首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sex determination in major vertebrate groups appears to be very variable, including systems of male heterogamety, female heterogamety and a variety of genetic and environmental sex determining systems. Yet comparative studies of sex chromosomes and sex determining genes now suggest that these differences are more apparent than real. The sex chromosomes of even widely divergent groups now appear to have changed very little over the last 300+ million years, and even independently derived sex chromosomes seem to have followed the same set of evolutionary rules. The sex determining pathway seems to be extremely conserved, although the control of the genes in this pathway is vested in different elements. We present a scenario for the independent evolution of XY male heterogamety in mammals and ZW female heterogamety in birds and some reptiles. We suggest that sex determining genes can be made redundant, and replaced by control at another step of a conserved sex determining pathway, and how choice of a gene as a sex switch has led to the evolution of new sex chromosome systems. J. Exp. Zool. 290:449-462, 2001.  相似文献   

2.
It is hypothesized on the basis of sex determination theory that species exhibiting genetic sex determination (GSD) may undergo sexual differentiation earlier in development than species with environmental sex determination (ESD). Most turtle species exhibit a form of ESD known as temperature-dependent sex determination (TSD), and in such species the chronology of sex differentiation is well studied. Apalone spinifera is a species of softshell turtle (Trionychidae) that exhibits GSD. We studied sexual differentiation in this species in order to facilitate comparison to TSD species. Eggs were incubated at two different temperatures and embryos were harvested at various stages of mid to late development. Gonad length was measured with image analysis software, then prepared histologically. Indifferent gonads have differentiated in stage 19 embryos. Histological details of gonadogenesis follow the same pattern as described for other reptiles. Regression of the male paramesonephric duct closely follows testicular differentiation. Gonad lengths are longer at the warmer incubation temperature, and ovaries are generally longer than testes at each stage and for each temperature. Although sexual differentiation takes place at about the same stage as in other turtles with TSD (18-20), in A. spinifera this differentiation is irreversible at this stage, while in some of the TSD species sex is reversible until about stage 22. This immutable, definitive sexual differentiation may support the hypothesis of an accelerated chronology of sex differentiation for this species. We also note that sexual dichromatism at hatching is known in this species and may provide additional evidence of early differentiation. J. Exp. Zool. 290:190-200, 2001.  相似文献   

3.
4.
Vargas and Fallon (2005. J Exp Zool (Mol Dev Evol) 304B:86-90) propose that Hox gene expression patterns indicate that the most anterior digit in bird wings is homologous to digit 1 rather than to digit 2 in other amniotes. This interpretation is based on the presence of Hoxd13 expression in combination with the absence of Hoxd12 expression in the second digit condensation from which this digit develops (the first condensation is transiently present). This is a pattern that is similar to that in the developing digit 1 of the chicken foot and the mouse hand and foot. They have tested this new hypothesis by analysing Hoxd12 and Hoxd13 expression patterns in two polydactylous chicken mutants, Silkie and talpid2. They conclude that the data support the notion that the most anterior remaining digit of the bird wing is homologous to digit 1 in other amniotes either in a standard phylogenetic sense, or alternatively in a (limited) developmental sense in agreement with the Frameshift Hypothesis of Wagner and Gautier (1999, i.e., that the developmental pathway is homologous to the one that leads to a digit 1 identity in other amniotes, although it occurs in the second instead of the first digit condensation). We argue that the Hoxd12 and Hoxd13 expression patterns found for these and other limb mutants do not allow distinguishing between the hypothesis of Vargas and Fallon (2005. J Exp Zool (Mol Dev Evol) 304B:86-90) and the alternative one, i.e., the most anterior digit in bird wings is homologous to digit 2 in other amniotes, in a phylogenetic or developmental sense. Therefore, at the moment the data on limb mutants does not present a challenge to the hypothesis, based on other developmental data (Holmgren, 1955. Acta Zool 36:243-328; Hinchliffe, 1984. In: Hecht M, Ostrom JH, Viohl G, Wellnhofer P, editors. The beginnings of birds. Eichst?tt: Freunde des Jura-Museum. p 141-147; Burke and Feduccia, 1997. Science 278:666-668; Kundrát et al., 2002. J Exp Zool (Mol Dev Evol) 294B:151-159; Larsson and Wagner, 2002. J Exp Zool (Mol Dev Evol) 294B:146-151; Feduccia and Nowicki, 2002. Naturwissenschaften 89:391-393), that the digits of bird wings are homologous to digits 2,3,4 in amniotes. We recommend further testing of the hypothesis by comparing Hoxd expression patterns in different taxa.  相似文献   

5.
Genetic similarity between species of Akodon (Rodentia, Cricetidae)   总被引:1,自引:0,他引:1  
Genetic similarity between species of rodents of the Akodon genus (A. dolores, A. molinae, and A. azarae) has been estimated by analysis of electrophoretic zymograms corresponding to 23 loci. Nei's coefficient between A. dolores and A. molinae was within the range usually found in conspecific populations. This evidence plus the successful production of "hybrids" (Merani et al., J. Exp. Zool., 206:343-346, '78) suggests that A. dolores and A. molinae may represent geographic races of the same species.  相似文献   

6.
Removal of the ocular lens in adult newts (Notophthalmus viridescens) is followed by a series of cellular events leading to regeneration of a new lens by cell type conversion of pigmented iris epithelial cells at the dorsal pupillary margin (Yamada, Curr. Top. Dev. Biol. 2:247-283, 1967). Following depigmentation and five to seven cell divisions, iris epithelial cells redifferentiate into lens fiber cells and synthesize crystallin proteins (Yamada, Curr. Top. Dev. Biol. 2:247-283, 1967). This process is dependent upon neural retina in vivo (Stone, Anat. Rec. 131:151-172, 1958; Reyer, Dev. Biol. 14:214-225, 1966) and in vitro (Yamada et al., Differentiation 1:65-82, 1973). Acting on the hypothesis that the role of the neural retina is to promote passage of iris epithelial cells through the requisite number of cell cycles which will then allow them to redifferentiate as lens fiber cells (Yamada, in: Cell Biology of the Eye. Academic Press, New York, 1982), we undertook testing of the effects of eye-derived mitogenic substances, as well as other mitogens, on regeneration of lens from iris in organ culture. We have previously defined a critical period for the retinal influence in vivo and in vitro, and have shown that crude extracts of retina can enhance regeneration of lenses in culture (Connelly et al., J. Exp. Zool., 240:343-351, 1986). In this paper, we report on the lens regeneration enhancing activity (LRA) of more highly purified fractions of the retinal extracts. Heparin-sepharose chromatography of the crude retinal extract yields three fractions (Courty et al., Biochemie 67:265-269, 1985) called EDGF I, II, and III. EDGF I and II have affinity for heparin, while EDGF III does not. In our bioassay, LRA appears only in the EDGF III fraction. Dialysis of EDGF III against 0.1 N acetic acid yields a fraction which has affinity for cibacron blue sepharose (eluting at 2.15 M salt) and also has significant LRA. Because insulin at high doses has a marginal effect on lens regeneration in culture (Williams and McGlinn, Am. Zool. 19:923, 1979; Connelly, Differentiation 16:85-91, 1980), we tested IGF-I. Because of the putative neurotrophic effects of transferrin (Tf) (Mescher and Munaim, J. Exp. Zool., 230:485-490, 1986), we tested Tf for its ability to enhance regeneration of the lens in culture. IGF-I seems to have an enhancing effect on lens regeneration; Tf does not.  相似文献   

7.
In a recent paper, Rutherford and Lindquist (1998. Nature 396:336-342) identified mutations in the Hsp90 protein that act to unmask hidden genetic variation with a variety of phenotypic effects. The Hsp90 protein has a number of properties that suggest a role in regulating the expression of genetic variation and therefore in adjusting the evolvability of the organism. In this paper we reflect upon the evolutionary feasibility of such mechanisms and suggest some possible ways of testing the adaptation-for-evolvability hypothesis in more detail. We conclude that Hsp90 holds promise as a molecular model system for the evolution of evolvability. J. Exp. Zool. ( Mol. Dev. Evol. ) 285:116-118, 1999.  相似文献   

8.
Full-grown Xenopus laevis oocytes resume meiosis (meiotic maturation) in response to progesterone stimulation. Three studies have shown that sn-1,2-diacylglycerol (DAG), the intracellular activator of protein kinase C, may be involved in this process (Wasserman et al., J. Exp. Zool. 255, 63-71, 1990; Varnold and Smith, Development 109, 597-604, 1990; Stith et al., J. Cell Physiol. 149, 252-259, 1991). Two of these studies (Varnold and Smith, 1990; Stith et al., 1991) found a rapid, but transient decrease in the levels of DAG of approximately 25 to 30% within 5 to 30 sec following the addition of progesterone to the oocytes. We have investigated this rapid decline in oocyte DAG. We also found a 20 to 34% decrease in DAG/oocyte within the first 5 to 40 sec following the addition of steroid to the culture medium. However, a similar rapid and transient decrease in oocyte DAG levels was also observed in response to ethanol. Ethanol is used as the vehicle to deliver progesterone to the oocyte culture medium. Therefore, the rapid transient decline in DAG appears to be an artifact of ethanol perturbing the production and/or turnover of DAG within the oocyte and not a physiological response of the oocyte to progesterone.  相似文献   

9.
In mouse and chick embryos, the SOX9 gene is down-regulated in genetic females whereas in genetic males it remains in the Sertoli cells. We studied the distribution of SOX9 protein in developing genital ridges of embryos of the sea turtle Lepidochelys olivacea incubated at male- or female-promoting temperatures, using the antibody for detection. At stages 22-24, cells in medullary cords show SOX9 positive nuclei, while coelomic epithelial cells appear negative. At stage 25 however, most medullary cells are SOX9 negative and at the female-promoting temperature, and from stage 26 onwards, SOX9 protein is not detected. At the male-promoting temperature, medullary cords remain SOX9-positive at all stages. These results suggest that SOX9 is up-regulated in Sertoli cells irrespective of primary sex-determining switch. Sex is irreversibly determined at stage 24 or 26 at the male- or female-promoting temperature, respectively (Merchant-Larios et al.,'97). The present results suggest that there is a correlation between SOX9 expression and sex determination in the olive ridley. At the male-promoting temperature, Sertoli cells expressing SOX9 become committed at stage 24 and male sex is determined, whereas at the female-promoting temperature, SOX9 is down-regulated at stage 26 and female sex is determined. J. Exp. Zool. 284:705-710, 1999.  相似文献   

10.
11.
12.
In developing mouse embryos, the Sertoli cells, Leydig cells, and seminiferous cords are differentiated in the XY gonads. The migration of mesonephric cells into the gonads is required during the developmental stage for seminiferous cord formation in the male gonads. In previous experiments, an organ coculture system has been used to examine morphologically developing gonads. However, by the process used in this system for fixing and staining the gonad/mesonephros complexes for examination, the kinetics of cell migration and the character of migrating cells cannot be observed. In the present study, we established an improved organ coculture system, using transgenic mice ubiquitously expressing Enhanced Green Fluorescent Protein (EGFP). In this system, time-dependent morphological changes in male-specific migration were observable in the gonad/mesonephros complex. The cell migration occurred at around 20 hr of coculture and began to spread at 25 hr with increases in the number of migrating cells occurring at 45 hr of coculture. No degenerative changes were detected at the end of coculture. Our results indicate that the present coculture system is very useful for investigating the mechanism of cell migration, as well as the characteristics of the migrating cells, in developing gonads. J. Exp. Zool. 286:320-327, 2000.  相似文献   

13.
14.
The dynamics of vitellogenin (Vg) mRNA expression and patterns of Vg and vitellin distribution in the hepatopancreas and ovary of juvenile Macrobrachium rosenbergii were examined using real-time RT-PCR and immunohistochemical methods. Eyestalk ablation was seen to induce rapid development of the gonads and Vg synthesis in females. In the female hepatopancreas, Vg mRNA expression was observed several days following ablation, after which levels increased gradually with increasing gonadosomatic index (GSI). Vitellin accumulation in the oocytes also increased with increasing Vg mRNA synthesis; expression was however negligible in the ovary. Hemolymph Vg levels in females ranged from 0.04 to 2.2 mg/ml. SDS PAGE/Western blotting analysis of hemolymph samples revealed that juvenile Vg was composed of 199 and 90 kDa subunits; the 102 kDa subunit present in adult female Vg (Okuno et al., 2002. J Exp Zool 292:417-429) could not be detected at any stage of vitellogenesis in juveniles. Vg was not detectable in non-ablated juveniles. The results of this study confirmed that the mode of involvement of eyestalk factors in regulating vitellogenesis is intrinsic to both juveniles and adults, and that a basic pattern of Vg synthesis and processing is conserved. However, the fact that juveniles are not able to produce the same Vg levels observed in adult females, and do not reach high GSI levels culminating in spawning suggests that other factors and physiological conditions specific to adult females are necessary to demonstrate full reproductive ability.  相似文献   

15.
Sex steroids (17beta-estradiol and progesterone) and morphological variations of the reproductive system of the female of Octopus vulgaris from the Bay of Naples were followed over a period of 2 years. The increase in the ovary weight was independent of body weight as demonstrated by the gonado-somatic index (GSI). Both 17beta-estradiol and progesterone have been detected in the ovary of O. vulgaris, and their concentrations changed in correlation with the ovarian development. No 17beta-estradiol or progesterone was found in the hemolymph. 3beta-Hydroxysteroid dehydrogenase activity has been detected in the ovary, indicating that in the female of O. vulgaris the reproductive system is a source of sex steroid hormones. According to the morphological changes of the ovary, the ovarian cycle can be divided into the following phases: previtellogenesis; early vitellogenesis, full vitellogenesis and late vitellogenesis. The morphological changes of the oviducts and oviducal glands throughout the reproductive cycle were in accordance with their role in the transport and secretion of gelatinous coat covering the eggs, as well as in sperm storage and sperm reactivation during fertilization. J. Exp. Zool. 289:33-47, 2001.  相似文献   

16.
Many properties of organisms show great robustness against mutations. Whether this robustness is an evolved property or intrinsic to genetic systems is by and large unknown. An evolutionary origin of robustness would require a rethinking of key concepts in the field of molecular evolution, such as gene-specific neutral mutation rates, or the context-independence of deleterious mutations. We provide evidence that mutational robustness of the genome of RNA viruses to mutational changes in secondary structure has evolved. J. Exp. Zool. ( Mol. Dev. Evol.) 285:119-127, 1999.  相似文献   

17.
The variability of sperm basic proteins in representatives of three reptilian orders, Squamata, Testudines, and Crocodylia, has been examined by cytochemistry, acid-urea polyacrylamide gel electrophoresis, and amino acid analysis of amidoblack-stained bands. Snakes contain type 3B intermediate sperm basic proteins by cytochemical criteria. Electrophoresis of basic proteins from epididymis chromatin as well as from testis and ductus deferens cell suspensions shows two fast-moving bands in the vicinity of herring protamine. These proteins are triprotamines containing about 27 mol % arginine, along with lysine and histidine. Lizards have type 1 protamines in their sperm nuclei cytochemically and also show a two-banded electrophoretic pattern similar to that of snakes. However, these proteins are triprotamines, similar to those in snakes with 25 mol % arginine. It may be that these are testis-specific proteins of the spermatid stage in lizards since a cytochemical transition can be observed from type 3A intermediate proteins in spermatids of testis to type 1 protamine in mature sperm of ductus deferens. Turtles contain type 3A intermediate sperm basic proteins cytochemically and basic proteins from epididymis chromatin display both a prominent band and a minor band close to, but slightly slower than, the two bands for snakes and lizards. Amino acid analysis of these bands shows that these basic proteins are also triprotamines but with a higher level of arginine, about 48 mol %, than that in snake and lizard sperm proteins. Basic proteins from epididymis chromatin of a single Mississippi alligator show three main bands moving close to the bands of snakes, lizards, and turtles. These proteins have amino acid compositions typical for triprotamines, with 28-39 mol % arginine. The data indicate that the sperm basic proteins of representatives of 25 species in three reptilian orders are very similar, in contrast to the diversity of sperm protein types found in frogs (Kasinsky, Huang, Kwauk, Mann, Sweeney, and Yee: J. Exp. Zool., 203:109-126, '78; Kasinsky, Huang, Mann, Roca, and Subirana: J. Exp. Zool., 234:33-46, '85a). This appears to be part of a macroevolutionary trend from diversity of sperm basic proteins in frogs to relative constancy in reptiles (Kasinsky, Mann, Pickerill, Gutovich, and Byrd, Jr.:J. Cell Biol., 91:1879, '81; Kasinsky, Mann, Lemke, and Huang: In: Chromosomal Proteins and Gene Expression, Plenum Press, New York, pp. 333-352, '85b). We present the hypothesis that one factor for such a trend resides in the fact that fertilization is internal in reptiles but external in anurans.  相似文献   

18.
The evolutionary origin of phylum Chordata is the subject of intensive discussion, with the most conflicting views prevalent. One popular theory advocates the separation of chordates from a dipleurula‐like ancestor. Thus the dipleurula‐type larvae (tornaria of enteropneusts, auricularia and bipinnaria of echinoderms) are considered to recapitulate the ancestral features and the direct evolutionary path from Echinodermata and Hemichordata to Chordata (i.e. Garstang 1894 Zool. Anzeiger 27, 122–125; Grobben 1908 Verh. Zool.‐Bot. Ges. Wien 58, 491–511; Dillon 1965 Evolution 19, 436–446; Jollie 1973 Acta Zool. (Stockholm) 54, 81–100; Ivanova‐Kazas and Ivanov 1987 Sov. J. Mar. Biol. 13, 67–80; Crowther and Whittaker 1992 J. Neurophysiol. 23, 280–292; Lacalli 1994 Am. Zool. 34, 533–541; Lacalli et al. 1999 Proc. R. Soc. Biol. Series B 266, 1461–1470; Nielsen 1999 Dev. Genes Evol. 209, 198–205). Comparison of the nervous system in enteropneust tornariae and echinoderm larvae has revealed however, striking differences in distribution of biogenic amines and cholinesterase activity. In tornariae, monoamine‐containing cells concentrate in the aboral and oesophageal ganglia. In echinoderms, they are located along the ciliary bands throughout their length. The difference in distribution of cholinesterase activity in each group reasonably suggests that acetylcholine‐dependent control of locomotion also differs. Our data do not support the homology of the dipleurula‐type larvae. Therefore we believe in the course of adaptive evolution, larvae of certain marine invertebrates acquired a set of common morphological and behavioural characteristics, yet retained different physiological mechanisms of behavioural regulation. Thus, similarities in the dipleurula‐type larvae (tornaria, auricularia or bipinnaria, and actinotrocha) may have originated from convergence rather then from a common dipleurula‐type predecessor. In consequence we must call into question any attempt to trace the ancestors of Chordata to the dipleurula‐type animal.  相似文献   

19.
We have determined the temporal relationship between sperm fusion and cortical granule breakdown in the hamster egg. Sperm fusion was determined by the Hoechst-transfer method (Stewart-Savage and Bavister: Dev Biol 128:150-157, 1988), and cortical granules were visualized with fluorescein isothiocynate-conjugated Lens culinaris agglutinin (Cherr et al. J Exp Zool 246:81-93, 1988). By 55 min after insemination, there was an 85% reduction in the density of cortical granules (fewer than four granules/100 microns2). Taking this value as the completion of the cortical reaction, analysis of the data indicate that the cortical reaction was completed 9 min after sperm fusion and 3 min after the formation of the zona and cell surface blocks to polyspermy. There was no obvious spatial pattern of granule loss in eggs that had a Hoechst-positive sperm but had not completed the cortical reaction.  相似文献   

20.
Molecular evolution of the synapsin gene family   总被引:4,自引:0,他引:4  
Synapsins, a family of synaptic vesicle proteins, play a crucial role in the regulation of neurotransmission and synaptogenesis. They have been identified in a variety of invertebrate and vertebrate species, including human, rat (Rattus norvegicus), cow (Bos taurus), longfin squid (Loligo pealei), and fruit fly (Drosophila melanogaster). Here, synapsins were cloned from three additional species: frog (Xenopus laevis), lamprey (Lampetra fluviatilis), and nematode (Caenorhabditis elegans). Synapsin protein sequences from all these species were then used to explore the molecular phylogeny of these important neuronal phosphoproteins. The ancestral condition of a single synapsin gene probably gave rise to the vertebrate synapsin gene family comprised of at least three synapsin genes (I, II, and III) in higher vertebrates. Synapsins possess multiple domains, which have evolved at different rates throughout evolution. In invertebrate synapsins, the most conserved domains are C and E. During the evolution of vertebrates, at least two gene duplication events are hypothesized to have given rise to the synapsin gene family. This was accompanied by the emergence of an additional conserved domain, termed A. J. Exp. Zool. ( Mol. Dev. Evol. ) 285:360-377, 1999.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号