首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The rad10, rad16, rad20, and swi9 mutants of the fission yeast Schizosaccharomyces pombe, isolated by their radiation sensitivity or abnormal mating-type switching, have been shown previously to be allelic. We have cloned DNA correcting the UV sensitivity or mating-type switching phenotype of these mutants and shown that the correcting DNA is encompassed in a single open reading frame. The gene, which we will refer to as rad16, is approximately 3 kb in length, contains seven introns, and encodes a protein of 892 amino acids. It is not essential for viability of S. pombe. The predicted protein is the homolog of the Saccharomyces cerevisiae RAD1 protein, which is involved in an early step in excision-repair of UV damage from DNA. The approximately 30% sequence identity between the predicted proteins from the two yeasts is distributed throughout the protein. Two-hybrid experiments indicate a strong protein-protein interaction between the products of the rad16 and swi10 genes of S. pombe, which mirrors that reported for RAD1 and RAD10 in S. cerevisiae. We have identified the mutations in the four alleles of rad16. They mapped to the N-terminal (rad10), central (rad20), and C-terminal (rad16 and swi9) regions. The rad10 and rad20 mutations are in the splice donor sequences of introns 2 and 4, respectively. The plasmid correcting the UV sensitivity of the rad20 mutation was missing the sequence corresponding to the 335 N-terminal amino acids of the predicted protein. Neither smaller nor larger truncations were, however, able to correct its UV sensitivity.  相似文献   

2.
3.
4.
Loss of function of the Schizosaccharomyces pombe gap1 gene results in the same phenotypes as those caused by an activated ras1 mutation, i.e., hypersensitivity to the mating factor and inability to perform efficient mating. Sequence analysis of gap1 indicates that it encodes a homolog of the mammalian Ras GTPase-activating protein (GAP). The predicted gap1 gene product has 766 amino acids with relatively short N- and C-terminal regions flanking the conserved core sequence of GAP. Genetic analysis suggests that S. pombe Gap1 functions primarily as a negative regulator of Ras1, like S. cerevisiae GAP homologs encoded by IRA1 and IRA2, but is unlikely to be a downstream effector of the Ras protein, a role proposed for mammalian GAP. Thus, Gap1 and Ste6, a putative GDP-GTP-exchanging protein for Ras1 previously identified, appear to play antagonistic roles in the Ras-GTPase cycle in S. pombe. Furthermore, we suggest that this Ras-GTPase cycle involves the ra12 gene product, another positive regulator of Ras1 whose homologs have not been identified in other organisms, which could function either as a second GDP-GTP-exchanging protein or as a factor that negatively regulates Gap1 activity.  相似文献   

5.
Linear plasmids were constructed by adding telomeres prepared from Tetrahymena pyriformis rDNA to a circular hybrid Escherichia coli-yeast vector and transforming Saccharomyces cerevisiae. The parental vector contained the entire 2 mu yeast circle and the LEU gene from S. cerevisiae. Three transformed clones were shown to contain linear plasmids which were characterized by restriction analysis and shown to be rearranged versions of the desired linear plasmids. The plasmids obtained were imperfect palindromes: part of the parental vector was present in duplicated form, part as unique sequences and part was absent. The sequences that had been lost included a large portion of the 2 mu circle. The telomeres were approximately 450 bp longer than those of T. pyriformis. DNA prepared from transformed S. cerevisiae clones was used to transform Schizosaccharomyces pombe. The transformed S. pombe clones contained linear plasmids identical in structure to their linear parents in S. cerevisiae. No structural re-arrangements or integration into S. pombe was observed. Little or no telomere growth had occurred after transfer from S. cerevisiae to S. pombe. A model is proposed to explain the genesis of the plasmids.  相似文献   

6.
7.
Recombinant plasmids were constructed that direct the synthesis of human antithrombin III in baker's yeast, Saccharomyces cerevisiae, and the fission yeast, Schizosaccharomyces pombe. The signal sequence of antithrombin III was recognized by both yeast species, and antithrombin III was secreted into the medium. When the signal sequence was replaced by a sequence of ten arbitrary amino acids, the product expressed from such a construct stayed inside the cell. Antithrombin III was glycosylated by the baker's and fission yeast and was immunologically identical to antithrombin III isolated from human plasma. Antithrombin III isolated from the culture media of recombinant yeasts was biologically active, as could be shown by progressive inhibitor activity and heparin cofactor activity.  相似文献   

8.
Summary In the presence of erythromycin (0.01 mg/ml) growth of Schizosaccharomyces pombe in non-fermentable substrate (glycerol) is reduced to 5–15% of the control without erythromycin, whereas growth in fermentable substrate (5% glucose) is left unaffected by concentrations up to 5 mg/ml. The reduction of growth under derepressed conditions is paralleled by inhibition of the formation of cytochromes a·a3 and b. Mitochondrial protein synthesis is inhibited to about 50% in Schizosaccharomyces pombe and to about 90% in Saccharomyces cerevisiae. These results support the hypothesis that inhibition of mitochondrial protein synthesis is the primary effect of erythromycin.  相似文献   

9.
We report on the expression of a VEGF-like protein encoded by Parapoxvirus ovis in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. We show that a lysine residue at amino acid position 2 (K2) is an important determinant for the stability of this protein in S. cerevisiae. Replacement of K2 by an arginine results in stabilization of the protein. This observation suggests that this lysine may be a target for ubiquitinylation, which is a prerequisite for proteasome-mediated protein degradation. Interestingly, in S. pombe the lysine (K2) has no influence on the stability of the protein. This result indicates that the two yeast species exhibit significant differences in their protein degradation pathways.  相似文献   

10.
A recombinant plasmid pool of the Saccharomyces diastaticus genome was constructed in plasmid YEp13 and used to transform a strain of Saccharomyces cerevisiae. Six transformants were obtained which expressed amylolytic activity. The plasmids each contained a 3.9-kilobase (kb) BamHI fragment, and all of these fragments were cloned in the same orientations and had identical restriction maps, which differed from the map of the STA1 gene (I. Yamashita and S. Fukui, Agric. Biol. Chem. 47:2689-2692, 1983). The glucoamylase activity exhibited by all S. cerevisiae transformants was approximately 100 times less than that of the donor strain. An even lower level of activity was obtained when the recombinant plasmid was introduced into Schizosaccharomyces pombe. No expression was observed in Escherichia coli. The 3.9-kb BamHI fragment hybridized to two sequences (4.4 and 3.9 kb) in BamHI-digested S. diastaticus DNA, regardless of which DEX (STA) gene S. diastaticus contained, and one sequence (3.9 kb) in BamHI-digested S. cerevisiae DNA. Tetrad analysis of crosses involving untransformed S. cerevisiae and S. diastaticus indicated that the 4.4-kb homologous sequence cosegregated with the glucoamylase activity, whereas the 3.9-kb fragment was present in each of the meiotic products. Poly(A)+ RNA fractions from vegetative and sporulating diploid cultures of S. cerevisiae and S. diastaticus were probed with the 3.9-kb BamHI fragment. Two RNA species, measuring 2.1 and 1.5 kb, were found in both the vegetative and sporulating cultures of S. diastaticus, whereas one 1.5-kb species was present only in the RNA from sporulating cultures of S. cerevisiae.  相似文献   

11.
The protein kinase-encoding genes RCK1 and RCK2 from Saccharomyces cerevisiae have been identified as suppressors of Schizosaccharomyces pombe cell cycle checkpoint mutations. Upon expression of these genes, radiation resistance is partially restored in S. pombe mutants with checkpoint deficiencies, but not in mutants with DNA repair defects. Some checkpoint mutants are sensitive to the DNA synthesis inhibitor hydroxyurea, and this sensitivity is also suppressed by RCK1 and RCK2. The degree of suppression can be modulated by varying expression levels. Expression of RCK1 or RCK2 in S. pombe causes cell elongation and decelerated growth. Cells expressing these genes have a single nucleus and a 2n DNA content. We conclude that these genes act in S. pombe to prolong the G2 phase of the cell cycle.  相似文献   

12.
GAR1 is a nucleolar protein which is associated with small nucleolar RNAs (snoRNAs) and which is required for pre-ribosomal RNA processing. In Saccharomyces cerevisiae, the GAR1 gene is essential for cell viability. We have cloned and sequenced the GAR1 gene from the distantly related yeast Schizosaccharomyces pombe. The SpGAR1 gene, which contains two small introns, codes for a 194 amino-acid protein of 20 kDa. A protein sequence comparison indicates that SpGAR1 is 65% identical to ScGAR1. Anti-ScGAR1 antibodies recognize SpGAR1, emphasizing the structural conservation of the protein. Immunostaining of S.pombe cells with these antibodies reveals that SpGAR1 is localized in the nucleolus, as is the case in S.cerevisiae. Moreover, SpGAR1 can substitute for GAR1 in S.cerevisiae, indicating that the two proteins are functionally equivalent. These results suggest a parallel evolutionary conservation of proteins and RNAs with which GAR1 interacts in mediating its pre-rRNA processing and viability functions. After fibrillarin, GAR1 is the second protein of the snoRNPs shown to have been conserved throughout evolution.  相似文献   

13.
14.
The Saccharomyces cerevisiae gene CDC28 encodes a protein kinase required for cell cycle initiation. In an attempt to identify genes encoding proteins that interact with the Cdc28 protein kinase, high-copy plasmid suppressors of a temperature-sensitive cdc28 mutation were isolated. One such suppressor, CKS1, was found to encode an 18-kilodalton protein that shared a high degree of homology with the suc1+ protein (p13) of Schizosaccharomyces pombe (67% amino acid sequence identity). Disruption of the chromosomal CKS1 gene conferred a G1 arrest phenotype similar to that of cdc28 mutants. The presence of the 18-kilodalton Cks1 protein in yeast lysates was demonstrated by using Cks-1 specific antiserum. Furthermore, the Cks1 protein was shown to be physically associated with active forms of the Cdc28 protein kinase. These data suggest that Cks1 is an essential component of the Cdc28 protein kinase complex.  相似文献   

15.
A Saccharomyces cerevisiae mutant affected in the last step of the biotin biosynthesis pathway was isolated by using a transposon mutagenesis method. The gene BIO2, encoding a biotin synthase, is shown to be interrupted in this mutant. Heterologous complementation experiment allowed the cloning and the characterization of a novel bio gene: bio2, encoding biotin synthase from Schizosaccharomyces pombe. Received: 4 June 1999 / Accepted: 12 July 1999  相似文献   

16.
We here demonstrated that the Soh1/MED31 protein is a stable component of Mediator complex isolated from Schizosaccharomyces pombe and Saccharomyces cerevisiae. Bioinformatic analysis traces the Soh1/MED31 family of Mediator subunits to the point of major eukaryotic divergence, before the appearance of the canonical heptapeptide repeat structure of the RNA polymerase II C-terminal domain.  相似文献   

17.
A vacuolar membrane protein, Vba2p of Schizosaccharomyces pombe, is involved in basic amino acid uptake by intact cells. Here we found evidence that Vba2p mediated ATP-dependent lysine uptake by vacuolar membrane vesicles of Saccharomyces cerevisiae. Vba2p was also responsible for quinidine sensitivity, and the addition of lysine improved cell growth on quinidine-containing media. These findings should be useful for further characterization of Vba2p.  相似文献   

18.
Cells mutated at the rad13 locus in the fission yeast, Schizosaccharomyces pombe are deficient in excision-repair of UV damage. We have cloned the S.pombe rad13 gene by its ability to complement the UV sensitivity of a rad13 mutant. The gene is not essential for cell proliferation. Sequence analysis of the cloned gene revealed an open reading-frame of 1113 amino acids with structural homology to the RAD2 gene of the distantly related Saccharomyces cerevisiae. The sequence similarity is confined to three domains, two close to the N-terminus of the encoded protein, the third being close to the C-terminus. The central region of about 500 amino acids shows little similarity between the two organisms. The first and third domains are also found in a related yet distinct pair of homologous S.pombe/S.cerevisiae DNA repair genes (rad2/YKL510), which have only a very short region between these two conserved domains. Using the polymerase chain reaction with degenerate primers, we have isolated fragments from a gene homologous to rad13/RAD2 from Aspergillus nidulans. These findings define new functional domains involved in excision-repair, as well as identifying a conserved family of genes related to RAD2.  相似文献   

19.
20.
The RAD6 gene of Saccharomyces cerevisiae encodes a ubiquitin conjugating enzyme and is required for DNA repair, DNA-damage-induced mutagenesis and sporulation. Here, we show that RAD6 and the rhp6+ gene from the distantly related yeast Schizosaccharomyces pombe share a high degree of structural and functional homology. The predominantly acidic carboxyl-terminal 21 amino acids present in the RAD6 protein are absent in the rhp6(+)-encoded protein; otherwise, the two proteins are very similar, with 77% identical residues. Like rad6, null mutations of the rhp6+ gene confer a defect in DNA repair, UV mutagenesis and sporulation, and the RAD6 and rhp6+ genes can functionally substitute for one another. These observations suggest that functional interactions between RAD6 (rhp6+) protein and other components of the DNA repair complex have been conserved among eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号