首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vaccinia virus (VV) morphogenesis commences with the formation of lipid crescents that grow into spherical immature virus (IV) and then infectious intracellular mature virus (IMV) particles. Early studies proposed that the lipid crescents were synthesized de novo and matured into IMV particles that contained a single lipid bilayer (S. Dales and E. H. Mosbach, Virology 35:564–583, 1968), but a more recent study reported that the lipid crescent was derived from membranes of the intermediate compartment (IC) and contained a double lipid bilayer (B. Sodiek et al., J. Cell Biol. 121:521–541, 1993). In the present study, we used high-resolution electron microscopy to reinvestigate the structures of the lipid crescents, IV, and IMV particles in order to determine if they contain one or two membranes. Examination of thin sections of Epon-embedded, VV-infected cells by use of a high-angular-tilt series of single sections, serial-section analysis, and high-resolution digital-image analysis detected only a single, 5-nm-thick lipid bilayer in virus crescents, IV, and IMV particles that is covered by a 8-nm-thick protein coat. In contrast, it was possible to discern tightly apposed cellular membranes, each 5 nm thick, in junctions between cells and in the myelin sheath of Schwann cells around neurons. Serial-section analysis and angular tilt analysis of sections detected no continuity between virus lipid crescents or IV particles and cellular membrane cisternae. Moreover, crescents were found to form at sites remote from IC membranes—namely, within the center of virus factories and within the nucleus—demonstrating that crescent formation can occur independently of IC membranes. These data leave unexplained the mechanism of single-membrane formation, but they have important implications with regard to the mechanism of entry of IMV and extracellular enveloped virus into cells; topologically, a one-to-one membrane fusion suffices for delivery of the IMV core into the cytoplasm. Consistent with this, we have demonstrated previously by confocal microscopy that uncoated virus cores within the cytoplasm lack the IMV surface protein D8L, and we show here that intracellular cores lack the surface protein coat and lipid membrane.  相似文献   

2.
3.
4.
Vaccinia virus has a wide host range and infects mammalian cells of many different species. This suggests that the cell surface receptors for vaccinia virus are ubiquitously expressed and highly conserved. Alternatively, different receptors are used for vaccinia virus infection of different cell types. Here we report that vaccinia virus binds to heparan sulfate, a glycosaminoglycan (GAG) side chain of cell surface proteoglycans, during virus infection. Soluble heparin specifically inhibits vaccinia virus binding to cells, whereas other GAGs such as condroitin sulfate or dermantan sulfate have no effect. Heparin also blocks infections by cowpox virus, rabbitpox virus, myxoma virus, and Shope fibroma virus, suggesting that cell surface heparan sulfate could be a general mediator of the entry of poxviruses. The biochemical nature of the heparin-blocking effect was investigated. Heparin analogs that have acetyl groups instead of sulfate groups also abolish the inhibitory effect, suggesting that the negative charges on GAGs are important for virus infection. Furthermore, BSC40 cells treated with sodium chlorate to produce undersulfated GAGs are more refractory to vaccinia virus infection. Taken together, the data support the notion that cell surface heparan sulfate is important for vaccinia virus infection. Using heparin-Sepharose beads, we showed that vaccinia virus virions bind to heparin in vitro. In addition, we demonstrated that the recombinant A27L gene product binds to the heparin beads in vitro. This recombinant protein was further shown to bind to cells, and such interaction could be specifically inhibited by soluble heparin. All the data together indicated that A27L protein could be an attachment protein that mediates vaccinia virus binding to cell surface heparan sulfate during viral infection.  相似文献   

5.
6.
The A19L open reading frame of vaccinia virus encodes a 9-kDa protein that is conserved in all sequenced chordopoxviruses, yet until now it has not been specifically characterized in any species. We appended an epitope tag after the start codon of the A19L open reading frame without compromising infectivity. The protein was synthesized after viral DNA replication and was phosphorylated independently of the vaccinia virus F10 kinase. The A19 protein was present in purified virions and was largely resistant to nonionic detergent extraction, suggesting a location within the core. A conditional lethal mutant virus was constructed by placing the A19 open reading frame under the control of the Escherichia coli lac repressor system. A19 synthesis and infectious virus formation were dependent on inducer. In the absence of inducer, virion morphogenesis was interrupted, and spherical dense particles that had greatly reduced amounts of the D13 scaffold accumulated in place of barrel-shaped mature virions. The infectivity of purified A19-deficient particles was more than 2 log units less than that of A19-containing virions. Nevertheless, the A19-deficient particles contained DNA, and except for the absence of A19 and decreased core protein processing, they appeared to have a similar protein composition as A19-containing virions. Thus, the A19 protein participates in the maturation of immature vaccinia virus virions to infectious particles.  相似文献   

7.
We previously showed that an envelope A27L protein of intracellular mature virions (IMV) of vaccinia virus binds to cell surface heparan sulfate during virus infection. In the present study we identified another viral envelope protein, D8L, that binds to chondroitin sulfate on cells. Soluble D8L protein interferes with the adsorption of wild-type vaccinia virions to cells, indicating a role in virus entry. To explore the interaction of cell surface glycosaminoglycans and vaccinia virus, we generated mutant viruses from a control virus, WR32-7/Ind14K (A27L(+) D8L(+)) to be defective in expression of either the A27L or the D8L gene (A27L(+) D8L(-) or A27L(-) D8L(+)) or both (A27L(-) D8L(-)). The A27L(+) D8L(+) and A27L(-) D8L(+) mutants grew well in BSC40 cells, consistent with previous observations. However, the IMV titers of A27L(+) D8L(-) and A27L(-) D8L(-) viruses in BSC40 cells were reduced, reaching only 10% of the level for the control virus. The data suggested an important role for D8L protein in WR32-7/Ind14K virus growth in cell cultures. A27L protein, on the other hand, could not complement the functions of D8L protein. The low titers of the A27L(+) D8L(-) and A27L(-) D8L(-) mutant viruses were not due to defects in the morphogenesis of IMV, and the mutant virions demonstrated a brick shape similar to that of the control virions. Furthermore, the infectivities of the A27L(+) D8L(-) and A27L(-) D8L(-) mutant virions were 6 to 10% of that of the A27L(+) D8L(+) control virus. Virion binding assays revealed that A27L(+) D8L(-) and A27L(-) D8L(-) mutant virions bound less well to BSC40 cells, indicating that binding of viral D8L protein to cell surface chondroitin sulfate could be important for vaccinia virus entry.  相似文献   

8.
Crescent membranes are the first viral structures that can be discerned during poxvirus morphogenesis. The crescents consist of a lipoprotein membrane and an outer lattice scaffold, which provides uniform curvature. Relatively little is known regarding the composition of the crescent membrane or its mode of formation. Here, we show that the H7 protein, which is conserved in all vertebrate poxviruses but has no discernible functional motifs or nonpoxvirus homologs, contributes to the formation of crescents and immature virions. Synthesis of the 17-kDa H7 protein was dependent on DNA replication and occurred late during vaccinia virus infection. Unlike many late proteins, however, H7 was not incorporated into mature virions or localized in cellular organelles. To gain insight into the role of H7, an inducible mutant was constructed and shown to have a conditional lethal phenotype: H7 expression and infectious virus formation were dependent on isopropyl-beta-d-thiogalactopyranoside. In the absence of inducer, viral late proteins were made, but membrane and core proteins were not processed by the I7 protease. A block in morphogenesis was demonstrated by transmission electron microscopy: neither typical crescents nor immature virions were detected in the absence of inducer. Instead, factory areas of the cytoplasm contained large, electron-dense inclusions, some of which had partially coated membrane segments at their surfaces. Separate, lower-density inclusions containing the D13 scaffold protein and endoplasmic reticulum membranes were also present. These features are most similar to those previously seen when expression of A11, another conserved nonvirion protein, is repressed.The vertebrate poxviruses, of which vaccinia virus (VACV) is the prototype, encode about 200 proteins, of which almost half are conserved in all species (40). The conserved proteins include those that execute basic functions, which allow poxviruses to replicate and express their double-stranded DNA genomes and assemble infectious particles in the cytoplasm (25). Due to their large number, some of the conserved open reading frames (ORFs) have yet to be characterized. In the present study, we show that the product of the VACV H7R ORF contributes to the formation of the crescent membrane precursors of immature virions (IVs).Crescents are uniformly curved membranes that form within specialized regions of the cytoplasm known as factories (8, 10). The crescents envelop electron-dense granular material containing core precursor proteins to form ∼300-nm spherical IVs, which subsequently undergo internal and external architectural changes to become infectious brick-shaped mature virions (MVs) (6). Several models have been proposed for the structure and mode of formation of crescents and IVs. Transmission electron micrography revealed a single membrane bilayer covered with an external “spicule” coat (8, 24). Although evidence for two closely apposed membranes has been presented (29, 34), other studies support the original single membrane structure (5, 17-19). The outer coat was revealed by deep-etch immunogold electron microscopy to be a lattice comprised of trimers of the D13 protein (18, 36) rather than a layer of discontinuous spikes.The crescent and IV membranes are not fully characterized with regard to their composition or organization, and two main theories regarding their origin have been proposed. One idea, inspired by the spatial separation of crescent and cellular membranes in virus factories, was the de novo origin of poxvirus membranes from lipids and viral proteins (9). An alternative model, positing the derivation of crescents from cellular membranes, was based partly on the lack of precedence of de novo membrane formation in other biological systems, the finding of some viral proteins associated with membranes of the intermediate compartment between the endoplasmic reticulum (ER) and the Golgi apparatus, and the proximity of tubular structures and viral membranes (29, 33). Other studies, however, provided evidence for trafficking of proteins to the viral membrane through the ER rather than the intermediate compartment although the initial membrane nucleation event was not investigated (20, 21).Understanding the mechanism of viral membrane formation depends on the identification of the viral and cellular proteins involved. A role for the cellular coatomer and KDEL receptor in early VACV biogenesis has been suggested (43). Studies of conditional lethal VACV mutants pointed to the involvement of several viral proteins in the formation of crescent membranes. Repression of synthesis of the D13 scaffold protein mimics the effect of the drug rifampin and results in floppy-appearing membranes bordering electron-dense granular material (44). Such membranes seem otherwise normal as they can acquire the scaffold and concomitant rigid curvature within minutes after removal of rifampin and develop into IVs (26). Repression of synthesis of the integral membrane proteins A14 and A17 results in aberrant vesicular or tubular structures that differ from each other in appearance (30, 31, 39, 41). Both A14 and A17 are phosphorylated by the F10 kinase (3, 13, 39), and viral membranes are not detected when cells are infected with conditional lethal F10 mutants under nonpermissive conditions (37, 38). Viral membranes are also not observed under nonpermissive conditions when cells are infected with conditional lethal H5 (12), G5 (7), and A11 (28) mutants though their roles in this process are not yet understood. Here, we characterize the product of the H7R ORF and demonstrate that it is also involved in viral membrane formation and morphogenesis.  相似文献   

9.
Apoptosis plays important roles in host defense, including the elimination of virus-infected cells. The executioners of apoptosis are caspase family proteases. We report that vaccinia virus-encoded F1L protein, previously recognized as anti-apoptotic viral Bcl-2 family protein, is a caspase-9 inhibitor. F1L binds to and specifically inhibits caspase-9, the apical protease in the mitochondrial cell death pathway while failing to inhibit other caspases. In cells, F1L inhibits apoptosis and proteolytic processing of caspases induced by overexpression of caspase-9 but not caspase-8. An N-terminal region of F1L preceding the Bcl-2-like fold accounts for caspase-9 inhibition and significantly contributes to the anti-apoptotic activity of F1L. Viral F1L thus provides the first example of caspase inhibition by a Bcl-2 family member; it functions both as a suppressor of proapoptotic Bcl-2 family proteins and as an inhibitor of caspase-9, thereby neutralizing two sequential steps in the mitochondrial cell death pathway.  相似文献   

10.
Homologs of the essential large tegument protein pUL36 of herpes simplex virus 1 are conserved throughout the Herpesviridae, complex with pUL37, and form part of the capsid-associated “inner” tegument. pUL36 is crucial for transport of the incoming capsid to and docking at the nuclear pore early after infection as well as for virion maturation in the cytoplasm. Its extreme C terminus is essential for pUL36 function interacting with pUL25 on nucleocapsids to start tegumentation (K. Coller, J. Lee, A. Ueda, and G. Smith, J. Virol. 81:11790-11797, 2007). However, controversy exists about the cellular compartment in which pUL36 is added to the nascent virus particle. We generated monospecific rabbit antisera against four different regions spanning most of pUL36 of the alphaherpesvirus pseudorabies virus (PrV). By immunofluorescence and immunoelectron microscopy, we then analyzed the intracellular location of pUL36 after transient expression and during PrV infection. While reactivities of all four sera were comparable, none of them showed specific intranuclear staining during PrV infection. In immunoelectron microscopy, neither of the sera stained primary enveloped virions in the perinuclear cleft, whereas extracellular mature virus particles were extensively labeled. However, transient expression of pUL36 alone resulted in partial localization to the nucleus, presumably mediated by nuclear localization signals (NLS) whose functionality was demonstrated by fusion of the putative NLS to green fluorescent protein (GFP) and GFP-tagged pUL25. Since PrV pUL36 can enter the nucleus when expressed in isolation, the NLS may be masked during infection. Thus, our studies show that during PrV infection pUL36 is not detectable in the nucleus or on primary enveloped virions, correlating with the notion that the tegument of mature virus particles, including pUL36, is acquired in the cytosol.The herpesvirus virion is composed of an icosahedral nucleocapsid containing the viral genome, an envelope of cellular origin with inserted viral (glyco)proteins, and a tegument which links nucleocapsid and envelope comparable to the matrix of RNA viruses. The herpesvirus tegument contains a multitude of viral and cellular proteins (reviewed in references 45 and 46). Tegument proteins execute various regulatory and structural functions, including activation of viral gene expression (2), modulation of the host cell for virus replication (26, 51, 55), and mediation of posttranslational modification of proteins (10, 27, 50). Numerous interactions have been identified among tegument proteins, between tegument and capsid proteins, and between tegument and envelope proteins (7, 14, 16, 18, 33, 36, 42, 53, 58-61).The largest tegument proteins found in the herpesviruses are homologs of pUL36 of herpes simplex virus type 1 (HSV-1). Pseudorabies virus (PrV) pUL36 consists of 3,084 amino acids (aa) with a molecular mass of 324 kDa (33). PrV and HSV-1 pUL36 are essential for viral replication (13, 15). In their absence, nonenveloped nucleocapsids accumulate in the cytoplasm. Whereas in several studies nuclear stages like cleavage and packaging of the viral DNA as well as nuclear egress were not found affected (13, 15), another study indicated an effect of pUL36 deletion on PrV nuclear egress (41).pUL36 homologs complex with another tegument protein, pUL37, as has been shown for HSV-1 (59), PrV (15, 33), and human cytomegalovirus (3, 23), and the interacting region on pUL36 has been delineated for PrV (33) and identified at the amino acid level for HSV-1 (47). Deletion of the pUL37 interaction domain from PrV pUL36 impedes virion formation in the cytosol but does not block it completely, yielding a phenotype similar to that of a pUL37 deletion mutant (31). This indicates an important but nonessential role for pUL37 and the pUL37 interaction domain in pUL36 in virion formation (15). In contrast, absence of pUL37 completely blocks virion formation in HSV-1 (11, 38).pUL36 is stably attached to the nucleocapsid (39, 43, 56), remains associated with incoming particles during transport along microtubules to the nuclear pore (21, 40, 52), and is required for intracellular nucleocapsid transport during egress (41). In contrast, absence of pUL37 delays nuclear translocation of incoming PrV nucleocapsids but does not abolish it (35). HSV-1 pUL36 is involved not only in transport but also in docking of nucleocapsids to the nuclear pore (9), and proteolytic cleavage of pUL36 appears to be necessary for release of HSV-1 DNA into the nucleus (24).Immunoelectron microscopical studies of PrV-infected cells showed that pUL36 is added to nucleocapsids prior to the addition of pUL37 (33). Since neither pUL36 nor pUL37 was detected on primary enveloped PrV virions, it was concluded that acquisition of tegument takes place in the cytoplasm (20). However, conflicting data exist whether pUL36 is present in the nucleus, and whether it is already added onto the capsids in this cellular compartment. Indirect immunofluorescence, immunoelectron microscopy and mass spectrometry of intranuclear capsids yielded discrepant results. By immunofluorescence HSV-1 pUL36 was detected both in the cytoplasm and in the nucleus (1, 42, 48). However, whereas one study detected the protein on nuclear C-capsids by Western blotting (6), it was not found by cryo-electron microscopy and mass spectrometry (57). In contrast, the C terminus of PrV pUL36 was suggested to direct pUL36 to capsid assemblons in the nucleus (37) by binding to capsid-associated pUL25 (8), although pUL36 could not be detected in the nucleus during PrV infection (33). These differing results in HSV-1 and between HSV-1 and PrV might be due to the fact that pUL36 could be processed during the replication cycle and that the resulting subdomains may exhibit selective localization patterns (24, 28).Amino acid sequence analyses of HSV-1 and PrV pUL36 revealed several putative nuclear localization signals (NLS) (1, 4, 5, 49). HSV-1 pUL36 contains four of these NLS motifs (49). Functionality in nuclear localization of a reporter protein was shown for the NLS motif at aa 425 (1). This motif is highly conserved in herpesvirus pUL36 homologs pointing to an important function (1). Besides this conserved NLS (designated in this report as NLS1), two other NLS motifs are predicted in PrV pUL36. One is located adjacent to NLS1 (aa 288 to 296) at aa 315 to 321 (NLS2), and a third putative NLS motif is present in the C-terminal half of the protein (aa 1679 to 1682; NLS3) (4). Whereas this may be indicative for a role for pUL36 inside the nucleus, NLS motifs might also be involved in transport to the nucleus along microtubules (54) and docking at the nuclear pore complex (49).The discrepancy in pUL36 localization and the putative presence of pUL36 cleavage products with specialized functions and localization prompted us to generate monospecific antisera covering the major part of PrV pUL36 and to study localization of PrV pUL36 by immunofluorescence during viral replication and after transient transfection and by immunoelectron microscopy of infected cells.  相似文献   

11.
12.
13.
A group of vaccinia virus (VACV) proteins, including A11, L2, and A6, are required for biogenesis of the primary envelope of VACV, specifically, for the acquisition of viral membrane precursors. However, the interconnection among these proteins is unknown and, with the exception of L2, the connection of these proteins with membranes is also unknown. In this study, prompted by the findings that A6 coprecipitated A11 and that the cellular distribution of A11 was dramatically altered by repression of A6 expression, we studied the localization of A11 in cells by using immunofluorescence and cell fractionation analysis. A11 was found to associate with membranes and colocalize with virion membrane proteins in viral replication factories during normal VACV replication. A11 partitioned almost equally between the detergent and aqueous phases upon Triton X-114 phase separation, demonstrating an intrinsic affinity with lipids. However, in the absence of infection or VACV late protein synthesis, A11 did not associate with cellular membranes. Furthermore, when A6 expression was repressed, A11 did not colocalize with any viral membrane proteins or associate with membranes. In contrast, when virion envelope formation was blocked at a later step by repression of A14 expression or by rifampin treatment, A11 colocalized with virion membrane proteins in the factories. Altogether, our data showed that A11 associates with viral membranes during VACV replication, and this association requires A6 expression. This study provides a physical connection between A11 and viral membranes and suggests that A6 regulates A11 membrane association.  相似文献   

14.
Cell-to-cell transmission of vaccinia virus can be mediated by enveloped virions that remain attached to the outer surface of the cell or those released into the medium. During egress, the outer membrane of the double-enveloped virus fuses with the plasma membrane leaving extracellular virus attached to the cell surface via viral envelope proteins. Here we report that F-actin nucleation by the viral protein A36 promotes the disengagement of virus attachment and release of enveloped virus. Cells infected with the A36YdF virus, which has mutations at two critical tyrosine residues abrogating localised actin nucleation, displayed a 10-fold reduction in virus release. We examined A36YdF infected cells by transmission electron microscopy and observed that during release, virus appeared trapped in small invaginations at the plasma membrane. To further characterise the mechanism by which actin nucleation drives the dissociation of enveloped virus from the cell surface, we examined recombinant viruses by super-resolution microscopy. Fluorescently-tagged A36 was visualised at sub-viral resolution to image cell-virus attachment in mutant and parental backgrounds. We confirmed that A36YdF extracellular virus remained closely associated to the plasma membrane in small membrane pits. Virus-induced actin nucleation reduced the extent of association, thereby promoting the untethering of virus from the cell surface. Virus release can be enhanced via a point mutation in the luminal region of B5 (P189S), another virus envelope protein. We found that the B5P189S mutation led to reduced contact between extracellular virus and the host membrane during release, even in the absence of virus-induced actin nucleation. Our results posit that during release virus is tightly tethered to the host cell through interactions mediated by viral envelope proteins. Untethering of virus into the surrounding extracellular space requires these interactions be relieved, either through the force of actin nucleation or by mutations in luminal proteins that weaken these interactions.  相似文献   

15.
During vaccinia virus morphogenesis, intracellular mature virus (IMV) particles are wrapped by a double lipid bilayer to form triple enveloped virions called intracellular enveloped virus (IEV). IEV are then transported to the cell surface where the outer IEV membrane fuses with the cell membrane to expose a double enveloped virion outside the cell. The F12, E2 and A36 proteins are involved in transport of IEVs to the cell surface. Deletion of the F12L or E2L genes causes a severe inhibition of IEV transport and a tiny plaque size. Deletion of the A36R gene leads to a smaller reduction in plaque size and less severe inhibition of IEV egress. The A36 protein is present in the outer membrane of IEVs, and over-expressed fragments of this protein interact with kinesin light chain (KLC). However, no interaction of F12 or E2 with the kinesin complex has been reported hitherto. Here the F12/E2 complex is shown to associate with kinesin-1 through an interaction of E2 with the C-terminal tail of KLC isoform 2, which varies considerably between different KLC isoforms. siRNA-mediated knockdown of KLC isoform 1 increased IEV transport to the cell surface and virus plaque size, suggesting interaction with KLC isoform 1 is somehow inhibitory of IEV transport. In contrast, knockdown of KLC isoform 2 did not affect IEV egress or plaque formation, indicating redundancy in virion egress pathways. Lastly, the enhancement of plaque size resulting from loss of KLC isoform 1 was abrogated by removal of KLC isoforms 1 and 2 simultaneously. These observations suggest redundancy in the mechanisms used for IEV egress, with involvement of KLC isoforms 1 and 2, and provide evidence of interaction of F12/E2 complex with the kinesin-1 complex.  相似文献   

16.
Opsins are light-sensitive pigments in the vertebrate retina, comprising a G protein-coupled receptor and an 11-cis-retinaldehyde chromophore. Absorption of a photon by an opsin pigment induces isomerization of its chromophore to all-trans-retinaldehyde. After a brief period of activation, opsin releases all-trans-retinaldehyde and becomes insensitive to light. Restoration of light sensitivity to the apo-opsin involves the conversion of all-trans-retinaldehyde back to 11-cis-retinaldehyde via an enzyme pathway called the visual cycle. The critical isomerization step in this pathway is catalyzed by Rpe65. Rpe65 is strongly associated with membranes but contains no membrane-spanning segments. It was previously suggested that the affinity of Rpe65 for membranes is due to palmitoylation of one or more Cys residues. In this study, we re-examined this hypothesis. By two independent strategies involving mass spectrometry, we show that Rpe65 is not palmitoylated nor does it appear to undergo other post-translational modifications at significant stoichiometry. Instead, we show that Rpe65 binds the acidic phospholipids, phosphatidylserine, phosphatidylglycerol, and cardiolipin, but not phosphatidic acid. No binding of Rpe65 to basic phospholipids or neutral lipids was observed. The affinity of Rpe65 to acidic phospholipids was strongly pH-dependent, suggesting an electrostatic interaction of basic residues in Rpe65 with negatively charged phospholipid headgroups. Binding of Rpe65 to liposomes containing phosphatidylserine or phosphatidylglycerol, but not the basic or neutral phospholipids, allowed the enzyme to extract its insoluble substrate, all-trans-retinyl palmitate, from the lipid bilayer for synthesis of 11-cis-retinol. The interaction of Rpe65 with acidic phospholipids is therefore biologically relevant.  相似文献   

17.
Two mechanisms have been proposed for the intracellular movement of enveloped vaccinia virus virions: rapid actin polymerization and microtubule association. The first mechanism is used by the intracellular pathogens Listeria and Shigella, and the second is used by cellular vesicles transiting from the Golgi network to the plasma membrane. To distinguish between these models, two recombinant vaccinia viruses that express the B5R membrane protein fused to enhanced green fluorescent protein (GFP) were constructed. One had Tyr(112) and Tyr(132) of the A36R membrane protein, which are required for phosphorylation and the nucleation of actin tails, conservatively changed to Phe residues; the other had the A36R open reading frame deleted. Although the Tyr mutant was impaired in Tyr phosphorylation and actin tail formation, digital video and time-lapse confocal microscopy demonstrated that virion movement from the juxtanuclear region to the periphery was saltatory with maximal speeds of >2 microm/s and was inhibited by the microtubule-depolymerizing drug nocodazole. Moreover, this actin tail-independent movement was indistinguishable from that of a control virus with an unmutated A36R gene and closely resembled the movement of vesicles on microtubules. However, in the absence of actin tails, the Tyr mutant did not induce the formation of motile, virus-tipped microvilli and had a reduced ability to spread from cell to cell. The deletion mutant was more severely impaired, suggesting that the A36R protein has additional roles. Optical sections of unpermeabilized, B5R antibody-stained cells that expressed GFP-actin and were infected with wild-type vaccinia virus revealed that all actin tails were associated with virions on the cell surface. We concluded that the intracellular movement of intracellular enveloped virions occurs on microtubules and that the motile actin tails enhance extracellular virus spread to neighboring cells.  相似文献   

18.
An endonucleolytic activity associated with purified simian virus 40 (SV40) virions has been found. The enzyme is present in virions prepared from a number of different host lines. The enzyme is present in all early and late temperature-sensitive mutants examined. Some aspects of the endonucleolytic activity have been examined with SV40 deoxyribonucleic acid as substrate.  相似文献   

19.
The transport pathway of specific dietary carotenoids from the midgut lumen to the silk gland in the silkworm, Bombyx mori, is a model system for selective carotenoid transport because several genetic mutants with defects in parts of this pathway have been identified that manifest altered cocoon pigmentation. In the wild-type silkworm, which has both genes, Yellow blood (Y) and Yellow cocoon (C), lutein is transferred selectively from the hemolymph lipoprotein to the silk gland cells where it is accumulated into the cocoon. The Y gene encodes an intracellular carotenoid-binding protein (CBP) containing a lipid-binding domain known as the steroidogenic acute regulatory protein-related lipid transfer domain. Positional cloning and transgenic rescue experiments revealed that the C gene encodes Cameo2, a transmembrane protein gene belonging to the CD36 family genes, some of which, such as the mammalian SR-BI and the fruit fly ninaD, are reported as lipoprotein receptors or implicated in carotenoid transport for visual system. In C mutant larvae, Cameo2 expression was strongly repressed in the silk gland in a specific manner, resulting in colorless silk glands and white cocoons. The developmental profile of Cameo2 expression, CBP expression, and lutein pigmentation in the silk gland of the yellow cocoon strain were correlated. We hypothesize that selective delivery of lutein to specific tissue requires the combination of two components: 1) CBP as a carotenoid transporter in cytosol and 2) Cameo2 as a transmembrane receptor on the surface of the cells.  相似文献   

20.
Dengue virus (DENV) interacts with host cellular factors to construct a more favorable environment for replication, and the interplay between DENV and the host cellular cytoskeleton may represent one of the potential antiviral targeting sites. However, the involvement of cellular vimentin intermediate filaments in DENV replication has been explored less. Here, we revealed the direct interaction between host cellular vimentin and DENV nonstructural protein 4A (NS4A), a known component of the viral replication complex (RC), during DENV infection using tandem affinity purification, coimmunoprecipitation, and scanning electron microscopy. Furthermore, the dynamics of vimentin-NS4A interaction were demonstrated by using confocal three-dimensional (3D) reconstruction and proximity ligation assay. Most importantly, we report for the first time the discovery of the specific region of NS4A that interacts with vimentin lies within the first 50 amino acid residues at the cytosolic N-terminal domain of NS4A (N50 region). Besides identifying vimentin-NS4A interaction, vimentin reorganization and phosphorylation by calcium calmodulin-dependent protein kinase II occurs during DENV infection, signifying that vimentin reorganization is important in maintaining and supporting the DENV RCs. Interestingly, we found that gene silencing of vimentin by small interfering RNA induced a significant alteration in the distribution of RCs in DENV-infected cells. This finding further supports the crucial role of intact vimentin scaffold in localizing and concentrating DENV RCs at the perinuclear site, thus facilitating efficient viral RNA replication. Collectively, our findings implicate the biological and functional significance of vimentin during DENV replication, as we propose that the association of DENV RCs with vimentin is mediated by DENV NS4A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号