首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Brummer T  Shaw PE  Reth M  Misawa Y 《The EMBO journal》2002,21(21):5611-5622
Engagement of the B-cell antigen receptor (BCR) leads to activation of the Raf-MEK-ERK pathway and Raf kinases play an important role in the modulation of ERK activity. B lymphocytes express two Raf isoforms, Raf-1 and B-Raf. Using an inducible deletion system in DT40 cells, the contribution of Raf-1 and B-Raf to BCR signalling was dissected. Loss of Raf-1 has no effect on BCR-mediated ERK activation, whereas B-Raf-deficient DT40 cells display a reduced basal ERK activity as well as a shortened BCR-mediated ERK activation. The Raf-1/B-Raf double deficient DT40 cells show an almost complete block both in ERK activation and in the induction of the immediate early gene products c-Fos and Egr-1. In contrast, BCR-mediated activation of nuclear factor of activated T cells (NFAT) relies predominantly on B-Raf. Furthermore, complementation of Raf-1/B-Raf double deficient cells with various Raf mutants demonstrates a requirement for Ras-GTP binding in BCR-mediated activation of both Raf isoforms and also reveals the important role of the S259 residue for the regulation of Raf-1. Our study shows that BCR-mediated ERK activation involves a cooperation of both B-Raf and Raf-1, which are activated specifically in a temporally distinct manner.  相似文献   

2.
Mutations in the extracellular signal-regulated kinase (ERK) pathway, particularly in the mitogen-activated protein kinase/ERK kinase (MEK) activator B-Raf, are associated with human tumorigenesis and genetic disorders. Hence, B-Raf is a prime target for molecule-based therapies, and understanding its essential biological functions is crucial for their success. B-Raf is expressed preferentially in cells of neuronal origin. Here, we show that in mice, conditional ablation of B-Raf in neuronal precursors leads to severe dysmyelination, defective oligodendrocyte differentiation, and reduced ERK activation in brain. Both B-Raf ablation and chemical inhibition of MEK impair oligodendrocyte differentiation in vitro. In glial cell cultures, we find B-Raf in a complex with MEK, Raf-1, and kinase suppressor of Ras. In B-Raf-deficient cells, more Raf-1 is recruited to MEK, yet MEK/ERK phosphorylation is impaired. These data define B-Raf as the rate-limiting MEK/ERK activator in oligodendrocyte differentiation and myelination and have implications for the design and use of Raf inhibitors.  相似文献   

3.
Raf-1 and B-Raf promote protein kinase C theta interaction with BAD   总被引:1,自引:0,他引:1  
PKCtheta regulates the proliferation, survival and differentiation of T-cells. Here we show that PKCtheta interacts with Raf-1 and B-Raf kinases. Raf-1 enhanced the kinase activity of associated PKCtheta, while PKCtheta reduced the catalytic activity of associated Raf-1. In contrast, B-Raf binding did not affect PKCtheta kinase activity, and PKCtheta did not change B-Raf activity. Coexpression of mutationally activated Raf-1 in cells enhanced the phosphorylation of T538 in the PKCtheta activation loop. PKCtheta and Raf cooperated in terms of binding to BAD, a pro-apoptotic Bcl-2 family protein that is inactivated by phosphorylation. While neither Raf-1 nor B-Raf could phosphorylate BAD, they enhanced the ability of PKCtheta to interact with BAD and to phosphorylate BAD in vitro and in vivo, suggesting a new role for Raf proteins in T-cells by targeting PKCtheta to interact with and phosphorylate BAD.  相似文献   

4.
The dimerisation of Raf kinases involves a central cluster within the kinase domain, the dimer interface (DIF). Yet, the importance of the DIF for the signalling potential of wild-type B-Raf (B-Raf(wt)) and its oncogenic counterparts remains unknown. Here, we show that the DIF plays a pivotal role for the activity of B-Raf(wt) and several of its gain-of-function (g-o-f) mutants. In contrast, the B-Raf(V600E), B-Raf(insT) and B-Raf(G469A) oncoproteins are remarkably resistant to mutations in the DIF. However, compared with B-Raf(wt), B-Raf(V600E) displays extended protomer contacts, increased homodimerisation and incorporation into larger protein complexes. In contrast, B-Raf(wt) and Raf-1(wt) mediated signalling triggered by oncogenic Ras as well as the paradoxical activation of Raf-1 by kinase-inactivated B-Raf require an intact DIF. Surprisingly, the B-Raf DIF is not required for dimerisation between Raf-1 and B-Raf, which was inactivated by the D594A mutation, sorafenib or PLX4720. This suggests that paradoxical MEK/ERK activation represents a two-step mechanism consisting of dimerisation and DIF-dependent transactivation. Our data further implicate the Raf DIF as a potential target against Ras-driven Raf-mediated (paradoxical) ERK activation.  相似文献   

5.
MAP kinase (MAPK) signaling results from activation of Raf kinases in response to external or internal stimuli. Here, we demonstrate that Raf kinase inhibitory protein (RKIP) regulates the activation of MAPK when B-Raf signaling is defective. We used multiple models including mouse embryonic fibroblasts (MEFs) and primary keratinocytes from RKIP- or Raf-deficient mice as well as allografts in mice to investigate the mechanism. Loss of B-Raf protein or activity significantly reduces MAPK activation in these cells. We show that RKIP depletion can rescue the compromised ERK activation and promote proliferation, and this rescue occurs through a Raf-1 dependent mechanism. These results provide formal evidence that RKIP is a bona fide regulator of Raf-1. We propose a new model in which RKIP plays a key role in regulating the ability of cells to signal through Raf-1 to ERK in B-Raf compromised cells.  相似文献   

6.
Activity-dependent regulation of neuronal events such as cell survival and synaptic plasticity is controlled by increases in neuronal calcium levels. These actions often involve stimulation of intracellular kinase signaling pathways. For example, the mitogen-activated protein kinase, or extracellular signal-regulated kinase (ERK), signaling cascade has increasingly been shown to be important for the induction of gene expression and long term potentiation. However, the mechanisms leading to ERK activation by neuronal calcium are still unclear. In the present study, we describe a protein kinase A (PKA)-dependent signaling pathway that may link neuronal calcium influx to ERKs via the small G-protein, Rap1, and the neuronal Raf isoform, B-Raf. Thus, in PC12 cells, depolarization-mediated calcium influx led to the activation of B-Raf, but not Raf-1, via PKA. Furthermore, depolarization also induced the PKA-dependent stimulation of Rap1 and led to the formation of a Rap1/B-Raf signaling complex. In contrast, depolarization did not lead to the association of Ras with B-Raf. The major action of PKA-dependent Rap1/B-Raf signaling in neuronal cells is the activation of ERKs. Thus, we further show that, in both PC12 cells and hippocampal neurons, depolarization-induced calcium influx stimulates ERK activity in a PKA-dependent manner. Given the fact that both Rap1 and B-Raf are highly expressed in the central nervous system, we suggest that this signaling pathway may regulate a number of activity-dependent neuronal functions.  相似文献   

7.
TC21 causes transformation by Raf-independent signaling pathways.   总被引:2,自引:1,他引:1       下载免费PDF全文
Although the Ras-related protein TC21/R-Ras2 has only 55% amino acid identity with Ras proteins, mutated forms of TC21 exhibit the same potent transforming activity as constitutively activated forms of Ras. Therefore, like Ras, TC21 may activate signaling pathways that control normal cell growth and differentiation. To address this possibility, we determined if regulators and effectors of Ras are also important for controlling TC21 activity. First, we determined that Ras guanine nucleotide exchange factors (SOS1 and RasGRF/CDC25) synergistically enhanced wild-type TC21 activity in vivo and that Ras GTPase-activating proteins (GAPs; p120-GAP and NF1-GAP) stimulated wild-type TC21 GTP hydrolysis in vitro. Thus, extracellular signals that activate Ras via SOS1 activation may cause coordinate activation of Ras and TC21. Second, we determined if Raf kinases were effectors for TC21 transformation. Unexpectedly, yeast two-hybrid binding analyses showed that although both Ras and TC21 could interact with the isolated Ras-binding domain of Raf-1, only Ras interacted with full-length Raf-1, A-Raf, or B-Raf. Consistent with this observation, we found that Ras- but not TC21-transformed NIH 3T3 cells possessed constitutively elevated Raf-1 and B-Raf kinase activity. Thus, Raf kinases are effectors for Ras, but not TC21, signaling and transformation. We conclude that common upstream signals cause activation of Ras and TC21, but activated TC21 controls cell growth via distinct Raf-independent downstream signaling pathways.  相似文献   

8.
Growth factor receptor tyrosine kinase regulation of the sequential phosphorylation reactions leading to mitogen-activated protein (MAP) kinase activation in PC12 cells has been investigated. In response to epidermal growth factor, nerve growth factor, and platelet-derived growth factor, B-Raf and Raf-1 are activated, phosphorylate recombinant kinase-inactive MEK-1, and activate wild-type MEK-1. MEK-1 is the dual-specificity protein kinase that selectively phosphorylates MAP kinase on tyrosine and threonine, resulting in MAP kinase activation. B-Raf and Raf-1 are growth factor-regulated Raf family members which regulate MEK-1 and MAP kinase activity in PC12 cells. Protein kinase A activation in response to elevated cyclic AMP (cAMP) levels inhibited B-Raf and Raf-1 stimulation in response to growth factors. Ras.GTP loading in response to epidermal growth factor, nerve growth factor, or platelet-derived growth factor was unaffected by protein kinase A activation. Even though elevated cAMP levels inhibited Raf activation, the growth factor activation of MEK-1 and MAP kinase was unaffected in PC12 cells. The results demonstrate that tyrosine kinase receptor activation of MEK-1 and MAP kinase in PC12 cells is regulated by B-Raf and Raf-1, whose activation is inhibited by protein kinase A, and MEK activators, whose activation is independent of cAMP regulation.  相似文献   

9.
10.
A T cell receptor (TCR) recognizes and responds to an antigenic peptide in the context of major histocompatibility complex-encoded molecules. This provokes T cells to produce interleukin-2 (IL-2) through extracellular signal-regulated kinase (ERK) activation. We investigated the roles of B-Raf in TCR-mediated IL-2 production coupled with ERK activation in the Jurkat human T cell line. We found that TCR cross-linking could induce up-regulation of both B-Raf and Raf-1 activities, but Raf-1 activity was decreased rapidly. On the other hand, TCR-stimulated kinase activity of B-Raf was sustained. Expression of a dominant-negative mutant of B-Raf abrogated sustained but not transient TCR-mediated MEK/ERK activation. The inhibition of sustained ERK activation by either expression of a dominant-negative B-Raf or treatment with a MEK inhibitor resulted in a decrease of the TCR-stimulated nuclear factor of activated T cells (NFAT) activity and IL-2 production. Collectively, our data provide the first direct evidence that B-Raf is a positive regulator of TCR-mediated sustained ERK activation, which is required for NFAT activation and the full production of IL-2.  相似文献   

11.
The Ras-Raf-MAPK cascade is a key growth-signaling pathway and its uncontrolled activation results in cell transformation. Although the general features of the signal transmission along the cascade are reasonably defined, the mechanisms underlying Raf activation remain incompletely understood. Here, we show that Raf-1 dephosphorylation, primarily at epidermal growth factor (EGF)-induced sites, abolishes Raf-1 kinase activity. Using mass spectrometry, we identified five novel in vivo Raf-1 phosphorylation sites, one of which, S471, is located in subdomain VIB of Raf-1 kinase domain. Mutational analyses demonstrated that Raf-1 S471 is critical for Raf-1 kinase activity and for its interaction with mitogen-activated protein kinase kinase (MEK). Similarly, mutation of the corresponding B-Raf site, S578, resulted in an inactive kinase, suggesting that the same Raf-1 and B-Raf phosphorylation is needed for Raf kinase activation. Importantly, the naturally occurring, cancer-associated B-Raf activating mutation V599E suppressed the S578A mutation, suggesting that introducing a charged residue at this region eliminates the need for an activating phosphorylation. Our results demonstrate an essential role of specific EGF-induced Raf-1 phosphorylation sites in Raf-1 activation, identify Raf-1 S471 as a novel phosphorylation site critical for Raf-1 and B-Raf kinase activities, and point to the possibility that the V599E mutation activates B-Raf by mimicking a phosphorylation at the S578 site.  相似文献   

12.
The B-Raf kinase is a Ras pathway effector activated by mutation in numerous human cancers and certain developmental disorders. Here we report that normal and oncogenic B-Raf proteins are subject to a regulatory cycle of extracellular signal-regulated kinase (ERK)-dependent feedback phosphorylation, followed by PP2A- and Pin1-dependent dephosphorylation/recycling. We identify four S/TP sites of B-Raf phosphorylated by activated ERK and find that feedback phosphorylation of B-Raf inhibits binding to activated Ras and disrupts heterodimerization with C-Raf, which is dependent on the B-Raf pS729/14-3-3 binding site. Moreover, we find that events influencing Raf heterodimerization can alter the transforming potential of oncogenic B-Raf proteins possessing intermediate or impaired kinase activity but have no significant effect on proteins with high kinase activity, such as V600E B-Raf. Mutation of the feedback sites or overexpression of the Pin1 prolyl-isomerase, which facilitates B-Raf dephosphorylation/recycling, resulted in increased transformation, whereas mutation of the S729/14-3-3 binding site or expression of dominant negative Pin1 reduced transformation. Mutation of each feedback site caused increased transformation and correlated with enhanced heterodimerization and activation of C-Raf. Finally, we find that B-Raf and C-Raf proteins containing mutations identified in certain developmental disorders constitutively heterodimerize and that their signaling activity can also be modulated by feedback phosphorylation.The Ras, Raf, MEK, and extracellular signal-regulated kinase (ERK) proteins are core components of one of the major signaling cascades regulating normal cell proliferation—the Ras pathway. Not surprising, deregulation of Ras pathway signaling is a major contributor to human cancer and has recently been linked with several developmental disorders, such as Noonan''s, LEOPARD, and cardiofaciocutaneous (CFC) syndromes (28). Given its importance to both normal and disease states, much effort has been directed toward elucidating the mechanisms that modulate Ras pathway signaling. Of all the pathway components, regulation of the Raf proteins has proved to be the most complex, involving inter- and intramolecular interactions, a change in subcellular localization, and phosphorylation and dephosphorylation events (6, 32).In mammalian cells, there are three Raf family members: A-Raf, B-Raf, and C-Raf (12). In their inactive state, all Raf proteins are found in the cytosol, with the N-terminal regulatory domain acting as an autoinhibitor of the C-terminal kinase domain (4, 5, 13). 14-3-3 dimers bind to phosphorylation sites present in both the N- and C-terminal regions and stabilize the autoinhibited state (22). To activate the Raf proteins, autoinhibition mediated by the N terminus must be relieved and the kinase domain must adopt the active catalytic conformation (6, 31, 32). Under normal signaling conditions, Ras activation helps mediate these events by recruiting the Raf proteins to the plasma membrane, which induces the release of 14-3-3 from the N-terminal binding site and facilitates phosphorylation of the Raf kinase domain (19). For the C-Raf and A-Raf proteins, phosphorylation occurs in two regions of the kinase domain, the negative-charge regulatory region (N-region) and the activation segment (4). In contrast, the N-region of B-Raf exhibits a constitutive negative charge due to increased basal phosphorylation of an activating serine site and the presence of two aspartic acid residues (18); thus, only phosphorylation of the activation segment is required. Phosphorylation of the activation segment serves both to destabilize the “inactive” catalytic conformation maintained by hydrophobic interactions between the glycine-rich loop and the activation segment and to stabilize the “active” catalytic conformation, whereas the negative charge of the N-region helps to disrupt the autoinhibitory activity of the N-terminal domain (5, 30, 31).Because the N-region of B-Raf exhibits a constitutive negative charge, B-Raf possesses higher basal kinase activity than other family members and is more susceptible to mutational activation (9, 11, 17). In particular, B-Raf is a major contributor to human cancer: somatic mutations in the B-Raf gene are detected in ∼50% of malignant melanomas and many colorectal, ovarian, and papillary thyroid carcinomas (7). Of the oncogenic mutations identified in B-Raf, the vast majority cluster to the two regions of the kinase domain responsible for maintaining the inactive catalytic conformation—the glycine-rich loop and the activation segment (31). Based on enzymatic activity, the oncogenic B-Raf proteins have been divided into three groups: those with high activity (130- to 700-fold more active than wild-type [WT] B-Raf), those with intermediate activity (64- to 1.3-fold more active), and surprisingly, those with impaired catalytic activity (0.8 to 0.3 of WT B-Raf activity) (31). Further analysis has revealed that all oncogenic B-Raf proteins heterodimerize constitutively with C-Raf and activate C-Raf in a Ras-independent manner that requires an intact C-Raf activation segment as well as the binding of 14-3-3 to the C-terminal pS621 binding site on C-Raf (11). Importantly, for the oncogenic B-Raf proteins with impaired kinase activity, the binding and activation of C-Raf are required for ERK activation in vivo (31). Interestingly, heterodimerization of B-Raf and C-Raf also occurs under normal signaling conditions; however, in this case, heterodimerization is Ras dependent and occurs at the plasma membrane following mitogen stimulation (11, 27).Once activated, either by upstream signaling or by mutational events, all Raf proteins are capable of initiating the phosphorylation cascade that results in the sequential activation of MEK and ERK. ERK then phosphorylates targets in both the cytoplasm and the nucleus that are required for cell proliferation. Strikingly, the Raf proteins themselves are also substrates of activated ERK. In regard to C-Raf, ERK-dependent feedback phosphorylation has been shown to instigate a regulatory cycle whereby phosphorylation of the feedback sites down-modulates C-Raf signaling, after which the hyperphosphorylated C-Raf protein is dephosphorylated and returned to a signaling-competent state through dephosphorylation events involving protein phosphatase 2A (PP2A) and the Pin1 prolyl-isomerase (8). For B-Raf, two ERK-dependent feedback sites, S750 and T753, have been identified, and phosphorylation of these sites has been reported to have a negative regulatory effect (3).In this study, we have further investigated the impact of feedback phosphorylation and heterodimerization on B-Raf signaling. Here we find that both normal and oncogenic B-Raf proteins are phosphorylated on four S/TP sites (S151, T401, S750, and T753) by activated ERK. Through mutational analysis, we find that phosphorylation of B-Raf at S151 inhibits binding to activated Ras, whereas phosphorylation of each of the feedback sites contributes to the disruption of B-Raf/C-Raf heterodimers. Moreover, we find that events influencing B-Raf/C-Raf heterodimerization, such as feedback phosphorylation and 14-3-3 binding, can alter the signaling activity of oncogenic B-Raf proteins possessing intermediate or impaired kinase activity as well as that of B-Raf and C-Raf proteins containing mutations identified in CFC and Noonan''s syndromes, respectively.  相似文献   

13.
The protein kinase domains of mouse A-Raf and B-Raf were expressed as fusion proteins with the hormone binding domain of the human estrogen receptor in mammalian cells. In the absence of estradiol, 3T3 and rat1a cells expressing delta A-Raf:ER and delta B-Raf:ER were nontransformed, but upon the addition of estradiol the cells became oncogenically transformed. Morphological oncogenic transformation was more rapid and distinctive in cells expressing delta B-Raf:ER compared with cells expressing delta A-Raf:ER. Biochemical analysis of cells transformed by delta A-Raf:ER and delta B-Raf:ER revealed several interesting differences. The activation of delta B-Raf:ER consistently led to the rapid and robust activation of both MEK and p42/p44 MAP kinases. By contrast, the activation of delta A-Raf:ER led to a weak activation of MEK and the p42/p44 MAP kinases. The extent of activation of MEK in cells correlated with the ability of the different Raf kinases to phosphorylate and activate MEK1 in vitro. delta B-Raf:ER phosphorylated MEK1 approximately 10 times more efficiently than delta Raf-1:ER and at least 500 times more efficiently than delta A-Raf:ER under the conditions of the immune-complex kinase assays. These results were confirmed with epitope-tagged versions of the Raf kinase domains expressed in insect cells. The activation of all three delta Raf:ER proteins in 3T3 cells led to the hyperphosphorylation of the resident p74raf-1 and mSOS1 proteins, suggesting the possibility of "cross-talk" between the different Raf kinases and feedback regulation of intracellular signaling pathways. The activation of either delta B-Raf:ER or delta Raf-1:ER in quiescent 3T3 cells was insufficient to promote the entry of the cells into DNA synthesis. By contrast, the activation of delta A-Raf:ER in quiescent 3T3 cells was sufficient to promote the entry of the cells into S phase after prolonged exposure to beta-estradiol. The delta Raf:ER system has allowed us to reveal significant differences between the biological and biochemical properties of oncogenic forms of the Raf family of protein kinases. We anticipate that cells expressing these proteins and other estradiol-regulated protein kinases will be useful tools in future attempts to unravel the complex web of interactions involved in intracellular signal transduction pathways.  相似文献   

14.
Raf kinases are essential for regulating cell proliferation, survival, and tumorigenesis. However, the mechanisms by which Raf is activated are still incompletely understood. Phosphorylation plays a critical role in Raf activation in response to mitogens. The present study characterizes phosphorylation of Ser338, a crucial event for Raf-1 activation. Here we report that mutation of Lys375 to Met diminishes phosphorylation of Ser338 on both wild type Raf-1 in cells treated with epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA) and a constitutively active mutant in which Tyr340/Tyr341 are replaced by 2 aspartic acids, a conserved substitution present in natural B-Raf. The loss of Ser338 phosphorylation in these Raf mutants is not engendered by a mutation-induced conformational change, inasmuch as mutation of another site (Ser471 to Ala) in the activation segment also abolishes Ser338 phosphorylation, whereas both the kinase-dead mutants of Raf-1 are phosphorylated well by active Pak1. Furthermore, our data demonstrate that EGF-stimulated phosphorylation of Ser338 is inhibited by Sorafenib, a Raf kinase inhibitor, but not by the MEK inhibitor U0126. Interestingly, a kinase-dead mutation and Sorafenib also markedly reduce phosphorylation of Ser445 on B-Raf, a site equivalent to Raf-1 Ser338. Finally, our data reveal that Ser338 is phosphorylated on inactive Raf-1 by an active mutant of Raf-1 when they are dimerized in cells and that artificial dimerization of Raf-1 causes Ser338 phosphorylation, accompanied by activation of ERK1/2. Altogether, our data suggest that Ser338 on Raf-1 is autophosphorylated in response to mitogens.  相似文献   

15.
To be fully activated at the plasma membrane, Raf-1 must establish two distinct modes of interactions with Ras, one through its Ras-binding domain and the other through its cysteine-rich domain (CRD). The Ras homologue Rap1A is incapable of activating Raf-1 and even antagonizes Ras-dependent activation of Raf-1. We proposed previously that this property of Rap1A may be attributable to its greatly enhanced interaction with Raf-1 CRD compared to Ras. On the other hand, B-Raf, another Raf family member, is activatable by both Ras and Rap1A. When interactions with Ras and Rap1A were measured, B-Raf CRD did not exhibit the enhanced interaction with Rap1A, suggesting that the strength of interaction at CRDs may account for the differential action of Rap1A on Raf-1 and B-Raf. The importance of the interaction at the CRD is further supported by a domain-shuffling experiment between Raf-1 and B-Raf, which clearly indicated that the nature of CRD determines the specificity of response to Rap1A: Raf-1, whose CRD is replaced by B-Raf CRD, became activatable by Rap1A, whereas B-Raf, whose CRD is replaced by Raf-1 CRD, lost its response to Rap1A. Finally, a B-Raf CRD mutant whose interaction with Rap1A is selectively enhanced was isolated and found to possess the double mutation K252E/M278T. B-Raf carrying this mutation was not activated by Rap1A but retained its response to Ras. These results indicate that the strength of interaction with Ras and Rap1A at its CRD may be a critical determinant of regulation of the Raf kinase activity by the Ras family small GTPases.  相似文献   

16.
Rit is one of the original members of a novel Ras GTPase subfamily that uses distinct effector pathways to transform NIH 3T3 cells and induce pheochromocytoma cell (PC6) differentiation. In this study, we find that stimulation of PC6 cells by growth factors, including nerve growth factor (NGF), results in rapid and prolonged Rit activation. Ectopic expression of active Rit promotes PC6 neurite outgrowth that is morphologically distinct from that promoted by oncogenic Ras (evidenced by increased neurite branching) and stimulates activation of both the extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase signaling pathways. Furthermore, Rit-induced differentiation is dependent upon both MAP kinase cascades, since MEK inhibition blocked Rit-induced neurite outgrowth, while p38 blockade inhibited neurite elongation and branching but not neurite initiation. Surprisingly, while Rit was unable to stimulate ERK activity in NIH 3T3 cells, it potently activated ERK in PC6 cells. This cell type specificity is explained by the finding that Rit was unable to activate C-Raf, while it bound and stimulated the neuronal Raf isoform, B-Raf. Importantly, selective down-regulation of Rit gene expression in PC6 cells significantly altered NGF-dependent MAP kinase cascade responses, inhibiting both p38 and ERK kinase activation. Moreover, the ability of NGF to promote neuronal differentiation was attenuated by Rit knockdown. Thus, Rit is implicated in a novel pathway of neuronal development and regeneration by coupling specific trophic factor signals to sustained activation of the B-Raf/ERK and p38 MAP kinase cascades.  相似文献   

17.
Raf kinases relay signals inducing proliferation, differentiation, and survival. The Raf-1 isoform has been extensively studied as the upstream kinase linking Ras activation to the MEK/ERK module. Recently, however, genetic experiments have shown that Raf-1 plays an essential role in counteracting apoptosis, and that it does so independently of its ability to activate MEK. By conditional gene ablation, we now show that Raf-1 is required for normal wound healing in vivo and for the migration of keratinocytes and fibroblasts in vitro. Raf-1-deficient cells show a symmetric, contracted appearance, characterized by cortical actin bundles and by a disordered vimentin cytoskeleton. These defects are due to the hyperactivity and incorrect localization of the Rho-effector Rok-alpha to the plasma membrane. Raf-1 physically associates with Rok-alpha in wild-type (WT) cells, and reintroduction of either WT or kinase-dead Raf-1 in knockout fibroblasts rescues their defects in shape and migration. Thus, Raf-1 plays an essential, kinase-independent function as a spatial regulator of Rho downstream signaling during migration.  相似文献   

18.
The Raf/MEK/ERK cascade is a highly conserved signal transduction module whose activation reportedly results in a plethora of physiological outcomes. Depending on the cell type or the stimulus used, the pathway has been implicated in proliferation, differentiation, survival, and migration. Their wide range of activities renders the component of the Raf/MEK/ERK pathway prime candidates for molecule-targeted therapies, in particular, but not exclusively, in the context of cancer. Ras, Raf and MEK inhibitors have been developed, and some of them are in advanced clinical trials. Somewhat surprising in view of all this interest, our understanding of the fundamental biology of the ERK pathway in vivo is still scanty. Its investigation has been hampered by the fact that conventional targeting of many of these genes results in embryonic lethality. Recently, we and others have generated mouse strains that allow the conditional ablation of the genes coding for Raf-1, B-Raf and MEK-1. We are using these tools to identify the essential biological functions of these kinases, and to understand how the ERK pathway is wired in vivo. Here, we discuss some of the surprises yielded by the analysis of the role of B-Raf and Raf-1 and of their downstream effectors.  相似文献   

19.
Growth factor stimulation of the mitogen-activated protein (MAP) kinase pathway in fibroblasts is inhibited by cyclic AMP (cAMP) as a result of inhibition of Raf-1. In contrast, cAMP inhibits neither nerve growth factor-induced MAP kinase activation nor differentiation in PC12 pheochromocytoma cells. Instead, in PC12 cells cAMP activates MAP kinase. Since one of the major differences between the Ras/Raf/MAP kinase cascades of these cell types is the expression of B-Raf in PC12 cells, we compared the effects of cAMP on Raf-1 and B-Raf. In PC12 cells maintained in serum-containing medium, B-Raf was refractory to inhibition by cAMP, whereas Raf-1 was effectively inhibited. In contrast, both B-Raf and Raf-1 were inhibited by cAMP in serum-starved PC12 cells. The effect of cAMP is thus dependent upon growth conditions, with B-Raf being resistant to cAMP inhibition in the presence of serum. These results were extended by studies of Rat-1 fibroblasts into which B-Raf had been introduced by transfection. As in PC12 cells, B-Raf was resistant to inhibition by cAMP in the presence of serum, whereas Raf-1 was effectively inhibited. In addition, the expression of B-Raf rendered Rat-1 cells resistant to the inhibitory effects of cAMP on both growth factor-induced activation of MAP kinase and mitogenesis. These results indicate that Raf-1 and B-Raf are differentially sensitive to inhibition by cAMP and that B-Raf expression can contribute to cell type-specific differences in the regulation of the MAP kinase pathway. In contrast to the situation in PC12 cells, cAMP by itself did not stimulate MAP kinase in B-Raf-expressing Rat-1 cells. The activation of MAP kinase by cAMP in PC12 cells was inhibited by the expression of a dominant negative Ras mutant, indicating that cAMP acts on a target upstream of Ras. Thus, it appears that a signaling component upstream of Ras is also require for cAMP stimulation of MAP kinase in PC12 cells.  相似文献   

20.
The Raf family of serine/threonine protein kinases couple growth factor receptor stimulation to mitogen activated protein kinase activation, but their own regulation is poorly understood. Using phospho-specific antisera, we show that activated Raf-1 is phosphorylated on S338 and Y341. Expression of Raf-1 with oncogenic Ras gives predominantly S338 phosphorylation, whereas activated Src gives predominantly Y341 phosphorylation. Phosphorylation at both sites is maximal only when both oncogenic Ras and activated Src are present. Raf-1 that cannot interact with Ras-GTP is not phosphorylated, showing that phosphorylation is Ras dependent, presumably occurring at the plasma membrane. Mutations which prevent phosphorylation at either site block Raf-1 activation and maximal activity is seen only when both are phosphorylated. Mutations at S339 or Y340 do not block Raf-1 activation. While B-Raf lacks a tyrosine phosphorylation site equivalent to Y341 of Raf-1, S445 of B-Raf is equivalent to S338 of Raf-1. Phosphorylation of S445 is constitutive and is not stimulated by oncogenic Ras. However, S445 phosphorylation still contributes to B-Raf activation by elevating basal and consequently Ras-stimulated activity. Thus, there are considerable differences between the activation of the Raf proteins; Ras-GTP mediates two phosphorylation events required for Raf-1 activation but does not regulate such events for B-Raf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号