首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Thirty samples of Indonesian medicinal plants were analyzed for their capacity to inhibit in vitro metabolism by human cytochrome P450 3A4 (CYP3A4) and CYP2D6 with a radiometric assay. The MeOH-soluble fractions of 25 samples, prepared from water extracts, demonstrated inhibitory activity more than 50% on the metabolism mediated by CYP3A4, and 21 samples on the metabolism mediated by CYP2D6. Among the MeOH-soluble fractions, Piper nigrum leaf showed the highest inhibitory activity against CYP3A4 (91.7%), and Punica granatum against CYP2D6 (98.1%). The water extracts of which MeOH-soluble fraction showed inhibitory activity more than 70% were fractionated with EtOAc. From the EtOAc-soluble fractions, Curcuma heyneana (67.0%), Pi. cubeba (75.0%), Pi. nigrum fruit (84.0%), Pi. nigrum leaf (85.8%), and Zingiber aromaticum (75.3%) demonstrated inhibitory activity more than 50% on the metabolism mediated by CYP3A4, but only Pi. nigrum fruit (72.8%) and Pi. nigrum leaf (69.1%) showed strong inhibitory activity against CYP2D6. For samples that showed more than 70% inhibition, their IC(50) values were determined. The most potent inhibitory activity against CYP3A4 (IC(50) value of 25 microg/ml) was found for the extract of Pi. nigrum leaf, while that of Catharanthus roseus showed the most potent inhibitory effect against CYP2D6 (IC(50) value of 11 microg/ml). These results should indicate once more the possibility of potential medicinal plant-drug interactions.  相似文献   

3.
Cytochrome P450 3A4 and 3A7 (CYP3A4 and CYP3A7, respectively) are predominant forms in the human adult and fetal liver, respectively. 1,25-Dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) is known to be a potent inducer of CYP3A4 in human colon carcinoma Caco-2 via vitamin D receptor (VDR). However, whether CYP3A7 is inducible by 1,25(OH)(2)D(3) has not yet been elucidated. In the present study, we examined the effect of 1,25(OH)(2)D(3) on CYP3A7 gene expression in Caco-2 cells, which express CYP3A4 and CYP3A7 mRNAs. 1,25(OH)(2)D(3) hardly induced the expression of CYP3A7 mRNA in contrast to the marked induction of CYP3A4 mRNA. Reporter assay using 5'-franking region CYP3A4 and CYP3A7 genes also revealed that 1,25(OH)(2)D(3) activates CYP3A4 promoter, but not CYP3A7 promoter, which has two mutations in the proximal ER6 site compared with CYP3A4 promoter. In addition, we found that the binding of VDR to the proximal ER6 in CYP3A7 gene was markedly less than that to the proximal ER6 in CYP3A4 gene using gel shift assay. Taken together, the decrease of VDR binding to the proximal ER6 caused by the mutation results in the loss of CYP3A7 gene activation by 1,25(OH)(2)D(3).  相似文献   

4.
Heterologous expression systems can be utilized to great advantage in the study of cytochrome P450 enzymes. P450 3A4 is one of the major forms of cytochrome P450 found in liver. It is also involved in the metabolism of numerous widely used drugs and xenobiotics. In the present study human liver cytochrome P450 3A4 gene was transferred into the fission yeast Schizosaccharomyces pombe via two different S. pombe expression vectors carrying thiamine repressible promoter — nmt1 (pREP42) and constitutive promoter — adh1 (pART1). Heterologously expressed cytochrome P450 3A4 was detected in the cells grown in minimal (EMM) or rich medium (YEL) containing 0.5% (w/v) glucose. A typical cytochrome P450 peak for 3A4 was observed at 448 nm in microsomal fraction. The presence of heterologous expression of 3A4 form was also determined by SDS-PAGE and it molecular mass was identified as 52 kDa. The enzyme activity was confirmed by HPLC analysis, using testosterone as substrate.  相似文献   

5.
The metabolism of pyrene to hydroxypyrene by CYP3A4 was investigated to determine the effect of cytochrome b5 (b5) on turnover kinetics. In the absence of b5, formation of hydroxypyrene in in vitro incubations showed a biphasic substrate-velocity curve where K(m1) and V(max1) were 1.3 microM and 0.5 pmol/min/pmol P450, respectively. The addition of testosterone to the incubation mixture completely abolished the second phase to yield a typical, hyperbolic curve, presumably through the disruption in the formation of a pi-pi stacked pyrene complex within the CYP3A4 active site. Finally, the addition of b5 yielded an increase hydroxypyrene formation that resulted in a sigmoidal substrate velocity curve. The V(max) was 15.7 pmol/min/pmol P450, the K(m) was 7.5 microM, and the Hill coefficient was greater than two. This demonstrated that b5 could directly induce positive cooperativity on CYP3A4 and that this biological factor needs to be carefully considered when included in in vitro P450 reactions.  相似文献   

6.
In this work, we examined the impact of polymorphism in the cytochrome P450 (CYP) 3A5 gene, CYP3A5*1 (6986A > G, rs 776746), on the reduction in the lipid levels caused by simvastatin and atorvastatin. We studied 350 hyperlipidemic patients who received 10-40 mg of atorvastatin (n = 175) or simvastatin (n = 175) daily. Genotyping for CYP3A5 was done by PCR-RFLP analysis. Differences in the lipid profile before and after treatment were expressed as the % difference. The frequency of CYP3A5polymorphism was 13.4% for heterozygotes and 86.6% for homozygotes. Comparison of the responses to same dose of each drug showed that the highest % difference was associated with total cholesterol (TC) in subjects receiving atorvastatin 40 mg compared with simvastatin 40 mg (p = 0.048). However, comparison of the responses to equivalent doses of atorvastatin vs. simvastatin revealed no difference in the % change in any of the lipid parameters examined. In individuals with the same CYP3A5 genotype, a head to head comparison of the efficacy of the same dose of simvastatin vs. atorvastatin revealed an advantage for atorvastatin. For equivalent doses of atorvastatin vs. simvastatin there was no difference in the % change in any of the lipid parameters examined. Within the same genotype there was a significant difference in the % change related to the drug treatment.  相似文献   

7.
The structural basis for the cooperativity of diazepam oxidation catalyzed by human cytochrome P450 3A4 (CYP3A4) and 40 mutants has been investigated. An ordered two-site model in which substrates bind first to a catalytic/effector site and then to the catalytic site was used to explain sigmoidal kinetics for temazepam formation but hyperbolic kinetics for nordiazepam formation. In this model diazepam binds to the enzyme-substrate complex with a greater affinity (K(S2)=140 microM) than to free enzyme (K(S1)=960 microM). Residues 107, 119, 211, 301, 304, 309, 369, 370, and 373 play an important role in determining regioselectivity of diazepam oxidation. Interestingly, S119F and A370F displayed sigmoidal kinetics for nordiazepam formation, whereas I301F exhibited hyperbolic kinetics for both products. In the presence of increasing concentrations of testosterone, K(S1) for diazepam decreased, whereas K(S2) increased. The data suggest that three sites exist within the active pocket.  相似文献   

8.
Chemotherapy of clonorchiasis with praziquantel (PZQ) is effective but about 15% of treated cases have been reported uncured. The present study investigated correlation of single nucleotide polymorphisms (SNPs) of the cytochrome P450 gene, CYP3A5 and cure of clonorchiasis. A total of 346 egg passing residents were subjected and treated by 3 doses of 25 mg/kg PZQ. Reexamination recognized 33 (9.5%) uncured and 313 cured. Numbers of eggs per gram of feces (EPGs) before treatment were significantly lower in the cured group than in the uncured group (2,011.2±3,600.0 vs 4,998.5±7,012.0, P<0.001). DNAs of the subjects were screened for SNPs at 7 locations of CYP3A5 using PCR. In the uncured group, the SNP frequencies at g.-20555G>A and g.27526C>T of CYP3A5 were 15.2% and 9.1% while those were 3.8% and 1.0%, respectively, in the cured group. The cure rate was significantly lower in the cases with SNP at g.27526C>T and EPGs≥1,000. In conclusion, EPGs and SNPs of CYP3A5 are factors which influence cure of clonorchiasis by PZQ therapy. It is strongly suggested to recommend 2-day medication for individuals with high EPGs≥1,000.  相似文献   

9.
Heterotropic cooperative phenomena have been documented in studies with cytochrome P450 3A4, with few attempts to quantify this behavior other than to show the apparent stimulatory effect of certain CYP3A4 substrates on the enzyme’s catalytic activity for others. Here CYP3A4 solubilized in Nanodiscs is studied for its ability to interact with two substrates, α-naphthoflavone and testosterone, which produce transitions in the heme spin state with apparent spectral affinities (corrected for membrane partitioning) of 7 and 38 μM, respectively. Simultaneous addition of both substrates at fixed molar ratios allows for the separation of specific heterotropic cooperative interactions from the simple additive affinities for the given substrate ratios. The absence of any changes in the normalized spectral dissociation constant due to changes in substrate ratio reveals that the observed stimulatory effect is largely due to differences in the relative substrate affinities and the presence of additional substrate in the system, rather than any specific positive heterotropic interactions between the two substrates.  相似文献   

10.
Hepatic P450s, named M-3 and M-4 were purified from phenobarbitone pretreated rhesus monkey. These demonstrated polypeptide molecular mass of 50 and 52.5 kDa and specific content of 12 and 20 nmol P450/mg protein, respectively. Both the isozymes demonstrated low spin state of heme. Antibodies raised against M-3 inhibited the activity of aminopyrine, erythromycin and ethylmorphine N-demethylase in the microsomes obtained from PB pretreated rhesus monkey by 76, 40 and 35%, respectively. M-4 did the same by 69, 85 and 79%, respectively. These observations indicated M-3 and M-4 to be the members of CYP2C and 3A subfamilies, respectively. These results were substantiated by the observations that M-3 metabolized aminopyrine whereas M-4 metabolized aminopyrine, erythromycin and ethylmorphine in the reconstituted system. Microsomal lipids and cytochrome b5 enhanced the rate of these reactions. Further confirmation to the identity of these isozymes was provided by N-terminal amino acid sequences. The first 10 N-terminal amino acid residues of M-3 were 90% similar to CYP2C20 and 2C9 and that of M-4 were 100 and 90% similar to CYP3A8 and 3A5, respectively. In conclusion, two isozymes of hepatic P450 purified from PB pretreated rhesus monkey belong to CYP2C and 3A subfamilies.  相似文献   

11.
CYP3A4 and CYP3A7 mRNA expression levels were markedly up-regulated by dexamethasone (DEX), but not by rifampicin (RIF). CYP3A5 mRNA level was not increased significantly by DEX, RIF, or phenobarbital. Testosterone 6beta-hydroxylase activity was induced to about 2-fold of control by DEX. However, concomitant treatment with RIF did not alter DEX-mediated induction of CYP3A mRNA expression and testosterone 6beta-hydroxylase activity. DEX-mediated induction of CYP3A mRNA was suppressed in a dose-dependent manner by RU486, a glucocorticoid receptor (GR) antagonist. At 5microM RU486, DEX-mediated induction of CYP3A4, CYP3A5, and CYP3A7 mRNA expression was inhibited almost completely. These results suggest that, in human fetal hepatocytes, PXR is not involved in DEX-mediated induction of CYP3A4 and CYP3A7, and that the induction is mediated directly by GR.  相似文献   

12.
CYP102s represent a family of natural self-sufficient fusions of cytochrome P450 and cytochrome P450 reductase found in some bacteria. One member of this family, named CYP102A1 or more traditionally P450BM-3, has been widely studied as a model of human P450 cytochromes. Remarkable detail of P450 structure and function has been revealed using this highly efficient enzyme. The recent rapid expansion of microbial genome sequences has revealed many relatives of CYP102A1, but to date only two from Bacillus subtilis have been characterized. We report here the cloning and expression of CYP102A5, a new member of this family that is very closely related to CYP102A4 from Bacillus anthracis. Characterization of the substrate specificity of CYP102A5 shows that it, like the other CYP102s, will metabolize saturated and unsaturated fatty acids as well as N-acylamino acids. CYP102A5 catalyzes very fast substrate oxidation, showing one of the highest turnover rates for any P450 monooxygenase studied so far. It does so with more specificity than other CYP102s, yielding primarily ω-1 and ω-2 hydroxylated products. Measurement of the rate of electron transfer through the reductase domain reveals that it is significantly faster in CYP102A5 than in CYP102A1, providing a likely explanation for the increased monooxygenation rate. The availability of this new, very fast fusion P450 will provide a great tool for comparative structure-function studies between CYP102A5 and the other characterized CYP102s.  相似文献   

13.
The CYP21A1P gene downstream of the XA gene, carrying 15 deteriorated mutations, is a nonfunctional pseudogene that shares 98% nucleotide sequence homology with CYP21A2 located on chromosome 6p21.3. However, these mutations in the CYP21A1P gene are not totally involved in each individual. From our analysis of 100 healthy ethnic Chinese (i.e., Taiwanese) (n = 200 chromosomes) using the polymerase chain reaction (PCR) products combined with an amplification-created restriction site (ACRS) method and DNA sequencing, we found that approximately 10% of CYP21A1P alleles (n = 195 chromosomes) presented the CYP21A2 sequence; frequencies of P30, V281, Q318, and R356 in that locus were approximately 24%, 21%, 11%, and 34%, respectively, and approximately 90% of the CYP21A1P alleles had 15 mutated loci. In addition, approximately 2.5% (n = 5 chromosomes) showed four haplotypes of the 3.7-kb TaqI-produced fragment of the CYP21A2-like gene and one duplicated CYP21A2 gene. We conclude that the pseudogene of the CYP21A1P mutation presents diverse variants. Moreover, the existence of the CYP21A2-like gene is more abundant than that of the duplicated CYP21A2 gene downstream of the XA gene and could not be distinguished from the CYP21A2TNXB gene; thus, it may be misdiagnosed by previously established methods for congenital adrenal hyperplasia caused by a 21-hydroxylase deficiency.  相似文献   

14.
15.
16.
A second female-predominant murine CYP3A, CYP3A44, was isolated from liver and its mRNA expression was compared with that of the previously described CYP3A41. The expression of CYP3A44 was relatively constant after birth in females, whereas it gradually declined in males after 5 weeks of age. The expression of CYP3A41 increased with age in females after 3 weeks of age, whereas it gradually declined in males after 5 weeks of age. Hypophysectomy and growth hormone replacement indicated that expression of both CYP3A mRNAs in females was dependent on the feminine plasma growth hormone profile. Estradiol induced the expression of both mRNAs and the effect was dependent on the presence of the pituitary gland. These observations suggest that endocrine control of expression might be similar, but not identical, for two female-predominant CYP3A mRNAs.  相似文献   

17.
Metabolism of polychlorinated dibenzo-p-dioxins by CYP1A subfamily was examined by using the recombinant yeast microsomes. In substrate specificity and reaction specificity, considerable species differences between rats and humans were observed in both CYP1A1- and CYP1A2-dependent metabolism of dioxins. Among four CYPs, rat CYP1A1 showed the highest activity toward dibenzo-p-dioxin (DD) and mono-, di-, and trichloroDDs. To reveal the mechanism of dioxin metabolism, we examined rat CYP1A1-dependent metabolism of 2-chloro-dibenzo-p-dioxin. In addition to hydroxylation at an unsubstituted position, hydroxylation with migration of a chloride substituent, hydroxylation with elimination of a chloride substituent, and cleavage of an ether linkage of the dioxin ring were observed. In particular, the cleavage of an ether linkage of the dioxin ring appeared most important for the detoxication of dioxins. Based on these results, the metabolic pathways of 2-chloro-dibenzo-p-dioxin by rat CYP1A1 were proposed. The metabolic pathways contain most of the metabolites observed in vivo using experimental animals, suggesting that P450 monooxygenase systems including CYP1A1 are greatly responsible for dioxin metabolism in vivo.  相似文献   

18.
19.
Human liver CYP3A4 is an endoplasmic reticulum (ER)-anchored hemoprotein responsible for the metabolism of >50% of clinically prescribed drugs. After heterologous expression in Saccharomyces cerevisiae, it is degraded via the ubiquitin (Ub)-dependent 26S proteasomal pathway that utilizes Ubc7p/Cue1p, but none of the canonical Ub-ligases (E3s) Hrd1p/Hrd3p, Doa10p, and Rsp5p involved in ER-associated degradation (ERAD). To identify an Ub-ligase capable of ubiquitinating CYP3A4, we examined various in vitro reconstituted mammalian E3 systems, using purified and functionally characterized recombinant components. Of these, the cytosolic domain of the ER-protein gp78, also known as the tumor autocrine motility factor receptor (AMFR), an UBC7-dependent polytopic RING-finger E3, effectively ubiquitinated CYP3A4 in vitro, as did the UbcH5a-dependent cytosolic E3 CHIP. CYP3A4 immunoprecipitation coupled with anti-Ub immunoblotting analyses confirmed its ubiquitination in these reconstituted systems. Thus, both UBC7/gp78 and UbcH5a/CHIP may be involved in CYP3A4 ERAD, although their relative physiological contribution remains to be established.  相似文献   

20.
The metabolism mechanism of (S)-N-[1-(3-morpholin-4ylphenyl)ethyl]-3-phenylacrylamide, mediated by CYP3A4 Cytochrome has been investigated by density functional QM calculations aided with molecular mechanics/molecular dynamics simulations. Two different orientations of phenyl ring for substrate approach toward oxyferryl center, imposing two subsequent rearrangement pathways have been investigated. Starting from σ-complex in perpendicular orientation enzymatic mechanism involves consecutive proton shuttle intermediate, which further leads to the formation of alcohol and ketone. Parallel conformation leads solely to ketone product by 1,2 hydride shift. Although parallel and perpendicular σ-complexes are energetically equivalent both for the gas phase or PCM solvent model, molecular dynamics studies in full CYP3A4 environment show that perpendicular conformation of the σ-complex should be privileged, stabilized by hydrophobic interactions of phenylacrylamide chain. After assessing probability of the two conformations we postulate that the alcohol, accessible with the lowest energy barriers should be the major metabolite for studied substrate and CYP3A4 enzyme. Figure Orientation of phenyl ring towards porphyrin plane selected by substrate interaction with enzymatic cavity channels enzymatic reaction  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号