首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vitamin E treatment has been found to be beneficial in preventing or reducing diabetic nephropathy. Increased tissue calcium and abnormal microsomal Ca(2+)-ATPase activity have been suggested as contributing factors in the development of diabetic nephropathy. This study was undertaken to test the hypothesis that vitamin E reduces lipid peroxidation and can prevent the abnormalities in microsomal Ca(2+)-ATPase activity and calcium levels in kidney of streptozotocin (STZ)-induced diabetic rats. Male rats were rendered diabetic by a single STZ injection (55 mg x kg(-1) i.p.). After diabetes was verified, diabetic and age-matched control rats were untreated or treated with vitamin E (400-500 IU kg(-1) x day(-1), orally) for 10 weeks. Ca(2+)-ATPase activity and lipid peroxidation (MDA) were determined spectrophotometrically. Blood glucose levels increased approximately five-fold (> 500 mg x dl(-1)) in untreated-diabetic rats but decreased to 340+/-27 mg x dl(-1) in the vitamin E treated-diabetic group. Kidney MDA levels did not significantly change in the diabetic state. However, vitamin E treatment markedly inhibited MDA levels in both control and diabetic animals. Ca(2+)-ATPase activity was 0.483+/-0.008 U l(-1) in the control group and significantly increased to 0.754+/-0.010 U l(-1) in the STZ-diabetic group (p < 0.001). Vitamin E treatment completely prevented the diabetes-induced increase in Ca(2+)-ATPase activity (0.307+/-0.025 U l(-1), p < 0.001) and also reduced the enzyme activity in normal control rats. STZ-diabetes resulted in approximately two-fold increase in total calcium content of kidney. Vitamin E treatment led to a significant reduction in kidney calcium levels of both control and diabetic animals (p < 0.001). Thus, vitamin E treatment can lower blood glucose and lipid peroxidation, which in turn prevents the abnormalities in kidney calcium metabolism of diabetic rats. This study describes a potential biochemical mechanism by which vitamin E supplementation may delay or inhibit the development of cellular damage and nephropathy in diabetes.  相似文献   

2.
Diabetes induced by streptozotocin (50 mg/kg body wt, i.p.) in the rats substantially increased the plasma glucose and malondialdehyde levels along with corresponding decrease in the antioxidants levels. Supplementation of vitamin E (200 mg/kg body wt., ip) for 5 weeks resulted in non-significant decrease in the blood glucose levels but plasma malondialdehyde levels were reduced to below normal levels. Plasma vitamin E, vitamin C, uric acid and red blood cell glutathione levels were also restored to near normal levels on vitamin E supplementation to diabetic rats as compared to control (diabetic) rats. The activities of antioxidant enzymes, catalase (EC 1.11.1.6), glutathione peroxidase (GSHPx EC 1.11.1.9), and glutathione reductase (GR EC 1.6.4.2) were also concomitantly restored to near normal levels by vitamin E supplementation to diabetic rats. The results clearly demonstrated that vitamin E supplementation augments the antioxidant defense mechanism in diabetes and provides evidence that vitamin E may have a therapeutic role in free radical mediated diseases.  相似文献   

3.
Diabetes mellitus (DM) is a multi-factorial disease which is characterized by hyperglycaemia, lipoprotein abnormalities and oxidative stress. This study evaluated effect of oral vitamin C administration on basal metabolic rate and lipid profile of alloxan-induced diabetic rats. Vitamin C was administered at 200 mg/kg body wt. by gavage for four weeks to diabetic rats after which the resting metabolic rate and plasma lipid profile was determined. The results showed that vitamin C administration significantly (P<0.01) reduced the resting metabolic rate in diabetic rats; and also lowered plasma triglyceride, total cholesterol and low-density lipoprotein cholesterol. These results suggest that the administration of vitamin C in this model of established diabetes mellitus might be beneficial for the restoration of basal metabolic rate and improvement of lipid profile. This may at least in part reduce the risk of cardiovascular events seen in diabetes mellitus.  相似文献   

4.
To investigate the effect of vitamin E on the proliferation activity of vascular smooth muscle cells (SMCs) in diabetes mellitus, [3H]-thymidine incorporation was measured in cultured SMCs isolated from normal and streptozotocin-induced diabetic rats treated with or without vitamin E and/or allylamine. Untreated diabetic rats demonstrated significantly elevated concentrations of serum total cholesterol, triglycerides and malondialdehyde (MDA). Allylamine caused a further increase in serum MDA. Treatment with vitamin E decreased the serum concentrations of triglycerides and MDA in both allylamine-treated and -untreated diabetic rats. [3H]-Thymidine incorporation in cultured SMCs from diabetic rats was significantly increased compared with that from normal rats. SMCs from allylamine-treated diabetic rats showed an enhanced increase in thymidine incorporation compared with that from untreated diabetic rats. The increase in thymidine incorporation in SMCs from untreated and allylamine-treated diabetic rats was significantly reduced by the treatment with vitamin E. These observations suggest that vitamin E has a preventive effect on the proliferation of vascular SMCs in diabetes, and that this effect may be mediated through an enhancement of free radical scavenging.  相似文献   

5.
目的:观察西红花水提物对链脲佐菌素(STZ)诱导的糖尿病小鼠血糖、血脂及胰腺组织的影响。方法:采用STZ (60 mg/kg)连续2 d腹腔注射建立糖尿病小鼠模型。将造模成功后的小鼠随机分为3组(n=10):糖尿病模型(DM)组、西红花水提物(SE)组、阳性对照二甲双胍(MH)组。另取10只正常小鼠设为正常对照(NC)组。给药组每天灌胃1次,连续6周,模型组和正常对照组灌胃生理盐水。给药期间每周测定小鼠进食量、饮水量及体重,给药6周后测定空腹血糖(FBG)、口服糖耐量(OGTT)、糖化血清蛋白(GSP)、血清胰岛素(INS)和血脂等指标的变化情况;HE染色观察胰腺组织病理变化。结果:与NC组相比,DM组进食量、饮水量、线下曲线面积、FBG、GSP以及血脂中的总胆固醇(TC)均显著升高,空腹体重、血清胰岛素(INS)及高密度脂蛋白胆固醇(HDL-c)均显著降低;与DM组相比,SE组小鼠饮水量、FBG、线下曲线面积、TC显著降低,HDL-c以及INS显著升高。病理学显示DM组胰岛结构破坏、胰岛细胞数量明显减少、胰岛血管增生、形态不规则等变化,SE能明显修复受损胰腺组织。结论:SE对链脲佐菌素诱导的糖尿病小鼠有一定降血糖、降血脂作用,可以有效改善胰腺病变的情况,提示西红花可能用于糖尿病的防治。  相似文献   

6.
7.
Insulin-dependent diabetes mellitus (IDDM) is an autoimmune disease that is characterized by selective destruction of insulin secreting pancreatic islets beta-cells. The formation of cytokines (IL-1beta, IL-6, TNF-alpha, etc.) leads to extensive morphological damage of beta-cells, DNA fragmentation, decrease of glucose oxidation, impaired glucose-insulin secretion and decreased insulin action and proinsulin biosynthesis. We examined the protective effect of a 1,4-dihydropyridine (DHP) derivative cerebrocrast (synthesized in the Latvian Institute of Organic Synthesis) on pancreatic beta-cells in rats possessing diabetes induced with the autoimmunogenic compound streptozotocin (STZ). Cerebrocrast administration at doses of 0.05 and 0.5 mg/kg body weight (p.o.) 1 h or 3 days prior to STZ as well as at 24 and 48 h after STZ administration partially prevented pancreatic beta-cells from the toxic effects of STZ, and delayed the development of hyperglycaemia. Administration of cerebrocrast starting 48 h after STZ-induced diabetes in rats for 3 consecutive days at doses of 0.05 and 0.5 mg/kg body weight (p.o.) significantly decreased blood glucose level, and the effect remained 10 days after the last administration. Moreover, in these rats, cerebrocrast evoked an increase of serum immunoreactive insulin (IRI) level during 7 diabetic days as compared to both the control normal rats and the STZ-induced diabetic control rats. The STZ-induced diabetic rats that received cerebrocrast had a significantly high serum IRI level from the 14th to 21st diabetic days in comparison with the STZ-induced diabetic control.The IRI level in serum as well as the glucose disposal rate were significantly increased after stimulation of pancreatic beta-cells with glucose in normal rats that received cerebrocrast, administered 60 min before glucose. Glucose disposal rate in STZ-induced diabetic rats as a result of cerebrocrast administration was also increased in comparison with STZ-diabetic control rats. Administration of cerebrocrast in combination with insulin intensified the effect of insulin. The hypoglycaemic effect of cerebrocrast primarily can be explained by its immunomodulative properties. Moreover, cerebrocrast can act through extrapancreatic mechanisms that favour the expression of glucose transporters, de novo insulin receptors formation in several cell membranes as well as glucose uptake.  相似文献   

8.
Objective: To examine the effect of galangin on hyperglycemia-mediated oxidative stress in streptozotocin (STZ)-induced diabetic rats.

Methods: Diabetes was induced by intraperitoneal administration of low-dose STZ (40?mg/kg body weight (BW)) into male albino Wistar rats. Galangin (8?mg/kg BW) or glibenclamide (600?µg/kg BW) was given orally, once daily for 45 days to normal and STZ-induced diabetic rats.

Results: Diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes. The levels of insulin and non-enzymatic antioxidants (vitamin C, vitamin E, reduced glutathione) and the activity of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase (GST)) were decreased significantly in diabetic control rats. These altered plasma glucose, insulin, lipid peroxidation products, enzymatic and non-enzymatic antioxidants ions were reverted to near-normal level after the administration of galangin and glibenclamide.

Conclusion: The present study shows that galangin decreased oxidative stress and increased antioxidant status in diabetic rats, which may be due to its antidiabetic and antioxidant potential.  相似文献   

9.
Hyperglycemia causes protein glycosylation, oxidation and alterations in enzyme activities, which are the underlying causes of diabetic complications. This study was undertaken to test the role of vitamin E treatment on Ca2+-ATPase activity, protein glycosylation and lipid peroxidation in the brain of streptozotocin (STZ)-induced diabetic rats. Male rats weighing about 250-300 g were rendered diabetic by a single STZ injection of 50 mg/kg via the tail vein. Both the diabetic and non-diabetic rats were fed a vitamin E supplemented diet (500 IU/kg/day). Ca2+-ATPase activity was significantly reduced at week 10 of diabetes compared to the control group (p < 0.05), with 0.225+/-0.021 U/I (mean +/- S.E.M.) in the control group and 0.072 +/- 0.008 U/l (mean +/- S.E.M.) in the diabetic group. Vitamin E treatment prevented the enzyme activity from decreasing. The activities observed were 0.226 +/- 0.020 U/l and 0.172 +/- 0.011 U/I (mean +/- S.E.M.) in the vitamin E-treated control and diabetic group, respectively. STZ-induced diabetes resulted in an increased protein glycosylation and lipid peroxidation. Vitamin E treatment led to a significant inhibition in blood glucose, protein glycosylation and lipid peroxidation, which in turn prevented abnormal activity of the enzyme in the brain. This study indicates that vitamin E supplementation may reduce complications of diabetes in the brain.  相似文献   

10.
Rats with the streptozotocin (STZ) model of diabetes mellitus were treated with mildronate (100 mg/kg daily, per os or intraperitoneally) for 6 weeks. Body weight, blood glucose, triglycerides, ketone body concentrations, percent of glycated hemoglobin (HbA1c%), glucose tolerance, and the development of neuropathic pain were monitored throughout the whole experiment. The mildronate treatment completely prevented the development of the diabetic neuropathy from the first week up to the end of experiment. In the group of diabetic animals treated with mildronate a significant decrease of blood glucose was observed on the fourth week of the treatment, the level of triglycerides decreased from the third to sixth weeks. Mildronate also decreased accumulation of glycated hemoglobin on the sixth week and improved glucose tolerance compared with untreated animals. The data obtained confirm applicability of mildronate for therapy of diabetes mellitus and its complications.  相似文献   

11.
Abstract

Objective

The aim of the present study was to evaluate the protective effect of kaempferol against oxidative stress in streptozotocin (STZ)-induced diabetic rats.

Methods

Diabetes was induced in male, adult albino rats of the Wistar strain, by intraperitoneal administration of STZ (40 mg/kg body weight (BW)). Kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) was administered orally once daily for 45 days to normal and STZ-induced diabetic rats.

Results

The STZ-induced diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes in plasma, liver, kidney, and heart whereas they showed significantly decreased level of plasma insulin. The levels of non-enzymic antioxidants (vitamin C, vitamin E, reduced glutathione) in plasma, liver, kidney, and heart and the activities of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase) in liver, kidney, and heart were significantly decreased in diabetic rats. Administration of kaempferol to diabetic rats was showed brought back in plasma glucose, insulin, lipid peroxidation products, enzymatic, and non-enzymatic antioxidants to near normal.

Conclusion

The present study indicates that kaempferol has a good antioxidant property, as evidenced by its increase of antioxidant status and decrease of lipid peroxidation markers, thus providing protection from the risks of diabetic complications.  相似文献   

12.
Background

This study assessed the hepatoprotective potential of flavonoid-rich extracts from Gongronema latifolium Benth on diabetes-induced type 2 rats via Fetuin-A and tumor necrosis factor-alpha (TnF-α).

Methods

In a standard procedure, the flavonoid-rich extract was prepared. For experimental rats, streptozotocin was injected intraperitoneally (45 mg/kg body weight) to induce diabetes mellitus. Following this, rats were given 5% of glucose water for 24 h. Hence, the animals were randomly divided into five groups of ten rats each, consisting of non-diabetic rats, diabetic controls, diabetic rats treated with low and high doses of flavonoid rich-extracts from Gongronema latifolium leaf (FREGL) (13 and 26 mg/kg, respectively), and diabetic rats treated with 200 mg/kg of metformin glibenclamide orally for 3 weeks. Afterwards, the animals were sacrificed, blood and liver were harvested to evaluate different biochemical parameters, hepatic gene expressions and histological examinations.

Results

The results revealed that FREGL (especially at the low dose) significantly (p?<?0.05) reduced alanine transaminase (ALT), aspartate aminotransferase (AST) and alkaline phosphate (ALP) activities, lipid peroxidation level, as well as relative gene expressions of fetuin-A and TNF-α in diabetic rats. Furthermore, diabetic rats given various doses of FREGL showed an increase in antioxidant enzymes and hexokinase activity, as well as glucose transporters (GLUT 2 and GLUT 4), and glycogen levels. In addition, histoarchitecture of the liver of diabetic rats administered FREGL (especially at the low dose) was also ameliorated.

Conclusion

Hence, FREGL (particularly at a low dose) may play a substantial role in mitigating the hepatopathy complication associated with diabetes mellitus.

  相似文献   

13.
Diabetes mellitus is associated with diabetic impairment of uterine function, ultimately leading to reduced fertility. Its etiology may involve oxidative damage by reactive oxygen substances, and protection against this damage can be offered by antioxidant supplementation. In the present study, the effects of a vitamin E-plus-selenium (VESe) combination on lipid peroxidation (MDA) and the scavenging enzyme activity in the uterine endometrium of streptozotocin (STZ)-induced diabetic rats were investigated. Twenty-four female rats were equally divided into three groups as follows: group I (control); group II (diabetic); group III (diabetic + VESe), STZ + vitamin E (60?mg/kg over 1?day) + selenium-treated (Na2SeO3, 1?mg/kg over 1?day). After 4?weeks of receiving the VESe treatment, endometrium samples were taken from the uterus. Although the VESe treatment decreased the MDA and blood glucose levels in the STZ group, the observed values remained significantly higher than in the controls. Catalase, superoxide dismutase, and glutathione peroxidase activities and body weight gain were significantly (p?<?0.01) lower in STZ groups as compared to control group, whereas their activities were (p?<?0.01) increased by VESe treatment. However, there was no significant difference on body weight gain and uterine weights between control and STZ + VESe groups. In conclusion, the endometrial complications caused by oxidative stress, and the abnormal blood glucose levels in diabetic of rats, can be alleviated by strengthening the physiological antioxidative defense through the administration of vitamin E and Se.  相似文献   

14.
Diabetic subjects tend to develop microvascular complications believed to be due to platelet hyperaggregability. This increased platelet sensitivity is though to be the result of an imbalance of PGI2 and TXA2 production in diabetes. This study sought to determine whether megavitamin E supplementation could restore PGI2/TXA2 balance in streptozotocin-diabetic rats. Endogenous release of PGI2 by isolated aorta, determined via radioimmunoassay of its stable metabolite, 6-keto-PGF1 alpha, was significantly greater (P less than 0.05) in rats receiving 100x the normal vitamin E requirement than in untreated diabetic rats. PGI2 synthesis was negatively correlated with plasma glucose levels (r = -0.87, P less than 0.05) in non-fasted rats at sacrifice. Vitamin E supplementation, at both the 10x and the 100x level, significantly depressed (P less than 0.05) thrombin-stimulated synthesis of TXA2 in washed platelet. PGI2 and TXA2 production were expressed as a ratio. Megavitamin E therapy appears to increase this ratio over that seen in the diabetic animal. The data suggest that vitamin E, at high levels, exerts an ameliorating influence of the PGI2/TXA2 imbalance of diabetes.  相似文献   

15.
The aim of the present study is to investigate the antidiabetic properties of oligosaccharides of Ophiopogonis japonicus (OOJ) in experimental type 2 diabetic rats. OOJ was administered orally in doses of 225 and 450mg/kg body weight to high-fat diet and low-dose streptozotocin (STZ)-induced type 2 diabetic rats for 3 weeks. The results showed that OOJ treatment could increase body weight, decrease organ related weights of liver and kidney, reduce fasting blood glucose level, and improve oral glucose tolerance in diabetic rats. Moreover, increased glycogen content in liver and skeletal muscle, reduced urinary protein excretion, higher hepatic GCK enzyme activity, lower hepatic PEPCK enzyme activity, enhanced GLP-1 level, decreased glucagon level and alleviated histopathological changes of pancreas occurred in OOJ-treated diabetic rats by comparison with untreated diabetic rats. This study demonstrates, for the first time to our knowledge, that OOJ exerts remarkable antidiabetic effect in experimental type 2 diabetes mellitus, thus justifying its traditional usage.  相似文献   

16.
Epidemiological studies have demonstrated that diabetes mellitus is a serious health burden for both governments and healthcare providers. This study was hypothesized to evaluate the antihyperglycemic potential of eugenol by determine the activities of key enzymes of glucose metabolism in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced into male albino Wistar rats by intraperitoneal administration of STZ (40 mg/kg body weight (b.w.)). Eugenol was administered to diabetic rats intragastrically at 2.5, 5, and 10 mg/kg b.w. for 30 days. The dose 10 mg/kg b.w. significantly reduced the levels of blood glucose and glycosylated hemoglobin (HbA1c) and increased plasma insulin level. The altered activities of the key enzymes of carbohydrate metabolism such as hexokinase, pyruvate kinase, glucose-6-phosphate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, and liver marker enzymes (AST, ALT, and ALP), creatine kinase and blood urea nitrogen in serum and blood of diabetic rats were significantly reverted to near normal levels by the administration of eugenol. Further, eugenol administration to diabetic rats improved body weight and hepatic glycogen content demonstrated the antihyperglycemic potential of eugenol in diabetic rats. The present findings suggest that eugenol can potentially ameliorate key enzymes of glucose metabolism in experimental diabetes, and it is sensible to broaden the scale of use of eugenol in a trial to alleviate the adverse effects of diabetes.  相似文献   

17.
Sarpogrelate, a specific 5-HT2A receptor antagonist is reported to produce a number of beneficial cardiovascular effects in diabetes mellitus. In the present investigation we have studied the effects of sarpogrelate on 5-HT receptors in heart and platelets in streptozotocin (STZ)-diabetic rats. Diabetes was induced by a single tail vein injection of STZ (45 mg/kg) and sarpogrelate (1 mg/kg, i.p.) was administered daily for 6 weeks. Injection of STZ produced significant loss of body weight, polyphagia, polydypsia, hyperglycemia, hypoinsulinemia, hypertension and bradycardia. Treatment with sarpogrelate significantly lowered fasting glucose levels with corresponding increase in insulin levels. It also significantly prevented STZ-induced polydypsia, hyperphagia, hypertension, and bradycardia but not the loss of body weight. 5-HT produced dose-dependent positive inotropic effect that was found to be decreased significantly in STZ-diabetic rats. Hearts obtained from sarpogrelate treated diabetic rats did not show any decrease in responsiveness to 5-HT. Relative platelet aggregation per se was found to be higher in STZ-diabetic rats as compared to control and this was significantly prevented by sarpogrelate treatment. 5-HT produced a dose-dependent increase in platelet aggregation in non-diabetic and sarpogrelate treated diabetic rats. However, 5-HT failed to produce any increase in platelet aggregation in untreated diabetic rats. Our data suggest that STZ-induced diabetes may produce down-regulation of cardiac 5-HT2A receptors and increased platelet aggregation. Treatment with sarpogrelate seems to prevent STZ-induced down-regulation of 5-HT receptors and increase in platelet activity in diabetic rats.  相似文献   

18.
In short-term experiments, male Wistar rats were made diabetic for 10 days with a single injection of streptozotocin (65 mg/kg body weight). One group of diabetic rats was treated with insulin for 3 days prior to sacrifice. In long-term experiments, vitamin D replete or vitamin D depleted rats were made diabetic for 6 weeks. Criteria for diabetes were loss of weight, glycosuria (Tes-Tape), and hyperglycemia. In long-term diabetic rats the activity of renal mitochondrial 25-hydroxyvitamin D3 (25-(OH)D3) 1 alpha-hydroxylase was significantly decreased and that of 25-(OH)D3 24-hydroxylase increased. However, the parathyroid hormone (PTH) sensitive renal adenylate cyclase activity of diabetic rats was not different from that of the nondiabetic rats in either the vitamin D replete group or the vitamin D depleted group. On the other hand, the PTH-sensitive renal adenylate cyclase activity was significantly higher in short-term diabetic rats than in control and insulin-treated rats. These differences were observed at doses of 10(-8) to 10(-5) M of PTH. This study has demonstrated for the first time that there are differences in the PTH-sensitive adenylate cyclase response between long-term and short-term diabetic rats. The hypersensitivity to PTH of the renal adenylate cyclase observed in short-term diabetic rats probably represents a response to insulin deficiency during the early development of diabetes mellitus in the rats.  相似文献   

19.
Diabetic nephropathy (DN) is the major cause of end-stage renal disease. The early changes in DN are characterized by an increased in kidney size, glomerular volume, and kidney function, followed by the accumulation of glomerular extracellular matrix, increased urinary albumin excretion (UAE), glomerular sclerosis, and tubular fibrosis. Resveratrol (RSV) has been shown to ameliorate hyperglycemia and hyperlipidemia in streptozotocin-induced diabetic rats. In the present study, we examined the beneficial effects of RSV on DN and explored the possible mechanism of RSV action.Male Sprague–Dawley rats were injected with streptozotocin at 65 mg/kg body weight. The induction of diabetes mellitus (DM) was confirmed by a fasting plasma glucose level ≥300 mg/dL and symptoms of polyphagia and polydipsia. The DM rats were treated with or without RSV at 0.75 mg/kg body weight 3 times a day for 8 weeks. Animals were sacrificed and kidney histology was examined by microscopy. Urinary albumin excretion, glomerular hypertrophy and expressions of fibronectin, collagen IV, and TGF-β in the glomeruli were alleviated in RSV-treated DM rats, but not in untreated DM rats. In addition, RSV treatment reduced the thickness of the glomerular basement membrane (GBM) to the original thickness and increased nephrin expressions to normal levels in DM rats. Moreover, RSV inhibited phosphorylation of smad2, smad3 and ERK1/2 in diabetic rat kidneys. This is the first report showing that RSV alleviates early glomerulosclerosis in DN through TGF-β/smad and ERK1/2 inhibition. In addition, podocyte injuries of diabetic kidneys are lessened by RSV.  相似文献   

20.
Type 1 diabetes mellitus is a chronic disease characterized by lack of insulin production. Immune mechanisms are implicated in the pathogenesis of Type 1 diabetes. Canarium odontophyllum (CO) fruits and leaves have been shown to possess high antioxidant activity. This study was conducted to evaluate the effects of CO leaves aqueous extract on the blood glucose and T lymphocyte population in the spleen of streptozotocin (STZ)-induced diabetic rats. Nineteen male Sprague–Dawley rats were randomly divided into three groups: normal, diabetic control and CO treated diabetic groups. Diabetes was induced by a single intraperitoneal injection of 65 mg STZ/kg body weight. The extract of CO leaves was administered orally by force feeding daily at the dose of 300 mg/kg for 28 days. The rats were sacrificed at the end of the study and the spleen was harvested for flow cytometry analysis. The results showed a significant decrease in body weight of diabetic and CO treated diabetic groups compared with the normal group (p < 0.05). The fasting blood glucose level of CO treated diabetic group was significantly lower than the diabetic group (p < 0.05). Diabetic and CO treated diabetic groups showed a significant increase in the percentage of spleen CD3+ CD4+ T lymphocytes (p < 0.05) when compared with the normal group. However, there was no significant difference in the percentage of spleen CD3+ CD8+ T lymphocytes among all experimental groups. The finding suggested that an aqueous extract of CO leaves has the ability to reduce blood glucose levels in diabetic rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号