首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Cryptosporidium and Giardia species are enteric protozoa which cause waterborne disease. The detection of these organisms in water relies on the detection of the oocyst and cyst forms or stages. Monoclonal and polyclonal antibodies were compared for their abilities to react with Giardia cysts and Cryptosporidium oocysts after storage in water, 3.7% formaldehyde, and 2.5% potassium dichromate, upon exposure to bleach, and in environmental samples. Three monoclonal antibodies to Cryptosporidium parvum were evaluated. Each test resulted in an equivalent detection of the oocysts after storage, after exposure to bleach, and in environmental samples. Oocyst levels declined slightly after 20 to 22 weeks of storage in water, and oocyst fluorescence and morphology were dull and atypical. Oocyst counts decreased after exposure to 2,500 mg of sodium hypochlorite per liter, and fluorescence and phase-contrast counts were similar. Sediment due to algae and clays found in environmental samples interfered with the detection of oocysts on membrane filters. Two monoclonal antibodies and a polyclonal antibody directed against Giardia lamblia cysts were evaluated. From the same seeded preparations, significantly greater counts were obtained with the polyclonal antibody. Of the two monoclonal antibodies, one resulted in significantly lower cyst counts. In preliminary studies, the differences between antibodies were not apparent when used on the environmental wastewater samples. After 20 to 22 weeks in water, cyst levels declined significantly by 67%. Cysts were not detected with monoclonal antibodies after exposure to approximately 5,000 mg of sodium hypochlorite per liter.  相似文献   

2.
An intestinal protozoan parasite, Cryptosporidium parvum, is a major cause of waterborne gastrointestinal disease worldwide. Detection of Cryptosporidium oocysts in potable water is a high priority for the water treatment industry to reduce potential outbreaks among the consumer populace. Anti-Cryptosporidium oocyst polyclonal and monoclonal antibodies were tested as capture and detection reagents for use in a fiber optic biosensor assay for the detection of Cryptosporidium oocysts. Antibodies were validated using enzyme-linked immunosorbent assays, flow cytometry, Western blotting and fluorescent microscopy. Oocysts could be detected at a concentration of 105 oocysts/ml when the polyclonal antibodies were used as the capture and detection reagents. When oocysts were boiled prior to detection, a ten-fold increase in sensitivity was achieved using the polyclonal antibody. Western blotting and immunofluorescence revealed that both the monoclonal and polyclonal antibodies recognize a large (>300 kDa) molecular weight mucin-like antigen present on the surface of the oocyst wall. The polyclonal antibody also reacted with a small (105 kDa) molecular weight antigen that was present in boiled samples of oocysts. Preliminary steps to design an in-line biosensor assay system have shown that oocysts would have to be concentrated from water samples and heat treated to allow detection by a biosensor assay.  相似文献   

3.
We report the detection and identification of Cryptosporidium and Giardia from 1 of 3 species of pinnipeds. Fecal samples were collected from Pacific harbor seal (Phoca vitulina richardsi), northern elephant seal (Mirounga angustirostris), and California sea lion (Zalophus californianus) in the northern California coastal area. By means of fluorescently labeled monoclonal antibodies, Cryptosporidium oocysts were detected in 3 samples from California sea lions, 1 of which also contained Giardia cysts. Oocysts of Cryptosporidium and cysts of Giardia were morphologically indistinguishable from oocysts of C. parvum and cysts of G. duodenalis from other animal origins. Oocysts and cysts were then purified using immunomagnetic separation techniques and identified by polymerase chain reaction (PCR), from which species-specific products were obtained. Sequence analysis revealed that the 452-bp and 358-bp PCR products of Cryptosporidium isolated from California sea lion had identities of 98% with sequences of their template fragments of C. parvum obtained from infected calves. Based on morphological, immunological, and genetic characterization, the isolates were identified as C. parvum and G. duodenalis, respectively. The findings suggested that California sea lions could serve as reservoirs in the environmental transmission of Cryptosporidium and Giardia.  相似文献   

4.
The steps of two immunofluorescent-antibody-based detection methods were evaluated for their efficiencies in detecting Giardia cysts and Cryptosporidium oocysts. The two methods evaluated were the American Society for Testing and Materials proposed test method for Giardia cysts and Cryptosporidium oocysts in low-turbidity water and a procedure employing sampling by membrane filtration, Percoll-Percoll step gradient, and immunofluorescent staining. The membrane filter sampling method was characterized by higher recovery rates in all three types of waters tested: raw surface water, partially treated water from a flocculation basin, and filtered water. Cyst and oocyst recovery efficiencies decreased with increasing water turbidity regardless of the method used. Recoveries of seeded Giardia cysts exceeded those of Cryptosporidium oocysts in all types of water sampled. The sampling step in both methods resulted in the highest loss of seeded cysts and oocysts. Furthermore, much higher recovery efficiencies were obtained when the flotation step was avoided. The membrane filter method, using smaller tubes for flotation, was less time-consuming and cheaper. A serious disadvantage of this method was the lack of confirmation of presumptive cysts and oocysts, leaving the potential for false-positive Giardia and Cryptosporidium counts when cross-reacting algae are present in water samples.  相似文献   

5.
Collaborative and in-house laboratory trials were conducted to evaluate Cryptosporidium oocyst and Giardia cyst recoveries from source and finished-water samples by utilizing the Filta-Max system and U.S. Environmental Protection Agency (EPA) methods 1622 and 1623. Collaborative trials with the Filta-Max system were conducted in accordance with manufacturer protocols for sample collection and processing. The mean oocyst recovery from seeded, filtered tap water was 48.4% +/- 11.8%, while the mean cyst recovery was 57.1% +/- 10.9%. Recovery percentages from raw source water samples ranged from 19.5 to 54.5% for oocysts and from 46.7 to 70.0% for cysts. When modifications were made in the elution and concentration steps to streamline the Filta-Max procedure, the mean percentages of recovery from filtered tap water were 40.2% +/- 16.3% for oocysts and 49.4% +/- 12.3% for cysts by the modified procedures, while matrix spike oocyst recovery percentages ranged from 2.1 to 36.5% and cyst recovery percentages ranged from 22.7 to 68.3%. Blinded matrix spike samples were analyzed quarterly as part of voluntary participation in the U.S. EPA protozoan performance evaluation program. A total of 15 blind samples were analyzed by using the Filta-Max system. The mean oocyst recovery percentages was 50.2% +/- 13.8%, while the mean cyst recovery percentages was 41.2% +/- 9.9%. As part of the quality assurance objectives of methods 1622 and 1623, reagent water samples were seeded with a predetermined number of Cryptosporidium oocysts and Giardia cysts. Mean recovery percentages of 45.4% +/- 11.1% and 61.3% +/- 3.8% were obtained for Cryptosporidium oocysts and Giardia cysts, respectively. These studies demonstrated that the Filta-Max system meets the acceptance criteria described in U.S. EPA methods 1622 and 1623.  相似文献   

6.
Water samples were collected from four locations on two rivers in Washington State and analyzed by membrane filtration-immunofluorescence assay to establish Cryptosporidium oocyst concentrations. Sampling locations were selected to evaluate effects of watershed character, from pristine mountain to downstream agricultural, on oocyst concentrations. Samples were collected at six biweekly intervals from late June to early September, with two additional sets of five samples taken on separate days (one set taken at bihourly intervals and one set taken simultaneously). Cryptosporidium oocysts were found in 34 of 35 samples at concentrations ranging from about 0.2 to 65 oocysts per liter. Oocyst concentrations were highest early in the sampling period, when they were influenced by postrainfall runoff, and decreased through the summer months. Oocyst concentrations found in ten samples collected on two days (5 samples per day) showed no short-term variations. Oocyst concentrations and oocyst production per square mile (ca. 2.6 km2) of watershed found in water draining a controlled public water supply watershed were the lowest observed. The concentrations and production rates for drainage from an adjacent, comparable, but uncontrolled watershed were nearly 10 times higher. The concentration and production rates of the downstream area influenced by dairy farming were nearly 10 times higher than rates at the upstream stations. The data showed clearly that oocyst concentrations were consistently observed above the detection limit of the analytical method, about 0.1 oocysts per liter; that oocyst concentrations were continuous as opposed to intermittent; and that watershed character and management affected surface water oocyst concentrations significantly.  相似文献   

7.
Water samples were collected from four locations on two rivers in Washington State and analyzed by membrane filtration-immunofluorescence assay to establish Cryptosporidium oocyst concentrations. Sampling locations were selected to evaluate effects of watershed character, from pristine mountain to downstream agricultural, on oocyst concentrations. Samples were collected at six biweekly intervals from late June to early September, with two additional sets of five samples taken on separate days (one set taken at bihourly intervals and one set taken simultaneously). Cryptosporidium oocysts were found in 34 of 35 samples at concentrations ranging from about 0.2 to 65 oocysts per liter. Oocyst concentrations were highest early in the sampling period, when they were influenced by postrainfall runoff, and decreased through the summer months. Oocyst concentrations found in ten samples collected on two days (5 samples per day) showed no short-term variations. Oocyst concentrations and oocyst production per square mile (ca. 2.6 km2) of watershed found in water draining a controlled public water supply watershed were the lowest observed. The concentrations and production rates for drainage from an adjacent, comparable, but uncontrolled watershed were nearly 10 times higher. The concentration and production rates of the downstream area influenced by dairy farming were nearly 10 times higher than rates at the upstream stations. The data showed clearly that oocyst concentrations were consistently observed above the detection limit of the analytical method, about 0.1 oocysts per liter; that oocyst concentrations were continuous as opposed to intermittent; and that watershed character and management affected surface water oocyst concentrations significantly.  相似文献   

8.
Previously, the cellulose acetate membrane filter dissolution method was reported to yield Cryptosporidium parvum oocyst recoveries of 70.5%, with recovered oocysts retaining their infectivity. In contrast, high spike doses (approximately 1 x 10(5) Cryptosporidium parvum oocysts and Giardia intestinalis cysts) yielded recoveries ranging from 0.4% to 83.9%, and 3.2% to 90.3%, respectively, in this study. Recoveries with low spike doses (approximately 100 (oo)cysts) continued to demonstrate high variability also. Efforts to optimize the method included increased centrifugation speeds, suspension of the final concentrate in deionized water for organism detection on well slides, and analysis of the entire concentrate. A comparison of two monoclonal antibodies was also conducted to identify potential differences between antibodies in detection of organisms. Archived source and finished water samples were spiked, yielding variable recoveries of C. parvum oocysts (11.8% to 71.4%) and G. intestinalis cysts (7.4% to 42.3%). Effects of organic solvents used in the membrane dissolution procedure on the viability of recovered (oo)cysts was determined using a fluorogenic vital dyes assay in conjunction with (oo)cyst morphology, which indicated > 99% inactivation. These data indicate that the membrane dissolution procedure yields poor and highly variable (oo)cyst recoveries, and also renders the majority of recovered organisms non-viable.  相似文献   

9.
Occurrence of Giardia and Cryptosporidium spp. in surface water supplies.   总被引:11,自引:0,他引:11  
Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for source waters of 66 surface water treatment plants in 14 states and 1 Canadian province. The results showed that cysts and oocysts were widely dispersed in the aquatic environment. Giardia spp. were detected in 81% of the raw water samples. Cryptosporidium spp. were found in 87% of the raw water locations. Overall, Giardia or Cryptosporidium spp. were detected in 97% of the raw water samples. Higher cyst and oocyst densities were associated with source waters receiving industrial or sewage effluents. Significant correlations were found between Giardia and Cryptosporidium densities and raw water quality parameters such as turbidity and total and fecal coliform levels. Statistical modeling suggests that cyst and oocyst densities could be predicted on the basis of watershed and water quality characteristics. The occurrence of high levels of Giardia cysts in raw water samples may require water utilities to apply treatment beyond that outlined in the Surface Water Treatment Rule of the U.S. Environmental Protection Agency.  相似文献   

10.
Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for source waters of 66 surface water treatment plants in 14 states and 1 Canadian province. The results showed that cysts and oocysts were widely dispersed in the aquatic environment. Giardia spp. were detected in 81% of the raw water samples. Cryptosporidium spp. were found in 87% of the raw water locations. Overall, Giardia or Cryptosporidium spp. were detected in 97% of the raw water samples. Higher cyst and oocyst densities were associated with source waters receiving industrial or sewage effluents. Significant correlations were found between Giardia and Cryptosporidium densities and raw water quality parameters such as turbidity and total and fecal coliform levels. Statistical modeling suggests that cyst and oocyst densities could be predicted on the basis of watershed and water quality characteristics. The occurrence of high levels of Giardia cysts in raw water samples may require water utilities to apply treatment beyond that outlined in the Surface Water Treatment Rule of the U.S. Environmental Protection Agency.  相似文献   

11.
Fecal samples were taken from wild ducks on the lower Rio Grande River around Las Cruces, N. Mex., from September 2000 to January 2001. Giardia cysts and Cryptosporidium oocysts were purified from 69 samples by sucrose enrichment followed by cesium chloride (CsCl) gradient centrifugation and were viewed via fluorescent-antibody (FA) staining. For some samples, recovered cysts and oocysts were further screened via PCR to determine the presence of Giardia lamblia and Crytosporidium parvum. The results of this study indicate that 49% of the ducks were carriers of Cryptosporidium, and the Cryptosporidium oocyst concentrations ranged from 0 to 2,182 oocysts per g of feces (mean +/- standard deviation, 47.53 +/- 270.3 oocysts per g); also, 28% of the ducks were positive for Giardia, and the Giardia cyst concentrations ranged from 0 to 29,293 cysts per g of feces (mean +/- standard deviation, 436 +/- 3,525.4 cysts per g). Of the 69 samples, only 14 had (oo)cyst concentrations that were above the PCR detection limit. Samples did test positive for Cryptosporidium sp. However, C. parvum and G. lamblia were not detected in any of the 14 samples tested by PCR. Ducks on their southern migration through southern New Mexico were positive for Cryptosporidium and Giardia as determined by FA staining, but C. parvum and G. lamblia were not detected.  相似文献   

12.
Cryptosporidium parvum oocysts in drinking water have been implicated in outbreaks of diarrheal disease. Current methods for monitoring environmental exposures to C. parvum only account for total number of oocysts without regard for the viability of the parasite. Measurement of oocyst viability, as indicated by an oocyst's ability to excyst, is useful because over time oocysts lose the ability to excyst and become noninfective. Thus, correlating the number of viable oocysts in drinking water with incidence and risk for disease should be more reliable than using the total number of oocysts. We have developed a quantitative assay capable of detecting low numbers of excystable, sporozoite-releasing C. parvum oocysts in turbid water samples. Monoclonal (CP7) and polyclonal antibodies have been developed against a sporozoite antigen released only during excystation or when the oocyst is mechanically disrupted. CP7 is specific for C. parvum and does not react with C. baileyi, C. muris, C. serpentis, Giardia spp., Eimeria spp., or E. nieschulzi. In this assay, oocysts in the test sample are first excysted and then centrifuged. The soluble sporozoite antigen is captured by CP7 attached to a magnetic bead. The captured antigen is then detected by ruthenium-labeled polyclonal antibodies via electrochemiluminescence. The CP7 viability assay can detect as few as 50 viable oocysts in a 1-ml assay sample with a turbidity as high as 200 Nephelometric turbidity units. This sensitive, turbidity-tolerant assay for oocyst viability may permit a better assessment of the disease risk associated with the presence of environmental oocysts.  相似文献   

13.
To investigate the effect of UV light on Cryptosporidium parvum and Cryptosporidium hominis oocysts in vitro, we exposed intact oocysts to 4-, 10-, 20-, and 40-mJ x cm-2 doses of UV irradiation. Thymine dimers were detected by immunofluorescence microscopy using a monoclonal antibody against cyclobutyl thymine dimers (anti-TDmAb). Dimer-specific fluorescence within sporozoite nuclei was confirmed by colocalization with the nuclear fluorogen 4',6'-diamidino-2-phenylindole (DAPI). Oocyst walls were visualized using either commercial fluorescein isothiocyanate-labeled anti-Cryptosporidium oocyst antibodies (FITC-CmAb) or Texas Red-labeled anti-Cryptosporidium oocyst antibodies (TR-CmAb). The use of FITC-CmAb interfered with TD detection at doses below 40 mJ x cm-2. With the combination of anti-TDmAb, TR-CmAb, and DAPI, dimer-specific fluorescence was detected in sporozoite nuclei within oocysts exposed to 10 to 40 mJ x cm-2 of UV light. Similar results were obtained with C. hominis. C. parvum oocysts exposed to 10 to 40 mJ x cm-2 of UV light failed to infect neonatal mice, confirming that results of our anti-TD immunofluorescence assay paralleled the outcomes of our neonatal mouse infectivity assay. These results suggest that our immunofluorescence assay is suitable for detecting DNA damage in C. parvum and C. hominis oocysts induced following exposure to UV light.  相似文献   

14.
In the past few years many waterborne outbreaks related to Cryptosporidium have been described. Current methods for detection of Cryptosporidium in water for the most part rely on viability assays which are not informative concerning the infectivity of oocysts. However, for estimation of the risk of infection with Cryptosporidium this information is required. For environmental samples the oocyst counts are often low, and the oocysts have been exposed to unfavorable conditions. Therefore, determination of the infectivity of environmental oocysts requires an assay with a high level of sensitivity. We evaluated the applicability of in vitro cell culture immunofluorescence assays with HCT-8 and Caco-2 cells for determination of oocyst infectivity in naturally contaminated water samples. Cell culture assays were compared with other viability and infectivity assays. Experiments with Cryptosporidium oocysts from different sources revealed that there was considerable variability in infectivity, which was illustrated by variable 50% infective doses, which ranged from 40 to 614 oocysts, and the results indicated that not only relatively large numbers of fresh oocysts but also aged oocysts produced infection in cell cultures. Fifteen Dutch surface water samples were tested, and the cell culture immunofluorescence assays were not capable of determining the infectivity for the low numbers of naturally occurring Cryptosporidium oocysts present in the samples. A comparison with other viability assays, such as the vital dye exclusion assay, demonstrated that surrogate methods overestimate the number of infectious oocysts and therefore the risk of infection with Cryptosporidium. For accurate risk assessment, further improvement of the method for detection of Cryptosporidium in water is needed.  相似文献   

15.
The development of a reliable method of using PCR for detection of Cryptosporidium oocysts in environmental samples with oligonucleotide primers which amplify a portion of the sequence encoding the small (18S) subunit of rRNA producing a 435-bp product was demonstrated. The PCR assay was found to provide highly genus-specific detection of Cryptosporidium spp. after release of nucleic acids from oocysts by a simple freeze-thaw procedure. The assay routinely detected 1 to 10 oocysts in purified oocyst preparations, as shown by direct microscopic counts and by an immunofluorescence assay. The sensitivity of the PCR assay in some seeded environmental water samples was up to 1,000-fold lower. However, this interference was eliminated by either flow cytometry or magnetic-antibody capture. Sensitivity was also improved 10- to 1,000-fold by probing of the PCR product on dot blots with an oligonucleotide probe detected by chemiluminescence. Confirmation of the presence of Cryptosporidium oocysts in water samples from the outbreak in Milwaukee, Wis., was obtained with this technique, and PCR was found to be as sensitive as immunofluorescence for detection of oocysts in wastewater concentrates.  相似文献   

16.
Giardia and Cryptosporidium spp. are parasitic protozoa which are frequent etiologic agents of waterborne diseases. This lecture will summarize the main biological and environmental factors involved in the potential risk for waterborne transmission of giardiosis and cryptosporidiosis, which have caused many outbreaks in different geographical areas. In particular, the current epidemiological situation of these parasitoses in Italy will be analysed, on the basis of research carried out on humans and on the environment. Finally, current methods for evaluating the presence of Giardia cysts and Cryptosporidium oocysts in water and new methods for cyst/oocyst removal from drinking water and wastewater will be examined.  相似文献   

17.
Immunofluorescence assay (IFA) and immunomagnetic electrochemiluminescence (IM-ECL) were used for comparison of the percent recovery of Cryptosporidium parvum in environmental water samples obtained from a spring draining a karst basin. The monoclonal antibodies to C. parvum, isotype IgG3 were used for optimization of the IM-ECL protocol. The combination of biotinylated and TAG-labeled anti-C. parvum antibodies with the streptavidin beads gave a linear regression slope for log ECL vs. log fresh oocysts of 0.79 (from 5 to 5,000 oocysts), which indicates a constant ECL signal per oocyst. Standard curves gave a dynamic range of 5 to 5,000 oocysts/ml (fresh) and 10 to 100,000 cells/ml (4-month-old oocysts) with the maximum limit of linear detection higher than 100,000. The linear slope of 4-month-old oocysts decreased to 0.62, which indicates that ECL signal is a function of oocyst age. The experiment associated with bead storage time shows that even after 4 months of storage of the biotinylated antibodies, the complex retains the ability for binding the oocysts and generating the ECL signal. Based on the IFA results in the experiment evaluating different protocols for oocysts recovery from karst water samples, the most efficient protocol involved dispersion, followed by flotation and immunomagnetic separation (IMS) (24% recovery). The ECL results obtained in that experiment were very similar to the results obtained in the IFA method, which indicates that the IM-ECL method is accurate. Results of the IFA in the study of the prevalence of C. parvum in the groundwater showed that oocysts were present in 78% of 1 L water samples with average number of oocysts of 6.4+/-5.5 and ranged from 0 (13 samples) to 23.3 (2 samples). The ECL signal generated from these water samples ranged from 3,771 to 622 (average 1,620+/-465). However, the background value estimated in groundwater samples with low number of oocysts detected by IFA was highly variable and elevated (from 3,702 to 272, average 1,503+/-475). The background value as a result of nonspecific binding to beads by unidentified organic components in the water can inhibit or even completely mask the signal generated by oocysts. Our investigations showed that the IM-ECL method appears to be promising for the qualitative and quantitative detection of C. parvum from the environmental water; however, the method requires further development to improve sensitivity and account for background signals.  相似文献   

18.
Members of the genus Cryptosporidium are protozoan parasites that cause gastroenteritis in humans and animals and appear to be spread largely by the fecal-oral route. A method was developed for the concentration and detection of Cryptosporidium oocysts in water to assess their occurrence in the environment and potential for waterborne disease transmission. This method was developed by using spun polypropylene cartridge filters. Optimal conditions for concentration, filter elution, filter porosity, and detection were determined. Fluoresceinated monoclonal antibodies were used for oocyst detection. Experiments also were conducted to study the effect of flow rate, low oocyst numbers, and the addition of detergents on recovery and retention of oocysts. The method that was developed was sensitive enough to detect oocysts at levels of less than 1 per liter. Using this method, we isolated Cryptosporidium oocysts from secondarily treated sewage.  相似文献   

19.
Cryptosporidium parvum and Giardia lamblia are protozoa capable of causing gastrointestinal diseases. Currently, these organisms are identified using immunofluorescent antibody (IFA)-based microscopy, and identification requires trained individuals for final confirmation. Since artificial neural networks (ANN) can provide an automated means of identification, thereby reducing human errors related to misidentification, ANN were developed to identify Cryptosporidium oocyst and Giardia cyst images. Digitized images of C. parvum oocysts and G. lamblia cysts stained with various commercial IFA reagents were used as positive controls. The images were captured using a color digital camera at 400 x (total magnification), processed, and converted into a binary numerical array. A variety of "negative" images were also captured and processed. The ANN were developed using these images and a rigorous training and testing protocol. The Cryptosporidium oocyst ANN were trained with 1,586 images, while Giardia cyst ANN were trained with 2,431 images. After training, the best-performing ANN were selected based on an initial testing performance against 100 images (50 positive and 50 negative images). The networks were validated against previously "unseen" images of 500 Cryptosporidium oocysts (250 positive, 250 negative) and 282 Giardia cysts (232 positive, 50 negative). The selected ANNs correctly identified 91.8 and 99.6% of the Cryptosporidium oocyst and Giardia cyst images, respectively. These results indicate that ANN technology can be an alternate to having trained personnel for detecting these pathogens and can be a boon to underdeveloped regions of the world where there is a chronic shortage of adequately skilled individuals to detect these pathogens.  相似文献   

20.
The survival of various isolates of Cryptosporidium parvum oocysts under a range of environmental pressures including freezing, desiccation, and water treatment processes and in physical environments commonly associated with oocysts such as feces and various water types was monitored. Oocyst viability was assessed by in vitro excystation and by a viability assay based on the exclusion or inclusion of two fluorogenic vital dyes. Although desiccation was found to be lethal, a small proportion of oocysts were able to withstand exposure to temperatures as low as -22 degrees C. The water treatment processes investigated did not affect the survival of oocysts when pH was corrected. However, contact with lime, ferric sulfate, or alum had a significant impact on oocyst survival if the pH was not corrected. Oocysts demonstrated longevity in all water types investigated, including seawater, and when in contact with feces were considered to develop an enhanced impermeability to small molecules which might increase the robustness of the oocysts when exposed to environmental pressures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号