首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Biomimetic pathways for the oxidation of [Au(CN)(2)](-), a gold metabolite, and further cyanation of the gold(III) products to form Au(CN)(4)(-) were investigated using 13C NMR and UV-Visible spectroscopic methods. Hypochlorite ion, an oxidant released during the oxidative burst of immune cells, was employed. The reaction generates mixed dicyanoaurate(III) complexes, trans-[Au(CN)(2)X(2)](-), where X(-) represents equilibrating hydroxide and chloride ligands, and establishes the chemical feasibility of dicyanoaurate oxidation by OCl(-) to gold(III) species. This oxidation reaction suggests a new procedure for synthesis of H[Au(CN)(2)Cl(2)]. Reaction of trans-[Au(CN)(2)X(2)](-) (X(-)=Cl(-) and Br(-)) or [AuCl(4)](-) with HCN in aqueous solution at pH 7.4 leads directly to [Au(CN)(4)](-) without detection of the anticipated [Au(CN)(x)X(4-x)](-)intermediates, which is attributed to the cis- and trans-accelerating effects of the cyanides. The reduction of [Au(CN)(4)](-) by glutathione and other thiols is a complex, pH-dependent process that proceeds through two intermediates and ultimately generates [Au(CN)(2)](-). These studies provide further insight into the possible mechanisms of an immunogenically generated gold(I)/gold(III) redox cycle in vivo.  相似文献   

4.
The cytotoxicity of certain Cr(III) complexes, such as [Cr(salen)(H(2)O)(2)](+), [Cr(edta)(H(2)O)](-), [Cr(en)(3)](3+), [Cr(ox)(3)](3-), [Cr(pic)(3)], and CrCl(3), which differ in ionic character and ligand environment in human dermal skin fibroblasts, has been studied. After 72 h of exposure to 100 microM doses of chromium(III) complexes, the order in which the complexes had an inhibitory effect on cell viability was [Cr(en)(3)](3+) > [Cr(salen)(H(2)O)(2)](+) > [Cr(ox)(3)](3-) > [Cr(edta)(H(2)O)](-) > [Cr(pic)(3)] > CrCl(3). Based on viability studies it was confirmed that [Cr(en)(3)](3+), a triply charged cation, inhibits cell proliferation, and therefore, it was chosen to carry out further investigations. [Cr(en)(3)](3+), at a dose of 50 microM, was found to bring about surface morphological changes, evidenced by cellular blebbing and spike formation accompanied by nuclear damage. TEM analysis revealed substantial intracellular damage to fibroblasts in terms of the formation of apoptotic bodies and chromatin condensation, thus reflecting cell death. FACS analysis further revealed DNA damage by formation of a sub-G(1) peak with 84.2% DNA as aneuploid DNA and arrest of the G(2) / M phase of the cell cycle. Cellular DNA damage was confirmed by agarose gel electrophoresis with the characteristic appearance of a DNA streak in DNA isolated from [Cr(en)(3)](3+)-treated fibroblasts. The proposed mechanism suggests the plausible role of Cr(V), formed as a result of oxidation of Cr(III) by cellular oxidative enzymes, in the cytotoxic response. Consequently, any Cr(III) complex that is absorbed by cells and can be oxidized to Cr(V) must be considered a potential carcinogen. This has potential implications for the increased use of Cr(III) complexes as dietary supplements and highlights the need to consider the cytotoxicity and genotoxicity of a variety of Cr(III) complexes and to understand the potential hazards of Cr(III) complexes encountered in research laboratories.  相似文献   

5.
The reduction of auricyanide ([Au(CN)(4)](-), a potential gold(III) metabolite of antiarthritic gold(I) compounds), by glutathione (G(-)SH, an anionic biological reductant) proceeds through two intermediates (I(230) and I(290)) which have previously been identified by their UV-vis spectra, but not isolated. Negative-ion electrospray ionization-mass spectroscopy (ESI-MS) has unambiguously identified them as [Au(CN)(3)(SG)](2-) and [Au(CN)(2)(SG)(2)](3-), respectively, and allowed their formation and decay to be monitored. The spectra also confirm that the products are aurocyanide ([Au(CN)(2)](-), a known metabolite of chrysotherapy agents) and oxidized glutathione (GSSG(2-)). The reactions are dependent on the presence or absence of buffering agents and the pH of the reaction media. The reaction can be driven to the first intermediate by using an excess of auricyanide or by running the reaction at low pH which prevents further reaction. At neutral pH and/or with excess of glutathione present, the reaction proceeds to the second intermediate, which is then reduced to aurocyanide. The monoanions, [Au(CN)(3)(SGH)](-) at m/z=581.2 and [Au(CN)(2)(SGH)(2)](-) at m/z=861.5 generate more intense signals than their respective dianions, [Au(CN)(3)(SG)](2-) at m/2=290.2 and [Au(CN)(2)(SG)(SGH)](2-)m/2=430.9, respectively, whereas the trianion [Au(CN)(2)(SG)(2)](3-) (m/3=281.2) was not observed. These studies demonstrate the value of ESI-MS methods for characterizing reactions of metallopharmaceuticals under biomimetic conditions and suggest that they will be useful for other systems which give strong ESI-MS signals.  相似文献   

6.
Kim JO  Lee YA  Yun BH  Han SW  Kwag ST  Kim SK 《Biophysical journal》2004,86(2):1012-1017
Circular dichroism (CD) spectra of meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) that are associated with various duplex and triplex AT oligomers were investigated in this study. A strong positive CD was apparent for both the TMPyP complexed with duplex d[(A-T)(12)](2), d(A)(12).d(T)(12) and triplex d(A)(12).d[(T)(12)](2) at a low mixing ratio. As the mixing ratio increased, bisignate excitonic CD was produced for TMPyP complexed with duplexes, whereas the positive CD signal remained the same for the TMPyP-d(A)(12).d[(T)(12)](2) complex. This difference in the CD spectrum in the presence of duplex and triplex oligomers indicates that the moderate stacking of TMPyP occurs at the major groove of the duplex and the monomeric binding occurs in (or near) the minor groove. When TMPyP forms a complex with duplex d[(A-T)(6)](2) only excitonic CD was observed, even at a very low mixing ratio. Therefore, at least seven or more basepairs are required for TMPyP to exhibit a monomeric CD spectrum. After close analysis of the CD spectrum, the TMPyP-poly[d(A-T)(2)] complex could be explained by a combination of the CD spectrum of the monomeric, moderately stacked, and extensively stacked TMPyP.  相似文献   

7.
A series of mononuclear copper(II) complexes having a 1:1 molar ratio of copper and the planar heterocyclic base like 1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) are prepared from a reaction of copper(II) nitrate.trihydrate and the base (L) in ethanol or aqueous ethanol at different temperatures. The complexes [Cu(dpq)(NO(3))(2)] (2), [Cu(dpq)(NO(3))(H(2)O)(2)](NO(3)) (3), [Cu(dpq)(NO(3))(2)(H(2)O)(2)].2H(2)O (4.2H(2)O) and [Cu(dppz)(NO(3))(2)(H(2)O)].H(2)O (5.H(2)O) have been characterized by X-ray crystallography. The crystal structures show the presence of the heterocyclic base in the basal plane. The coordination geometries of the copper(II) centers are axially elongated square-pyramidal (4+1) in 2, 3 and 5, and octahedral (4+2) in 4. The nitrate anion in the coordination sphere displays unidentate and bidentate chelating bonding modes. The axial ligand is either H(2)O or NO(3) in these structures giving a Cu-L(ax) distance of approximately 2.4 A. The one-electron paramagnetic complexes (mu approximately 1.8 mu(B)) exhibit axial EPR spectra in DMF glass at 77 K giving g(parallel)>g( perpendicular ) with an A(parallel) value of approximately 170G indicating a [d(x)2(-y)2](1) ground state. The complexes are redox active and display a quasireversible cyclic voltammetric response for the Cu(II)/Cu(I) couple near 0.0 V vs. SCE giving an order of the E(1/2) values as 5(dppz)>2-4 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). The complexes bind to calf thymus DNA giving an order 5 (dppz)>2 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). An effect of the extended planar ring in dpq and dppz is observed in the DNA binding. The complexes show nuclease activity with pUC19 supercoiled DNA in DMF/Tris-HCl buffer containing NaCl in presence of mercaptopropanoic acid as a reducing agent. The extent of cleavage follows the order: [Cu(phen)(2)(H(2)O)](ClO(4))(2)>5>2 approximately 3 approximately 4>1. The bis-phen complex is a better cleaver of SC DNA than 1-5 having mono-heterocyclic base. Mechanistic investigations using distamycin reveal minor groove biding for the phen, dpq complexes, and a major groove binding for the dppz complex 5. The cleavage reactions are found to be inhibited in the presence of hydroxyl radical scavenger DMSO and the reactions are proposed to proceed via sugar hydrogen abstraction pathway. The ancillary ligand is found to have less effect in DNA binding but are of importance in DNA cleavage reactions.  相似文献   

8.
Four new mixed-ligand complexes, namely [Co(phen)(2)(qdppz)](3+), [Ni(phen)(2)(qdppz)](2+), [Co(phen)(2)(dicnq)](3+) and [Ni(phen)(2)(dicnq)](2+) (phen=1,10-phenanthroline, qdppz=naptho[2,3-a]dipyrido[3,2-H:2',3'-f]phenazine-5,18-dione and dicnq=dicyanodipyrido quinoxaline), were synthesized and characterized by FAB-MS, UV/Vis, IR, 1H NMR, cyclic voltammetry and magnetic susceptibility methods. Absorption and viscometric titration as well as thermal denaturation studies revealed that each of these octahedral complexes is an avid binder of calf-thymus DNA. The apparent binding constants for the dicnq- and qdppz-bearing complexes are in the order of 10(4) and >10(6) M(-1), respectively. Based on the data obtained, an intercalative mode of DNA binding is suggested for these complexes. While both the investigated cobalt(III) complexes and also [Ni(phen)(2)(qdppz)](2+) affected the photocleavage of DNA (supercoiled pBR 322) upon irradiation by 360 nm light, the corresponding dicnq complex of nickel(II) was found to be ineffective under a similar set of experimental conditions. The physico-chemical properties as well as salient features involved in the DNA interactions of the cobalt(III) and nickel(II) complexes investigated here were compared with each other and also with the corresponding properties of the previously reported ruthenium(II) analogues.  相似文献   

9.
Asymmetric trigonal-bipyramidal Zn(II) complex 1 formed by 2-[bis(2-aminoethyl)amino]ethanol (L) was found to be able to promote the cleavage of supercoiled plasmid DNA pBR322 to the nicked and linear DNA via a hydrolytic manner but only in neutral Tris-HCl buffer, no cleavage was observed in HEPES or NaH2PO4/Na2HPO4 buffer. However, the copper complex 2 of L, possessing the similar coordination geometry, can only promote DNA cleavage via an oxidative mechanism in the presence of ascorbic acid. ESI-MS study implies that complex 1 exist mainly as [Zn(L)]2+/[Zn(L-H)]+ in neutral Tris-HCl buffer. Moreover, there is no discriminable species for complex 1 in HEPES or NaH2PO4/Na2HPO4 buffer. A phosphate activation mechanism via phosphate coordinating to Zn(II) center of [Zn(L)]2+/[Zn(L-H)]+ to form the stable trigonal-bipyramidal structure is proposed for the hydrolytic cleavage promote by complex 1. For complex 2, the abundance of [Cu(L)Cl]+ is higher than that of [Cu(L)]2+/[Cu(L-H)]+ in Tris-HCl buffer. The lower phosphate binding/activating ability of Cu(II) in complex 2 may be the origin for its incapability to promote the hydrolytic DNA cleavage. However, the readily accessible redox potential of Cu(II) makes complex 2 promote the oxidative DNA cleavage. Although the DNA cleavage promoted by complex 1 has no specificity, trigonal-bipyramidal Zn(II) complexes formed by asymmetric tripodal polyamine with ethoxyl pendent should be a novel potential model for practical artificial nuclease.  相似文献   

10.
The interaction between hexakis(imidazole) manganese(II) terephthalate ([Mn(Im)(6)](teph).4H(2)O) and salmon sperm DNA in 0.2M pH 2.30 Britton-Robinson buffer solution was studied by fluorescence spectroscopy and cyclic voltammetry. Increasing fluorescence was observed for [Mn(Im)(6)](2+) with DNA addition, while quenching fluorescence phenomenon appeared for EB-DNA system when [Mn(Im)(6)](2+) was added. There were a couple quasi-reversible redox peaks of [Mn(Im)(6)](2+) from the cyclic voltammogram on the glassy carbon electrode. The peak current of [Mn(Im)(6)](2+) decreased with positive shift of the formal potential in the presence of DNA compared with that in the absence of DNA. All the experimental results indicate that [Mn(Im)(6)](2+) can bind to DNA mainly by intercalative binding mode. The binding ratio of the DNA-[Mn(Im)(6)](2+) association complex is calculated to be 1:1 and the binding constant is 4.44x10(3) M(-1). By using [Mn(Im)(6)](teph).4H(2)O as the electrochemical hybridization indicator, the DNA electrochemical sensor was prepared by covalent interaction and the selectivity of ssDNA modified electrode were described. The results demonstrate the use of electrochemical DNA biosensor in the determination of complementary ssDNA.  相似文献   

11.
Biological systems usually contain cysteine, glutathione or other sulfur-containing biomolecules. These S-nucleophiles were found to affect drastically the [Fe(4)(mu(3)-S)(3)(NO)(7)](-) photolysis pathway generating products completely different from that of the neat cluster, which produces Fe(II) and NO and S(2-). The effect is interpreted in terms of formation of a pseudo-cubane adduct, [Fe(4)(mu(3)-S)(3)(mu(3)-SR)(NO)(7)](2-), whose existence in equilibrium with the parent complex has no detectable influence on the spectral properties, whereas shifts the redox potential and induces photoconversion leading to the Fe(III) species and N(2)O. Characteristic bond lengths, bond angles and atomic Mulliken charges were calculated using semi-empirical quantum chemical methods for the RBS anion and a series of pseudo-cubane complexes with S-donor or N-donor ligands. The results justify the hypothesis of the adduct formation and show that only in case of S-ligands the higher contribution of the Fe(III)-NO(-) components in adduct than in RBS is observed, which on excitation can undergo heterolytic cleavage yielding Fe(III) and NO(-), converted rapidly into N(2)O. These results are crucial in understanding the physiological activity of RBS. Fe(III) formation can be detected only when the S-ligand enables formation of a stable Fe(III) compound; the effect was recorded in the presence of sulfide, thioglycolate, 2-mercaptopropionate, mercaptosuccinate, penicillamine, 2,3-dimercaptosuccinate, 2,3-dimercaptopropanol, and thiocyanate. For all these S-ligands the Fe(III) photoproducts were identified and characterised. In the case of other thiolates, their excess results in fast reduction of Fe(III) to Fe(II), whereas N(2)O can be still detected. Quantum yields of Fe(III) formation in the presence of the S-ligands are considerably higher than that of the Fe(II) photoproduction from neat [Fe(4)(mu(3)-S)(3)(NO)(7)](-).  相似文献   

12.
Electrospray ionization spectra of potential cyanide-containing gold-drug metabolites revealed additional, weak, unanticipated peaks at approximately twice the mass of the gold(I) and gold(III) cyanide complexes. The exact masses correspond to proton-linked bimetallic complexes, [H[Au(CN)(m)](2)](-), (m=2,4). Further investigation revealed a total of 12 examples, including trimetallic complexes, [H(2)[Au(CN)(m)](3)](-); mixed species with two complexes, [H[Au(CN)(2)][Au(CN)(4)]](-); and thiolato species, [H[(RS)Au(CN)(3)](2)](-). trans-[AuX(2)(CN)(2)Cl(2)](-) and trans-[AuX(2)(CN)(2)Br(2)](-) generated (35)Cl/(37)Cl and (79)Br/(81)Br isotopic patterns for the protonated bi- and tri-metallic analogues which were in good agreement with the presence of four or six halide ligands, respectively. Concentration-dependent studies demonstrated that the signals are independent of the solution concentrations of mono-metallic precursors, suggesting formation in the gas phase during or following droplet desolvation.  相似文献   

13.
Two mixed ligand complexes of the type [M(phen)(2)(qbdp)](PF(6))n.xH(2)O where M = Co(III) and Ni(II), qbdp = quinolo[3,2-b] benzodiazepine and phen = 1,10-phenanthroline, n = 3 or 2, x = 2 or 3 have been synthesized and characterized by employing analytical and spectral methods. The DNA binding property of the complexes with calf thymus-DNA has been investigated by using absorption spectra, viscosity measurements as well as thermal denaturation studies. The absorption spectral results indicate that the Co(III) and Ni(II) complexes intercalate between the base pairs of the DNA tightly with intrinsic DNA binding constant of 6.4 x 10(4) and 4.8 x 10(4) M(-1) in Tris HCl buffer containing 50 mM NaCl, respectively. The large enhancement in the relative viscosity of DNA on binding to the quinolo [3,2-b] benzodiazepine supports the proposed DNA binding modes. The complexes on reaction with super coiled (SC) DNA shows nuclease activity.  相似文献   

14.
Three copper(II) complexes of aminoquinoline derivatives, l-glycine-N'-8-quinolylamide (L1), l-alanine-N'-8-quinolylamide (L2), and N-(8-quinolyl) pyridine-2-carboxamide (L3) have been shown to cleave plasmid DNA pBR322 and pUC18 with or without the presence of H(2)O(2)/ascorbate. Crystallographic data reveal that the Cu(II) coordination plane in [Cu(L1)(Ac)(H(2)O)] (1) and [Cu(L2)(Ac)] (2) is nearly co-planar with the quinoline ring. The cleavage activity follows the order of complex 1>complex 2>complex 3, which is in agreement with the reverse order of the steric hindrance of the amino-substituent of the ligands. The presence of the standard radical scavengers does not have a clear effect on the cleavage efficiency of the Cu(II) complexes, suggesting the reactive species leading to DNA damage could be DNA-bound copper-centered radicals rather than the free diffusible ones.  相似文献   

15.
DNA represents the primary target for platinum antitumor metal complexes and is the probable target for newly developed cytotoxic gold(III) complexes. To test this hypothesis the reactions with calf thymus DNA of five representative gold(III) complexes--namely [Au(en)(2)]Cl(3), [Au(dien)Cl]Cl(2), [Au(cyclam)](ClO(4))(2)Cl, [Au(terpy)Cl]Cl(2) and [Au(phen)Cl(2)]Cl--were analyzed in vitro through various physicochemical techniques including circular dichroism, absorption spectroscopy, DNA melting, and ultradialysis. It is shown that all tested complexes interact with DNA and modify significantly its solution behavior. The solution conformation of DNA is affected to variable extents by the individual complexes as shown by CD titration experiments. Notably, in all cases, the gold(III) chromophore is not largely perturbed by addition of calf thymus DNA ruling out occurrence of gold(III) reduction. Ultradialysis experiments point out that the binding affinity of the various complexes for the DNA double helix is relatively low; in most cases the gold(III)/DNA interaction is electrostatic in nature and reversible. The implications of these findings for the mechanism of action of antitumor gold(III) complexes are discussed.  相似文献   

16.
S(IV) (SO(2),HSO(3)(-)andSO(3)(2-)) autoxidation catalyzed by Cu(II)/tetraglycine complexes in the presence of DNA or 2'-deoxyguanosine (dGuo) resulted in DNA strand breaks and formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo), respectively. Ni(II), Co(II) or Mn(II) (1.0x10(-4)M) complexes had much smaller effects. Cu(II)/tetraglycine (1.0x10(-4)M) in the presence of Ni(II) or Mn(II) (10(-7)-10(-6)M) and S(IV) showed remarkable synergistic effect with these metal ions producing a higher yield of 8-oxodGuo. Oxidation of dGuo and DNA damage were attributed to oxysulfur radicals formed as intermediates in S(IV) autoxidation catalyzed by transition metal ions. SO*(3)(-) and HO* radicals were detected by EPR-spin trapping experiments with DMPO (5,5-dimethyl-1-pyrroline-N-oxide).  相似文献   

17.
Comparison of iron-catalyzed DNA and lipid oxidation   总被引:4,自引:0,他引:4  
Lipid and DNA oxidation catalyzed by iron(II) were compared in HEPES and phosphate buffers. Lipid peroxidation was examined in a sensitive liposome system constructed with a fluorescent probe that allowed us to examine the effects of both low and high iron concentrations. With liposomes made from synthetic 1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine or from rat liver microsomal lipid, lipid peroxidation increased with iron concentration up to the range of 10--20 microM iron(II), but then rates decreased with further increases in iron concentration. This may be due to the limited amount of lipid peroxides available in liposomes for oxidation of iron(II) to generate equimolar iron(III), which is thought to be important for the initation of lipid peroxidation. Addition of hydrogen peroxide to incubations with 1--10 microM iron(II) decreased rates of lipid peroxidation, whereas addition of hydrogen peroxide to incubations with higher iron concentrations increased rates of lipid peroxidation. Thus, in this liposome system, sufficient peroxide from either within the lipid or from exogenous sources must be present to generate equimolar iron(II) and iron(III). With iron-catalyzed DNA oxidation, hydrogen peroxide always stimulated product formation. Phosphate buffer, which chelates iron but still allows for generation of hydroxyl radicals, inhibited lipid peroxidation but not DNA oxidation. HEPES buffer, which scavenges hydroxyl radicals, inhibited DNA oxidation, whereas lipid peroxidation was unaffected since presumably iron(II) and iron(III) were still available for reaction with liposomes in HEPES buffer.  相似文献   

18.
Copper(II) ternary complexes based on the novel benzothiazole- N-sulfonamides, HL1 ( N-2-(4-methylbenzothiazole)benzenesulfonamide) and HL2 ( N-2-(6-nitrobenzothiazole)naphthalenesulfonamide) ligands, and pyridine have been synthesized and characterized. Complexes [Cu(L1)(2)(py)(2)] (1). and [Cu(L2)(2)(py)(2)] (2). were chemically characterized and their structures determined by means of single crystal X-ray analysis. In both compounds the Cu(II) ion is coordinated to four N atoms in a nearly square planar arrangement. The Cu-N bond distances are similar to those of Cu(2)Zn(2)SOD. The SOD mimetic activity of the complexes was determined both in vitro and in vivo. For determining the SOD-like activity of the complexes in vivo, we have developed a new method based on the complexes' protective effect on a delta sod1mutant of Saccharomyces cerevisiae against free radicals generated by hydrogen peroxide and menadione as well as free radicals produced in the cellular respiration process. The results have shown that complex 1 presents a protective action against oxidative stress induced by menadione or H(2)O(2) and that both complexes 1 and 2 protect against free radicals generated in cellular respiration.  相似文献   

19.
Two novel cobalt(III) mixed-polypyridyl complexes [Co(phen)(2)(dpta)](3+) and [Co(phen)(2)(amtp)](3+) (phen=1,10-phenanthroline, dpta=dipyrido-[3,2-a;2',3'-c]- thien-[3,4-c]azine, amtp=3-amino-1,2,4-triazino[5,6-f]1,10-phenanthroline) have been synthesized and characterized. The interaction of these complexes with calf thymus DNA was investigated by spectroscopic, cyclic voltammetry, and viscosity measurements. Results suggest that the two complexes bind to DNA via an intercalative mode. Moreover, these Co(III) complexes have been found to promote the photocleavage of plasmid DNA pBR322 under irradiation at 365nm. The mechanism studies reveal that hydroxyl radical (OH()) is likely to be the reactive species responsible for the cleavage of plasmid DNA by [Co(phen)(2)(dpta)](3+) and superoxide anion radical (O(2)(-)) acts as the key role in the cleavage reaction of plasmid DNA by [Co(phen)(2)(amtp)](3+).  相似文献   

20.
Cu(BZA)(2)(EtOH)(0.5) (1) was generated by the reaction of copper(II) hydroxide with benzoic acid (BZAH). [Cu(TBZH)(2)(BZA)](BZA).0.5TBZH.H(2)O (2) and [Cu(2-PyBZIMH)(2-PyBZIM)(BZA)].1.66EtOH (3) were obtained when 1 reacted with Thiabendazole (TBZH) and 2-(2-pyridyl)benzimidazole (2-PyBZIMH), respectively. [Cu(BZA)(2)(phen)(H(2)O)] (4) was isolated from the reaction of benzoic acid and 1,10-phenanthroline (phen) with copper(II)acetate dihydrate. Molecular structures of 2, 3 and 4 were determined crystallographically. 2 and 3 are hydrogen bonded dimers and trimers, respectively. The copper centres in complexes 2 and 3 are bis-chelate derivatives that have N(4)O ligation and their geometry is very similar being approximately square-pyramidal. However whereas in complex 2 both TBZH ligands are neutral in 3 one of the 2-PyBZIMH chelators is deprotonated on each copper. The structural results for 4 represent a re-examination of this crystallographically known compound for which no hydrogen atom coordinates have been previously reported. It crystallises as a hydrogen bonded dimmer and is a mono-chelate of phen with each copper centre possessing N(2)O(3) ligation and square pyramidal geometry. The catalase and superoxide dismutase (SOD) activities of the four complexes along with those of the known phenanthroline complexes [Cu(mal)(phen)(2)] and [Cu(phendione)(3)](ClO(4))(2) (malH(2)=malonic acid and phendione=1,10-phenanthroline-5,6-dione) were investigated. Complexes 1-4, the metal free ligands and a simple copper(II) salt were assessed for their cancer chemotherapeutic potential against the hepatocellular carcinoma (Hep-G(2)) and kidney adenocarcinoma (A-498) cell lines. TBZH, 2-PyBZIMH and benzoic acid when uncoordinated to a metal centre offer poor chemotherapeutic potential. copper(II) benzoate is significantly more active than the free acid. The bis-chelate derivatives [Cu(TBZH)(2)(BZA)](BZA).0.5TBZH.H(2)O (2) and [Cu(2-PyBZIMH)(2-PyBZIM)(BZA)].1.66EtOH (3) elicit a significant cytotoxic response to the cancer cell lines tested. Replacing TBZH and 2-PyBZIMH with phen to give [Cu(BZA)(2)(phen)(H(2)O)] (4) does not significantly increase the anti-cancer activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号