首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Fifty-one isolates of Rhizobium leguminosarum biovar phaseoli from various geographic and ecological sources, largely in Mexico, were characterized by the electrophoretic mobilities of 15 metabolic enzymes, and 46 distinctive multilocus genotypes (electrophoretic types [ETs]) were distinguished on the basis of allele profiles at the enzyme loci. Mean genetic diversity per enzyme locus among the 46 ETs was 0.691, the highest value yet recorded for any species of bacterium. The occurrence of strong nonrandom associations of alleles over loci suggested a basically clonal population structure, reflecting infrequent recombination of chromosomal genes. Multilocus genotypic diversity was unusually high, with the most strongly differentiated pairs of ETs having distinctive alleles at all 15 loci and major clusters of ETs diverging at genetic distances as large as 0.89. This great diversity in the chromosomal genome raises the possibility that R. leguminosarum biovar phaseoli is a polyphyletic assemblage of strains. As other workers have suggested, the inclusion of all strains capable of nodulating beans in a single biovar or species is genetically unrealistic and taxonomically misleading. A biologically meaningful classification of Rhizobium spp. should be based on assessment of variation in the chromosomal genome rather than on phenotypic characters, especially those mediated for the most part or wholly by plasmid-borne genes, such as host relationships.  相似文献   

3.
Two strains of Rhizobium leguminosarum bv. phaseoli and three other plant growth-promoting rhizobacteria (PGPR) were examined for the potential of maize and lettuce root colonization. All of these strains were selected in vitro for their phosphate-solubilizing abilities. Maize and lettuce seeds were treated with derivatives of all strains marked with lux genes for bioluminescence and resistance to kanamycin and rifampin prior to planting in nonsterile Promix and natural soil. The introduced bacterial strains were quantified on roots by dilution plating on antibiotic media together with observation of bioluminescence. Rhizobia were superior colonizers compared with other tested bacteria; rhizobial root populations averaged log 4.1 CFU/g (fresh weight) on maize roots 4 weeks after seeding and log 3.7 CFU/g (fresh weight) on lettuce roots 5 weeks after seeding. The average populations of the recovered PGPR strains were log 3.5 and log 3.0 CFU/g (fresh weight) on maize and lettuce roots, respectively. One of the three PGPR was not recovered later than the first week after seeding in Promix. Bioluminescence also permitted visualization of in situ root colonization in rhizoboxes and demonstrated the efficiency of rhizobial strains to colonize and survive on maize and lettuce roots.  相似文献   

4.
Rhizobium leguminosarum bv. phaseoli strains P31 and R1, Serratia sp. strain 22b, Pseudomonas sp. strain 24 and Rhizopus sp. strain 68 were examined for their plant growth-promoting potential on lettuce and forage maize. All these phosphate solubilizing microorganisms (PSM) were isolated from Québec soils. The plants were grown in field conditions in three sites having high to low amounts of available P. In site 1 (very fertile soil), strains R1 and 22b tended to increase the dry matter yield of lettuce shoots (p≤0.10). Lettuce inoculated with rhizobia R1 had a 6% higher P concentration (p≤0.10) than the uninoculated control. In site 2 (poorly fertile soil), the dry matter of lettuce shoots was significantly increased (p≤0.05) by inoculation with strain P31 and 24 plus 35 kg ha-1 P-superphosphate, or with strain 68 plus 70 kg ha-1 P-superphosphate. In site 3 (moderately fertile soil), the dry matter of maize shoots was significantly increased (p≤0.05) by inoculation with strain 24 plus 17.5 kg ha-1 P-superphosphate, or with strain P31 plus 35 kg ha-1 P-superphosphate. Inoculation with PSM did not affect lettuce P uptake in the less fertile soil in site 2. In site 3 with the moderately fertile soil, maize plants inoculated with strain R1 had 8% higher P concentration than the uninoculated control (p≤0.01), and 6% with strains P31 and 68 (p≤0.05). The results clearly demonstrate that rhizobia specifically selected for P solubilization function as plant growth promoting rhizobacteria with the nonlegumes lettuce and maize. The P solubilization effect seems to be the most important mechanism of plant growth promotion in moderately fertile and very fertile soils when P uptake was increased with rhizobia and other PSM.  相似文献   

5.
6.
Rhizobium leguminosarum bv. phaseoli KIM5s outcompeted strain CE3 in bean (Phaseolus vulgaris L.) root nodulation when plants were grown at any of three field sites, each with a different soil type and indigenous population, or in the laboratory in a sterilized sand, a sterilized peat-vermiculite mixture, or a nonsterile field soil. A mathematical model describing nodulation competitiveness was empirically derived to evaluate the relative competitiveness of the two strains under these conditions. This model relates the proportional representation of the two strains in the inoculum to the proportional representation of nodules occupied by each strain or both strains and provides a measure of competitiveness, which is referred to as the competitiveness index. Statistical comparisons of competitiveness indices showed that the relative competitiveness of KIM5s and CE3 remained constant when the two strains were applied in a constant ratio over a range of inoculum concentrations, from 10(3) to 10(7) cells per seed, and when they were applied in various ratios to six P. vulgaris cultivars. Furthermore, the relative competitiveness of KIM5s and CE3 in the laboratory did not differ significantly from their relative competitiveness at the three field sites studied. Thus, a study of the basis for nodulation competitiveness of KIM5s and CE3 in the laboratory has the potential to provide an understanding of competitiveness both in the laboratory and in the field.  相似文献   

7.
8.
转座子Tn5-Mob在质粒RP4-4配合下能诱动(Mobilization)菜豆根瘤菌RCR3622内源质粒的诱动转移。在种间根瘤菌杂交过程中,二个巨型质粒的转移频率均大于10~(-3);分子量约为285kb的psym3622是带有结瘤(nod)和产黑素(mel)基因的共生质粒(Symbiotic plasmid);这二个基因的最大距离不超过70kb左右。另一个分子量约为135kb的质粒在试验中为不具结瘤功能的隐蔽质粒。将psym3622共生质粒导入不结瘤(Nod-)的豌豆根瘤菌菌株B151,能够使后者在菜豆植物上表达结瘤的特性,形成无效根瘤。将psym3622共生质粒导入不结瘤的菜豆根瘤菌菌株JI8400,能够在菜豆植物上形成正常发育的有效根瘤。  相似文献   

9.
Lipopolysaccharide (LPS) was isolated from free-living Rhizobium leguminosarum bv. phaseoli CE3 cells grown at pH 4.8 (antigenically similar to bacteroid LPS) and compared with that from cells grown at pH 7.2 (free-living bacteria). Composition analysis revealed that pH 7.2 LPS differs from pH 4.8 LPS in that 2,3,4-tri-O-methylfucose is replaced by 2,3-di-O-methylfucose. The amount of 2-O-methylrhamnose is greater in the pH 4.8 LPS than in the pH 7.2 LPS. Analysis of the structural components of LPS (O-chain polysaccharide, core oligosaccharides, and the lipid A) revealed that all the composition differences in the various LPSs occur in the O-chain polysaccharide. These structural variations between pH 4.8 and pH 7.2 LPSs provide a chemical basis for the observed lack of cross-reactivity with pH 4.8 LPS of two monoclonal antibodies, JIM28 and JIM29, raised against free-living bacteria grown at pH 7.2. An LPS preparation isolated from bacteroids contained both 2,3,4-tri-O- and 2,3-di-O-methylfucose residues. This result is consistent with the finding that the two monoclonal antibodies react weakly with bacteroid LPS. It is concluded that methylation changes occur on the LPS O-chain of R. leguminosarum bv. phaseoli when the bacteria are grown at low pH and during nodule development.  相似文献   

10.
We have isolated 48 strains of Rhizobium leguminosarum biovar phaseoli from nodules of Phaseolus vulgaris L. cultivated on 32 different soils at 22 various locations in Rwanda, Central Africa. The symbiotic effectiveness of the strains was appraised in the greenhouse by measuring shoots dry matter and total plant nitrogen content after six weeks of growth. Of the strains tested 19%, 58% and 23% were rated very effective, effective and ineffective, respectively. A very significant correlation (r=0.96, P<0.01) was observed between shoots dry matter and total N content. By using the total nitrogen balance method, it was estimated that in the presence of a very effective strain, up to 86% of the N present in the shoots comes from N2 fixation. No significant correlations were observed between the symbiotic effectiveness of the strains and the pH of the soils from which they originated, the tolerance of the strains to acidity or their ability to produce organic acids. The nine very effective strains selected were highly competitive against two ineffective strains with the two P. vulgaris cultivars Rubona-5 and Kiryumukwe.Contribution no 367, Station de recherches, Agriculture Canada.Contribution no 367, Station de recherches, Agriculture Canada.  相似文献   

11.
Rhizobium leguminosarum bv. phaseoli KIM5s outcompeted strain CE3 in bean (Phaseolus vulgaris L.) root nodulation when plants were grown at any of three field sites, each with a different soil type and indigenous population, or in the laboratory in a sterilized sand, a sterilized peat-vermiculite mixture, or a nonsterile field soil. A mathematical model describing nodulation competitiveness was empirically derived to evaluate the relative competitiveness of the two strains under these conditions. This model relates the proportional representation of the two strains in the inoculum to the proportional representation of nodules occupied by each strain or both strains and provides a measure of competitiveness, which is referred to as the competitiveness index. Statistical comparisons of competitiveness indices showed that the relative competitiveness of KIM5s and CE3 remained constant when the two strains were applied in a constant ratio over a range of inoculum concentrations, from 10(3) to 10(7) cells per seed, and when they were applied in various ratios to six P. vulgaris cultivars. Furthermore, the relative competitiveness of KIM5s and CE3 in the laboratory did not differ significantly from their relative competitiveness at the three field sites studied. Thus, a study of the basis for nodulation competitiveness of KIM5s and CE3 in the laboratory has the potential to provide an understanding of competitiveness both in the laboratory and in the field.  相似文献   

12.
The fixLJ genes of Rhizobium leguminosarum biovar phaseoli CNPAF512 were identified by DNA hybridization of a genomic library with an internal fragment of the Rhizobium meliloti fixJ gene. The nucleotide sequence was determined and the corresponding amino acid sequence was aligned with the amino acid sequences of the FixL proteins of R. meliloti, Bradyrhizobium japonicum and Azorhizobium caulinodans. While the FixJ protein and the carboxy-terminal part of the FixL protein are highly homologous to the other FixL and FixJ proteins, the homology in the central heme-binding, oxygen-sensing domain and in the amino-terminal domain of FixL is very low. The R. leguminosarum bv. phaseoli FixL protein does not contain the heme-binding motif defined for the previously described FixL proteins. R. leguminosarum bv. phaseoli fixLJ and fixJ mutants were constructed. These mutants can still fix nitrogen, albeit at a reduced level. Expression analysis of nifA-gusA and nifH-gusA fusions in the constructed mutants revealed that the R. leguminosarum bv. phaseoli fixLJ genes are involved in microaerobic nifH expression but not in nifA expression.  相似文献   

13.
Abstract A combined subtraction hybridization and polymerase chain reaction/amplification technique was used to develop a DNA probe which was specific for the Rhizobium leguminosarum biovar phaseoli and the Rhizobium tropici group. Total genomic DNA preparations from Rhizobium leguminosarum biovar viciae, Rhizobium leguminosarum biovar trifolii, Rhizobium sp., Agrobacterium tumefaciens, Rhizobium fredii, Bradyrhizobium japonicum, Bradyrhizobium ssp. and Rhizobium meliloti were pooled and used as subtracter DNA against total genomic DNA from the Rhizobium leguminosarum biovar phaseolo strain KIM5s. Only one round of subtraction hybridization at 65°C was necessary to remove all cross-hybridizing sequences. Dot blot hybridizations with total genomic DNA of the eight subtracter organisms and 29 bacteria of different groups confirmed the high specificity of the isolated DNA sequences. Dot blot hybridizations and total genomic DNA from ten different R. Leguminosarum biovar phaseoli and R. tropici strains resulted in strong hybridization signals for all strains tested. The DNA probe for the R. tropici and R. leguminosarum biovar phaseoli group was used for dot blot hybridization with DNA extracts from three tropical and one boreal soil. When correlated with data from Most Probable Number analyses the probe was capable of detecting as low as 3 × 104 homologous indigenous rhizobia per g soil. The technique offers great benefits for the development of DNA probes for monitoring bacterial populations in environmental samples.  相似文献   

14.
We report the isolation, mutational analysis and the nucleotide sequence of the Rhizobium leguminosarum bv. phaseoli nifA gene. Comparison of the deduced amino acid sequence with other NifA sequences indicated the presence of the conserved central activator and the C-terminal DNA-binding domains. Nodules elicited by a R. leguminosarum bv. phaseoli nifA mutant were symbiotically ineffective. The expression of a nifA-gusA fusion was shown to be independent on the oxygen status of the cell. We cloned the three nifH copies of R. leguminosarum bv. phaseoli and determined the nucleotide sequence of their promoter regions. The expression of nifH-gusA fusions is induced under microaerobic conditions and is dependent on the presence of NifA.Abbreviations bp base pair(s) - kb kilobase(s) - ORF open reading frame  相似文献   

15.
Rhizobium leguminosarum biovar trifolii TA1 grows on 4-hydroxymandelate and enzymes involved in its catabolism are inducible. Strain TA1 does not grown on mandelate or cis, cis-muconate, but spontaneous mutants capable of growth on these substrates were isolated. Enzymes involved in mandelate degradation were also inducible. The presence of intermediates of the mandelate and hydroxymandelate pathways resulted in a significant decrease in some of the enzymes involved in their degradation. Succinate and acetate, end products of the pathways, and glucose caused reductions in the levels of enzymes in the mandelate and hydroxymandelate pathways.  相似文献   

16.
Rhizobium phaseoli CE106, CE110, and CE115, originally derived by transposon mutagenesis (Noel et al., J. Bacteriol. 158:149-155, 1984), induced the formation of uninfected root nodule-like swellings on bean (Phaseolus vulgaris). Bacteria densely colonized the root surface, and root hair curling and initiation of root cortical-cell divisions occurred normally in mutant-inoculated seedlings, although no infection threads formed. The nodules were ineffective, lacked leghemoglobin, and were anatomically distinct from normal nodules. Ultrastructural specialization for ureide synthesis, characteristic of legumes that form determinate nodules, was absent. Colony morphology of the mutant strains on agar plates was less mucoid than that of the wild type, and under some cultural conditions, the mutants did not react with Cellufluor, a fluorescent stain for beta-linked polysaccharide. These observations suggest that the genetic lesions in these mutants may be related to extracellular polysaccharide synthesis.  相似文献   

17.
Rhizobium leguminosarum biovar viceae strain TAL 1236 growing on different organic phosphorus compounds as sources of phosphate exhibited phosphatase activities. The strain was able to produce both acid and alkaline phosphatases. However, its ability to produce alkaline phosphatase was much higher. When cellular phosphate fell to 0.115% of cell protein, cellular and extracellular phosphatase activities were promoted. Mg2+, Co2+ and Ca2+ enhanced slightly the activity of alkaline phosphatase more than acid phosphatase. However, Mn2+ and Fe2+ activated acid phosphatase rather than alkaline phosphatase. It may be concluded that Rh. leguminosarum plays an important role in the release of phosphorus from its organic compounds through the action of phosphatases which can be slightly activated by a range of cations.  相似文献   

18.
Gram-negative, rod-shaped bacteria from the soil of white clover-ryegrass pastures were screened for their ability to nodulate white clover (Trifolium repens) cultivar Grasslands Huia and for DNA homology with genomic DNA from Rhizobium leguminosarum biovar trifolii ICMP2668 (NZP582). Of these strains, 3.2% were able to hybridize with strain ICMP2668 and nodulate white clover and approximately 19% hybridized but were unable to nodulate. Strains which nodulated but did not hybridize with strain ICMP2668 were not detected. DNA from R. leguminosarum biovar trifolii (strain PN165) cured of its symbiotic (Sym) plasmid and a specific nod probe were used to show that the relationship observed was usually due to chromosomal homology. Plasmid pPN1, a cointegrate of the broad-host-range plasmid R68.45 and a symbiotic plasmid pRtr514a, was transferred by conjugation to representative strains of nonnodulating, gram-negative, rod-shaped soil bacteria. Transconjugants which formed nodules were obtained from 6 of 18 (33%) strains whose DNA hybridized with that of PN165 and 1 of 9 (11%) strains containing DNA which did not hybridize with that of PN165. The presence and location of R68.45 and nod genes was confirmed in transconjugants from three of the strains which formed nodules. Similarly, a pLAFR1 cosmid containing nod genes from a derivative of R. leguminosarum biovar trifolii NZP514 formed nodules when transferred to soil bacteria.  相似文献   

19.
Anyango  Beatrice  Wilson  Kate  Giller  Ken 《Plant and Soil》1998,202(1):69-78
The contribution of appropriate inoculum strains to more efficient nitrogen fixation by legumes has been difficult to assess due to the laborious nature of the assays involved in assessing establishment of inoculum strains in the field. The use of marker genes, in particular the GUS system, changes this, making it possible to assess occupancy by the inoculum strain in large numbers of nodules on whole root systems. Here we used the GUS system to evaluate the competitive ability of two rhizobial strains, Rhizobium leguminosarum bv. phaseoli strain Kim5 and R. tropici strain CIAT899 in two soil types from Kenya. The results confirm that Kim5 is a highly competitive strain, forming 86% of the nodules in a near-neutral pH soil. Although the competitiveness of CIAT899 is enhanced in an acid (pH 4.5) soil it still only formed 35% of the nodules. There were no differences between inoculum strains in their efficiency of nitrogen fixation in either soil type, and virtually no N2-fixation occurred in the acid soil due to the lack of tolerance of the Phaseolus genotype to soil acidity.  相似文献   

20.
Rhizobium Ieguminosarum biovar phaseoli type II strain CIAT899 nodulates a wide range of hosts: Phaseolus vulgaris (beans), Leucaena esculenta (leucaena) and Macroptilium atropurpureum (siratro). A nodulation region from the symbiotic plasmid has been isolated and characterized. This region, which is contained in the overlapping cosmid clones pCV38 and pCV117, is able to induce nodutes in beans, leucaena and siratro roots when introduced in strains cured for the symbiotic plasmid, pSym. In addition, this cloned region extends the host range of Rhizobium meliloti and R. leguminosarum biovar (bv.) trifolii wild-type strains to nodulate beans. Analysis of constructed subclones indicates that a 6.4 kb Hin dlll fragment contains the essential genes required for nodule induction on all three hosts. Rhizobium leguminosarum bv. phaseoli type I strain CE3 nodulates only beans. However, CE3 transconjugants harbouring plasmid pCV3802 (which hybridized to a nodD heterologous probe), were capable of eliciting nodules on leucaena and siratro roots. Our results suggest that the CIAT899 DNA region hybridizing with the R. meliloti nodD detector is involved in the extension of host specificity to promote nodule formation in P. vulgaris, L. esculenta and M. atropurpureum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号