending on geographical location, plants are exposed to variable amounts of UVB radiation and herbivore attack. Because the role(s) of UVB in the priming and/or accumulation of plant defence metabolites against herbivores are not well understood, we used field‐grown Nicotiana attenuata plants to explore the effects of UVB on herbivore performance. Consistent with previous reports, UVB‐exposed plants accumulated higher levels of ultraviolet (UV)‐absorbing compounds (rutin, chlorogenic acid, crypto‐chlorogenic acid and dicaffeoylspermidine). Furthermore, UVB increased the accumulation of jasmonic acid, jasmonoyl‐L‐isoleucine and abscisic acid, all phytohormones which regulate plant defence against biotic and abiotic stress. In herbivore bioassays, N. attenuata plants experimentally protected from UVB were more infested by mirids in three consecutive field seasons. Among defence metabolites measured, 17‐hydroxygeranyllinalool diterpene glycosides (HGL‐DTGs) showed strongly altered accumulation patterns. While constitutive HGL‐DTGs levels were higher under UVB, N. attenuata plants exposed to mirid bugs (Tupiocoris notatus) had still more HGL‐DTGs under UVB, and mirids preferred to feed on HGL‐DTGs‐silenced plants when other UVB protecting factors were eliminated by UVB filters. We conclude that UVB exposure not only stimulates UV protective screens but also affects plant defence mechanisms, such as HGL‐DTGs accumulation, and modulates ecological interactions of N. attenuata with its herbivores in nature.  相似文献   

11.
1. Plants perceive herbivore damage or increased risk and respond. These changes may increase plant fitness, although effects on fitness have often been assumed without supporting evidence. 2. Three models have been proposed to explain induced rather than constitutive defence. The optimal defence model posits that induction allow plants to reduce allocation costs; it predicts demonstrably lower costs when defences are not needed. The moving target model posits that induction increases spatial and temporal variability; it predicts that variability will be difficult for herbivores and will provide defence. The information transfer model posits that induced responses provide cues to other tissues on that individual plant and to other organisms in the community; it predicts that induced cues will provide systemic resistance, deter herbivores, and/or attract enemies of herbivores, thereby benefiting the induced plant. 3. All three models predict that cues must be reliable to be useful. In some cases, cues provide specific information about the damaged plant tissue and the herbivore and this specific information may allow plants to fine-tune responses. Recent theory posits that selection should favour plants that minimise recognition errors and reduce fitness costs associated with errors. 4. Future research should focus on exploring different modalities used by plants to perceive herbivore risk, the benefits and costs of perceiving cues and inducing resistance, and the basic natural history of these phenomena. Induced responses have great unrealised potential in agriculture, and research should focus on host plant resistance rather than attempting to involve other trophic levels.  相似文献   

12.
Background Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence.Scope The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can give rise to exploitative competition and facilitation within ecological communities “inhabiting” a plant.Conclusions Herbivores have evolved diverse strategies, which are not mutually exclusive, to decrease the negative effects of plant defences in order to maximize the conversion of plant material into offspring. Numerous adaptations have been found in herbivores, enabling them to dismantle or bypass defensive barriers, to avoid tissues with relatively high levels of defensive chemicals or to metabolize these chemicals once ingested. In addition, some herbivores interfere with the onset or completion of induced plant defences, resulting in the plant’s resistance being partly or fully suppressed. The ability to suppress induced plant defences appears to occur across plant parasites from different kingdoms, including herbivorous arthropods, and there is remarkable diversity in suppression mechanisms. Suppression may strongly affect the structure of the food web, because the ability to suppress the activation of defences of a communal host may facilitate competitors, whereas the ability of a herbivore to cope with activated plant defences will not. Further characterization of the mechanisms and traits that give rise to suppression of plant defences will enable us to determine their role in shaping direct and indirect interactions in food webs and the extent to which these determine the coexistence and persistence of species.  相似文献   

13.
Natural populations of wild cabbage (Brassica oleracea) show significant qualitative diversity in heritable aliphatic glucosinolates, a class of secondary metabolites involved in defence against herbivore attack. One candidate mechanism for the maintenance of this diversity is that differential responses among herbivore species result in a net fitness balance across plant chemotypes. Such top-down differential selection would be promoted by consistent responses of herbivores to glucosinolates, temporal variation in herbivore abundance, and fitness impacts of herbivore attack on plants varying in glucosinolate profile. A 1-year survey across 12 wild cabbage populations demonstrated differential responses of herbivores to glucosinolates. We extended this survey to investigate the temporal consistency of these responses, and the extent of variation in abundance of key herbivores. Within plant populations, the aphid Brevicoryne brassicae consistently preferred plants producing the glucosinolate progoitrin. Among populations, increasing frequencies of sinigrin production correlated positively with herbivory by whitefly Aleyrodes proletella and negatively with herbivory by snails. Two Pieris butterfly species showed no consistent response to glucosinolates among years. Rates of herbivory varied significantly among years within populations, but the frequency of herbivory at the population scale varied only for B. brassicae. B. brassicae emerges as a strong candidate herbivore to impose differential selection on glucosinolates, as it satisfies the key assumptions of consistent preferences and heterogeneity in abundance. We show that variation in plant secondary metabolites structures the local herbivore community and that, for some key species, this structuring is consistent over time. We discuss the implications of these patterns for the maintenance of diversity in plant defence chemistry.  相似文献   

14.
1. Plant responses to herbivore attack may have community‐wide effects on the composition of the plant‐associated insect community. Thereby, plant responses to an early‐season herbivore may have profound consequences for the amount and type of future attack. 2. Here we studied the effect of early‐season herbivory by caterpillars of Pieris rapae on the composition of the insect herbivore community on domesticated Brassica oleracea plants. We compared the effect of herbivory on two cultivars that differ in the degree of susceptibility to herbivores to analyse whether induced plant responses supersede differences caused by constitutive resistance. 3. Early‐season herbivory affected the herbivore community, having contrasting effects on different herbivore species, while these effects were similar on the two cultivars. Generalist insect herbivores avoided plants that had been induced, whereas these plants were colonised preferentially by specialist herbivores belonging to both leaf‐chewing and sap‐sucking guilds. 4. Our results show that community‐wide effects of early‐season herbivory may prevail over effects of constitutive plant resistance. Induced responses triggered by prior herbivory may lead to an increase in susceptibility to the dominant specialists in the herbivorous insect community. The outcome of the balance between contrasting responses of herbivorous community members to induced plants therefore determines whether induced plant responses result in enhanced plant resistance.  相似文献   

15.
1. Plants are frequently under attack by multiple insect herbivores, which may interact indirectly through herbivore‐induced changes in the plant's phenotype. The identity, order, and timing of herbivore arrivals may influence the outcome of interactions between two herbivores. How these aspects affect, in turn, subsequently arriving herbivores that feed on double herbivore‐induced plants has not been widely investigated. 2. This study tested whether the order and timing of arrival of two inducing herbivores from different feeding guilds affected the preference and performance of a subsequently arriving third herbivore, caterpillars of Mamestra brassicae L. (Lepidoptera: Noctuidae). Aphids [Brevicoryne brassicae L. (Hemiptera: Aphididae)] and caterpillars [Plutella xylostella L. (Lepidoptera: Yponomeutidae)] were introduced onto wild Brassica oleracea L. (Brassicaceae) plants in different sequences and with different arrival times. The effects of these plant treatments on M. brassicae caterpillars were assessed in pairwise preference tests and no‐choice performance tests. 3. The caterpillars of M. brassicae preferred to feed from undamaged plants rather than double herbivore‐induced plants. Compared with undamaged plants, they preferred plant material on which aphids had arrived first followed by caterpillars, whereas they avoided plant material with the reverse order of herbivore arrival. Performance of the caterpillars increased with increasing arrival time between herbivore infestations in double herbivore‐induced plants. Although M. brassicae grew faster on plants induced by aphids than on those induced by caterpillars alone, its performance was not affected by the order of previous herbivore arrival. 4. These results imply that the timing of colonisation by multiple herbivores determines the outcome of plant‐mediated herbivore–herbivore interactions.  相似文献   

16.
Plant–herbivore interactions vary across the landscape and have been hypothesised to promote local adaption in plants to the prevailing herbivore regime. Herbivores that feed on European aspen (Populus tremula) change across regional scales and selection on host defence genes may thus change at comparable scales. We have previously observed strong population differentiation in a set of inducible defence genes in Swedish P. tremula. Here, we study the geographic patterns of abundance and diversity of herbivorous insects, the untargeted metabolome of the foliage and genetic variation in a set of wound‐induced genes and show that the geographic structure co‐occurs in all three data sets. In response to this structure, we observe local maladaptation of herbivores, with fewer herbivores on local trees than on trees originated from more distant localities. Finally, we also identify 28 significant associations between single nucleotide polymorphisms SNPs from defence genes and a number of the herbivore traits and metabolic profiles.  相似文献   

17.
Precise and deep comprehension of plant responses to herbivorous arthropods requires detailed knowledge of how a plant “notices” the attack. Herbivore attack is not restricted to plant wounding by feeding, but instead different phases of attack that elicit a plant response need to be distinguished: touch, oviposition and feeding. Touch, secretions released with eggs and regurgitate delivered during feeding may act in concert as elicitors of plant defence. Here, we discuss the current knowledge of what a plant “notices” during the different phases of herbivore attack and how it responds at the molecular, physiological and ecological level. Understanding the mechanisms of plant responses to the different phases of herbivore attack will be a key challenge in unravelling the complex communication pathways between plants and herbivores.  相似文献   

18.
Herbivory-induced signalling in plants: perception and action   总被引:1,自引:0,他引:1  
Plants and herbivores have been interacting for millions of years. Over time, plants have evolved mechanisms to defend against herbivore attacks. Herbivore-challenged plants reconfigure their metabolism to produce compounds that are toxic, repellant or anti-digestive for the herbivores. Some compounds are volatile signals that attract the predators of herbivores. All these responses are tightly regulated by a signalling network triggered by the plant's perception machinery. Several compounds that specifically elicit herbivory-induced responses in plants have been isolated from herbivore oral secretions and oviposition fluids. Elicitor perception is rapidly followed by cell membrane depolarization, calcium influx and mitogen-activated protein kinase (MAPK) activation; plants also elevate the concentrations of reactive oxygen and nitrogen species, and modulate phytohormone levels accordingly. In addition to these reactions in the herbivore-attacked regions of a leaf, defence responses are also mounted in unattacked parts of the attacked leaf and as well in unattacked leaves. In this review, we summarize recent progress in understanding how plants recognize herbivory, the involvement of several important signalling pathways that mediate the responses to herbivore attack and the signals that transduce local into systemic responses.  相似文献   

19.
Following herbivory, plants can preferentially allocate newly acquired resources away from attacked sites as an important mechanism conferring tolerance. Although reported previously for both aboveground and belowground herbivores, it remains unclear whether plants can simultaneously allocate resources away from both kinds of herbivore attack, and whether they have interactive effects on plant resource allocation. In the current study, we used dual-isotopic techniques to compare the allocation of newly acquired carbon (C) and nitrogen (N) by the common milkweed Asclepias syriaca following attack by an aboveground herbivore, the monarch caterpillar Danaus plexippus and a belowground herbivore, larvae of the red milkweed beetle Tetraopes tetraophthalmus. Both species induced significant changes in the allocation of C and N in A. syriaca. Specifically, A. syriaca increased allocation of new N to stems at the expense of allocation to damaged tissues (i.e., leaf or root). When under simultaneous attack, the allocation of resources to stems was greater than that induced by either herbivore alone, suggesting that (1) the herbivores have additive effects on allocation patterns by A. syriaca and (2) A. syriaca was able to mitigate the effects of future attack by both herbivore species simultaneously.  相似文献   

20.
1. Plants have long been exposed to insect herbivore attack. Crucial to the plant's ability to defend itself is its ability to identify specific signals associated with attacking insects. Distinctive chemical cues, such as those associated with chewing insect oral secretions (OS), activate targeted defence responses to chewing insect herbivores. 2. Herbivore-associated cues can be complicated by the fact that many herbivores form associations with microbes that produce their own specific signals, which may induce alternative defence processes. 3. Here we report that OS of the global pest, the cotton bollworm (Helicoverpa armigera), induce senescence around wounds in Brachypodium distachyon leaves. Crude OS activate greater levels of senescence than OS with reduced microbial abundance or mechanical wounding alone. Nonetheless, plants closed mechanical wounds more rapidly when treated with H. armigera OS regardless of the microbial component. 4. This study concludes that H. armigera OS can activate senescence and wound closure in plant tissues and that microbes within OS have an important role in shaping plant-herbivore interactions through additional increases in senescence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号