首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Development of central pattern generating circuits   总被引:2,自引:0,他引:2  
  相似文献   

2.
The neural control system for generation of locomotion is an important system for analysis of neural mechanisms underlying complex motor acts. In these studies, a novel experimental model using neonatal rat brain stem and spinal cord in vitro was developed for investigation of the locomotor system in mammals. The in vitro brain stem and spinal cord system was shown to retain functional circuitry for locomotor command generation, motor pattern generation, and sensorimotor integration. This system was exploited to investigate neurochemical mechanisms involved in neurogenesis of locomotion. Evidence was obtained for peptidergic and gamma-amino-butyric acid-mediated mechanisms in brain-stem circuits generating locomotor commands. Cholinergic, dopaminergic, and excitatory amino acid-mediated mechanisms were shown to activate spinal cord circuits for locomotor pattern generation. Endogenous N-methyl-D-aspartic acid receptors in spinal networks were found to play a central role in the generation of locomotion. The chemically induced patterns of motor activity and rhythmic membrane potential oscillations of spinal motoneurons were characteristic of those during locomotion in other mammals in vivo. The in vitro brain stem and spinal cord model provides a versatile and powerful experimental system with potentially broad application for investigation of diverse aspects of the neurobiology of mammalian motor control systems.  相似文献   

3.
Animals produce a variety of behaviors using a limited number of muscles and motor neurons. Rhythmic behaviors are often generated in basic form by networks of neurons within the central nervous system, or central pattern generators (CPGs). It is known from several invertebrates that different rhythmic behaviors involving the same muscles and motor neurons can be generated by a single CPG, multiple separate CPGs, or partly overlapping CPGs. Much less is known about how vertebrates generate multiple, rhythmic behaviors involving the same muscles. The spinal cord of limbed vertebrates contains CPGs for locomotion and multiple forms of scratching. We investigated the extent of sharing of CPGs for hind limb locomotion and for scratching. We used the spinal cord of adult red-eared turtles. Animals were immobilized to remove movement-related sensory feedback and were spinally transected to remove input from the brain. We took two approaches. First, we monitored individual spinal cord interneurons (i.e., neurons that are in between sensory neurons and motor neurons) during generation of each kind of rhythmic output of motor neurons (i.e., each motor pattern). Many spinal cord interneurons were rhythmically activated during the motor patterns for forward swimming and all three forms of scratching. Some of these scratch/swim interneurons had physiological and morphological properties consistent with their playing a role in the generation of motor patterns for all of these rhythmic behaviors. Other spinal cord interneurons, however, were rhythmically activated during scratching motor patterns but inhibited during swimming motor patterns. Thus, locomotion and scratching may be generated by partly shared spinal cord CPGs. Second, we delivered swim-evoking and scratch-evoking stimuli simultaneously and monitored the resulting motor patterns. Simultaneous stimulation could cause interactions of scratch inputs with subthreshold swim inputs to produce normal swimming, acceleration of the swimming rhythm, scratch-swim hybrid cycles, or complete cessation of the rhythm. The type of effect obtained depended on the level of swim-evoking stimulation. These effects suggest that swim-evoking and scratch-evoking inputs can interact strongly in the spinal cord to modify the rhythm and pattern of motor output. Collectively, the single-neuron recordings and the results of simultaneous stimulation suggest that important elements of the generation of rhythms and patterns are shared between locomotion and scratching in limbed vertebrates.  相似文献   

4.
5.
Central pattern generators (CPGs) are circuits that generate organized and repetitive motor patterns, such as those underlying feeding, locomotion and respiration. We summarize recent work on invertebrate CPGs which has provided new insights into how rhythmic motor patterns are produced and how they are controlled by higher-order command and modulatory interneurons.  相似文献   

6.
There is growing recognition that rhythmic activity patterns are widespread in our brain and play an important role in all aspects of the functioning of our nervous system, from sensory integration to central processing and motor control. The study of the unique properties that enable central circuits to generate their rhythmic output in the absence of any patterned, sensory or descending, inputs, has been very rewarding in the relatively simple invertebrate preparations. The locust, specifically, is a remarkable example of an organism in which central pattern generator (CPG) networks have been suggested and studied in practically all aspects of their behaviour. Here we present an updated overview of the various rhythmic behaviours in the locust and aspects of their neural control. We focus on the fundamental concepts of multifunctional neuronal circuits, neural centre interactions and neuromodulation of CPG networks. We are certain that the very broad and solid knowledge base of locust rhythmic behaviour and pattern-generating circuits will continue to expand and further contribute to our understanding of the principles behind the functioning of the nervous system and, indeed, the brain.  相似文献   

7.
8.
The genetic dissection of spinal circuits is an essential new means for understanding the neural basis of mammalian behavior. Molecular targeting of specific neuronal populations, a key instrument in the genetic dissection of neuronal circuits in the mouse model, is a complex and time-demanding process. Here we present a circuit-deciphering ‘tool box’ for fast, reliable and cheap genetic targeting of neuronal circuits in the developing spinal cord of the chick. We demonstrate targeting of motoneurons and spinal interneurons, mapping of axonal trajectories and synaptic targeting in both single and populations of spinal interneurons, and viral vector-mediated labeling of pre-motoneurons. We also demonstrate fluorescent imaging of the activity pattern of defined spinal neurons during rhythmic motor behavior, and assess the role of channel rhodopsin-targeted population of interneurons in rhythmic behavior using specific photoactivation.  相似文献   

9.
Locomotion in mammals is a complex motor act that involves the activation of a large number of muscles in a well-coordinated pattern. Understanding the network organization of the intrinsic spinal networks that control the locomotion, the central pattern generators, has been a challenge to neuroscientists. However, experiments using the isolated rodent spinal cord and combining electrophysiology and molecular genetics to dissect the locomotor network have started to shed new light on the network structure. In the present review, we will discuss findings that have revealed the role of designated populations of neurons for the key network functions including coordinating muscle activity and generating rhythmic activity. These findings are summarized in proposed organizational principles for the mammalian segmental CPG.  相似文献   

10.
The sequential stepping of left and right limbs is a fundamental motor behavior that underlies walking movements. This relatively simple locomotor behavior is generated by the rhythmic activity of motor neurons under the control of spinal neural networks known as central pattern generators (CPGs) that comprise multiple interneuron cell types. Little, however, is known about the identity and contribution of defined interneuronal populations to mammalian locomotor behaviors. We show a discrete subset of commissural spinal interneurons, whose fate is controlled by the activity of the homeobox gene Dbx1, has a critical role in controlling the left-right alternation of motor neurons innervating hindlimb muscles. Dbx1 mutant mice lacking these ventral interneurons exhibit an increased incidence of cobursting between left and right flexor/extensor motor neurons during drug-induced locomotion. Together, these findings identify Dbx1-dependent interneurons as key components of the spinal locomotor circuits that control stepping movements in mammals.  相似文献   

11.
The spinal cord contains specialized groups of cells called pattern generators, which are capable of orchestrating rhythmic firing activity in an isolated preparation. Different patterns of activity could be generated in vitro including right-left alternating bursting and bursting in which both sides are synchronized. The cellular and network mechanisms that enable these behaviors are not fully understood. We have recently shown that Ca2+-activated K+ channels (SK channels) control the initiation and amplitude of synchronized bursting in the spinal cord. It is unclear, however, whether SK channels play a similar role in the alternating rhythmic pattern. In the current study, we used a spinal cord preparation from functionally mature mice capable of weight bearing and walking. The present results extend our previous work and show that SK channel inhibition initiates and modulates the amplitude of alternating bursting. We also show that addition of methoxamine, an α1-adrenergic agonist, to a cocktail of serotonin, dopamine, and NMDA evokes robust and consistent alternating bursting throughout the cord.  相似文献   

12.
Voltage-sensitive ion channels in rhythmic motor systems   总被引:3,自引:0,他引:3  
Voltage-sensitive ionic currents shape both the firing properties of neurons and their synaptic integration within neural networks that drive rhythmic motor patterns. Persistent sodium currents underlie rhythmic bursting in respiratory neurons. H-type pacemaker currents can act as leak conductances in spinal motoneurons, and also control long-term modulation of synaptic release at the crayfish neuromuscular junction. Calcium currents travel in rostro-caudal waves with motoneuron activity in the spinal cord. Potassium currents control spike width and burst duration in many rhythmic motor systems. We are beginning to identify the genes that underlie these currents.  相似文献   

13.
Neuronal circuits underlying rhythmic behaviors (central pattern generators: CPGs) can generate rhythmic motor output without sensory input. However, sensory input is pivotal for generating behaviorally relevant CPG output. Here we discuss recent work in the decapod crustacean stomatogastric nervous system (STNS) identifying cellular and synaptic mechanisms whereby sensory inputs select particular motor outputs from CPG circuits. This includes several examples in which sensory neurons regulate the impact of descending projection neurons on CPG circuits. This level of analysis is possible in the STNS due to the relatively unique access to identified circuit, projection, and sensory neurons. These studies are also revealing additional degrees of freedom in sensorimotor integration that underlie the extensive flexibility intrinsic to rhythmic motor systems.  相似文献   

14.
Neural networks in the spinal cord control two basic features of locomotor movements: rhythm generation and pattern generation. Rhythm generation is generally considered to be dependent on glutamatergic excitatory neurons. Pattern generation involves neural circuits controlling left-right alternation, which has been described in great detail, and flexor-extensor alternation, which remains poorly understood. Here, we use a mouse model in which glutamatergic neurotransmission has been ablated in the locomotor region of the spinal cord. The isolated in?vitro spinal cord from these mice produces locomotor-like activity-when stimulated with neuroactive substances-with prominent flexor-extensor alternation. Under these conditions, unlike in control mice, networks of inhibitory interneurons generate the rhythmic activity. In the absence of glutamatergic synaptic transmission, the flexor-extensor alternation appears to be generated by Ia inhibitory interneurons, which mediate reciprocal inhibition from muscle proprioceptors to antagonist motor neurons. Our study defines a minimal inhibitory network that is needed to produce flexor-extensor alternation during locomotion.  相似文献   

15.
Sürmeli G  Akay T  Ippolito GC  Tucker PW  Jessell TM 《Cell》2011,147(3):653-665
Sensory-motor circuits in the spinal cord are constructed with a fine specificity that coordinates motor behavior, but the mechanisms that direct sensory connections with their motor neuron partners remain unclear. The dorsoventral settling position of motor pools in the spinal cord is known to match the distal-to-proximal position of their muscle targets in the limb, but the significance of invariant motor neuron positioning is unknown. An analysis of sensory-motor connectivity patterns in FoxP1 mutant mice, where motor neuron position has been scrambled, shows that the final pattern of sensory-motor connections is initiated by the projection of sensory axons to discrete dorsoventral domains of the spinal cord without regard for motor neuron subtype or, indeed, the presence of motor neurons. By implication, the clustering and dorsoventral settling position of motor neuron pools serve as a determinant of the pattern of sensory input specificity and thus motor coordination.  相似文献   

16.
The central nervous system of paralysed Xenopus laevis embryos can generate a motor output pattern suitable for swimming locomotion. By recording motor root activity in paralysed embryos with transected nervous systems we have shown that: (a) the spinal cord is capable of swimming pattern generation; (b) swimming pattern generator capability in the hindbrain and spinal cord is distributed; (c) caudal hindbrain is necessary for sustained swimming output after discrete stimulation. By recording similarly from embryos whose central nervous system was divided longitudinally into left and right sides, we have shown that: (a) each side can generate rhythmic motor output with cycle periods like those in swimming; (b) during this activity cycle period increases within an episode, and there is the usual rostrocaudal delay found in swimming; (c) this activity is influenced by sensory stimuli in the same way as swimming activity; (d) normal phase coupling of the left and right sides can be established by the ventral commissure in the spinal cord. We conclude that interactions between the antagonistic (left and right) motor systems are not necessary for swimming rhythm generation and present a model for swimming pattern generation where autonomous rhythm generators on each side of the nervous system drive the motoneurons. Alternation is achieved by reciprocal inhibition, and activity is initiated and maintained by tonic excitation from the hindbrain.  相似文献   

17.
The central pattern generators (CPG) in the spinal cord are thought to be responsible for producing the rhythmic motor patterns during rhythmic activities. For locomotor tasks, this involves much complexity, due to a redundant system of muscle actuators with a large number of highly nonlinear muscles. This study proposes a reduced neural control strategy for the CPG, based on modular organization of the co-active muscles, i.e., muscle synergies. Four synergies were extracted from the EMG data of the major leg muscles of two subjects, during two gait trials each, using non-negative matrix factorization algorithm. A Matsuoka׳s four-neuron CPG model with mutual inhibition, was utilized to generate the rhythmic activation patterns of the muscle synergies, using the hip flexion angle and foot contact force information from the sensory afferents as inputs. The model parameters were tuned using the experimental data of one gait trial, which resulted in a good fitting accuracy (RMSEs between 0.0491 and 0.1399) between the simulation and experimental synergy activations. The model׳s performance was then assessed by comparing its predictions for the activation patterns of the individual leg muscles during locomotion with the relevant EMG data. Results indicated that the characteristic features of the complex activation patterns of the muscles were well reproduced by the model for different gait trials and subjects. In general, the CPG- and muscle synergy-based model was promising in view of its simple architecture, yet extensive potentials for neuromuscular control, e.g., resolving redundancies, distributed and fast control, and modulation of locomotion by simple control signals.  相似文献   

18.
The successful achievement of harmonious locomotor movement results from the integrated operation of all body segments. Here, we will review current knowledge on the functional organization of spinal networks involved in mammalian locomotion. Attention will not simply be restricted to hindlimb muscle control, but by also considering the necessarily coordinated activation of trunk and forelimb muscles, we will try to demonstrate that while there has been a progressive increase in locomotor system complexity during evolution, many basic organizational features have been preserved across the spectrum from lower vertebrates through to humans. Concerning the organization of axial neuronal networks that control trunk muscles, it has been found across the vertebrate range that during locomotor movement a motor wave travels longitudinally in the spinal cord via the coupling of rhythmic segmental networks. For hindlimb activation it has been found in all species studied that the rostral lumbar segments contain the key elements for pattern generation. We also showed that rhythmic arm movements are under the control of cervical forelimb generators in quadrupeds as well as in human. Finally, it is highlighted that the coordination of quadrupedal movements during locomotion derives principally from an asymmetrical coordinating influence occurring in the caudo-rostral direction from the lumbar hindlimb networks.  相似文献   

19.
We reveal the intrinsic motor capacity of the spinal cord by examining motor behaviours produced by spinal segments caudal to a complete transection of the spinal cord. The turtle spinal cord generates three forms of the scratch reflex in the absence of neural inputs from supraspinal structures. Each form exhibits a characteristic motor neuron discharge pattern. We test the ability of the spinal cord to generate organized motor patterns in the absence of movement-related sensory feedback by examining motor neuron discharge patterns in spinal preparations that are immobilized with a neuromuscular blocking agent. The motor neuron discharge pattern associate with each form is observed in the spinal immobilized preparation. Each of these motor patterns is therefore generated centrally within the spinal cord.  相似文献   

20.
In principle, nervous systems could generate a behavior either via neurons that are relatively specialized for producing one behavior or via multifunctional neurons that are shared among multiple, diverse behaviors. I recorded extracellularly from individual turtle spinal cord neurons while evoking hindlimb scratching, swimming, and withdrawal motor patterns. The majority of spinal neurons recorded were activated during both scratching and swimming motor patterns, consistent with the existence of shared circuitry for these types of limb movements. These neurons tended to have a similar degree of rhythmic modulation of their firing rate and a similar phase preference within the hip flexor activity cycle during scratching and swimming motor patterns. In addition, a substantial minority of neurons were activated during scratching motor patterns but silenced during swimming motor patterns. This raises the possibility that inhibitory interactions between some scratching and swimming neural circuitry play a role in motor pattern selection. These scratch-specialized neurons were also less likely than the putative shared neurons to be activated during withdrawal motor patterns. Thus, these neurons may represent two separate classes, one of which is used generally for hindlimb motor control and the other of which is relatively specialized for a subset of hindlimb movement types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号