首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Modification of 30 S ribosomal subunits with kethoxal causes loss of their ability to associate with 50 S subunits under tight couple conditions. To identify those 16 S RNA sequences important for the association. 32P-labeled 30 S subunits were partially inactivated by reaction with kethoxal. The remaining association-competent 30 S subunits were selected from the modified population by their ability to form 70 S ribosomes. Comparison of kethoxal diagonal maps of the association-competent subunits with those of the total population of modified subunits reveals nine sites in 16 S RNA whose modification leads to loss of association activity. Eight of these sites were previously found to be protected from kethoxal attack and one was shown to have enhanced reactivity in 70 S ribosomes (Chapman &; Noller, 1977). As before, these sites are not distributed thoughout the molecule, but are found to be clustered in two regions, at the middle and at the 3′ terminus of the 16 S RNA chain.We interpret these findings in terms of a simple preliminary model for the functional organization of 16 S RNA, supported by the observations of other investigators, in which we divide the molecule into four domains. (1) Residues 1 to 600 are involved mainly in structural organization and assembly. (2) Residues 600 to 850 include sites which make contact with the 50 S subunit and are essential for subunit association. (3) Sites from the domain comprising residues 850 to 1350 line a pocket at the interface between the two ribosomal subunits. and contribute to the binding site(s) for transfer RNA. (4) Residues 1350 to 1541 also contain sequences which bind the 50 S subunit, but some sites in this domain alternatively participate in the initiation of protein synthesis.  相似文献   

2.
The genomic complexity of visna virus was measured by quantitative analysis of 18 RNase T1-resistant oligonucleotides from 60-70S RNA. T1-resistant oligonucleotides were separated by two-dimensional polyacrylamide gel electrophoresis. Visna virus had a genomic complexity of 3.6 X 10(6) daltons, very close to the size of a single 30-40S RNA subunit. It was therefore concluded that the visna virus genome is largely polyploid. Visna virus 60-70S RNA polyadenylic acid segment was purified by T1 RNase digestion followed by oligodeoxythymidylic acid-cellulose column chromatography. It contained over 99% AMP and had a size of about 200 nucleotides. The binding capacities on oligodeoxythymidylic acid-cellulose of native 60-70S RNA and purified 30-40S RNA subunits were examined. It was concluded that two out of three intact subunits contain a polyadenylic acid segment.  相似文献   

3.
Nuclease S1, specifically splitting only single-stranded polynucleotides has been used to detect the double-stranded regions of high-molecular-weight AMV-RNA. Nuclease S1-resistant material comprising approx. 8% of 60S AMV-RNA molecule was isolated, purified and found to be completely nuclease S1-resistant when native and completely nuclease S1-sensitive upon heat denaturation. The symmetric nucleotide composition with equal G-C and equal A-U contents is also consistent with double-stranded nature of this material. Poly A does not participate significantly, if at all, in nuclease S1-resistant structures. It is suggested that those base paired regions might participate in linking the RNA subunits together to form an aggregate 60S RNA molecule of oncornaviruses.  相似文献   

4.
Electrophoresis in polyacrylamide gels containing both formamide and urea is a high-resolution technique for the analysis of crosslinked RNA species. Combined with a specific crosslinking agent like uv irradiation, it allows a rapid fingerprint of structural differences between RNA forms. The technique reveals significant differences in the pattern of uv crosslinking of free Escherichia coli 16 S ribosomal RNA compared with the RNA in active or inactive 30 S subunits. Ultraviolet photocrosslinks seen only in the 30 S particle are likely to be tertiary structure contacts.  相似文献   

5.
We have developed a gel electrophoresis technique for separating crosslinked RNA molecules into a series of discrete fractions. The gel used is polyacrylamide made in formamide and low salt designed to denature the RNA during electrophoresis. The mobility depends upon the position of crosslinking within each molecule, as demonstrated by electron microscopy of RNA eluted from the gel. In general, molecules with large loops electrophorese more slowly than molecules with small loops or uncrosslinked molecules. We have used this technique to re-examine the psoralen crosslinking pattern of Escherichia coli 16 S ribosomal RNA in inactivated 30 S ribosomal subunits. To determine the correct orientation of each type of crosslink, we have covalently attached DNA restriction fragments to the RNA so that the polarity of the RNA in the microscope would be known. Our previous major conclusions are confirmed: the predominant long-distance crosslink detected by gel electrophoresis involves a residue close to the 3′ end and a residue approximately 600 nucleotides away: the formamide/polyacrylamide gel is able to separate two closely spaced 1100-nucleotide interactions beginning close to the 3′ end, which were reported as one interaction before: and an interaction joining the ends is detected as before. However, one low-frequency crosslinked interaction, between positions 950 and 1400, and possibly another low-frequency interaction, between positions 550 and 870, are determined to be in the opposite polarity to that described previously.  相似文献   

6.
Simian sarcoma-associated virus type 1 propagated in human rhabdomyosarcoma cells exhibited characteristics typical of oncornaviruses but seemed to have several aberrant properties. It had a buoyant density of 1.14 g/cm3, had RNA-dependent DNA polymerase activity, seemed to be labile to high salt concentrations, and contained little 50 to 60S RNA but relatively large amounts of human ribosomal RNA. In addition to 50 to 60S RNA, purified virions contained smaller RNA molecules with sedimentation coefficients of 28 to 30S, 18 TO 20S, and 4 to 10S. Unlike the 50 to 60S RNA species, the smaller virion-associated RNAs lacked polyadenylic acid, and the 28 to 30S RNA had an average base composition similar to that of human ribosomal RNA. Upon heat denaturation, the native 50 to 60S RNA genome yielded polyadenylic acid-containing 28 to 30S subunits that degraded in to 18 to 20S molecules upon further heat treatment. The 50 to 60S viral RNA had a guanine plus cytosine content of 56%.  相似文献   

7.
Two types of genomic, high-molecular-weight RNA species were found in Soehner-Dmochowski murine sarcoma virions released from virus-induced rat tumor cells grown in tissue culture. The type of RNA species observed depended on the length of exposure of the tumor cells to radioactive precursor. Early RNA of virions labeled up to 4 h with radioactive uridine had a sedimentation coefficient of 50S, and late RNA of virions labeled for 24 h had a sedimentation coefficient of 58S. Thermal transitions of early and late RNA indicated a difference in the configuration or structure of these two types of RNA. The late RNA may represent either a different configurational state of the early RNA or an aggregate molecule of two early RNA components joined together. Heat dissociation revealed that the major subunit of both RNA types was a 28S species, which was not susceptible to degradation by the addition of micrococcal nuclease to virions. A transitional, intermediate RNA species with a sedimentation coefficient of 37 to 40S was detected when early RNA was dissociated by dimethyl sulfoxide or heat at temperatures suboptimal for complete conversion. No free RNA subunit components were detected in virions harvested at intervals as short as 30 s or 5 min. A model for the assembly of genomic RNA from 28S RNA subunits is proposed.  相似文献   

8.
The role of 5 S RNA within the large ribosomal subunit of the extremely thermophilic archaebacterium Sulfolobus solfataricus has been analysed by means of in vitro reconstitution procedures. It is shown that Sulfolobus 50 S subunits reconstituted in the absence of 5 S RNA are inactive in protein synthesis and lack 2-3 ribosomal proteins. Furthermore, it has been determined that in the course of the in vitro assembly process Sulfolobus 5 S RNA can be replaced by the correspondent RNA species of E.coli; Sulfolobus reconstituted particles containing the eubacterial 5 S molecule are stable and active in polypeptide synthesis at high temperatures.  相似文献   

9.
10.
Yeast 5.8 S rRNA is released from purified 26 S rRNA when it is dissolved in water or low salt buffer (50 mM KCl, 10mM Tris-HCl, pH 7.5); it is not released from 60 S ribosomal subunits under similar conditions. The 5.8 S RNA component together with 5 S rRNA can be released from subunits or whole ribosomes by brief heat treatment or in 50% formamide; the Tm for the heat dissociation of 5.8 S RNA is 47 degrees C. This Tm is only slightly lower when 5 S rRNA is released first with EDTA treatment prior to heat treatment. No ribosomal proteins are released by the brief heat treatment. A significant portion of the 5.8 S RNA reassociates with the 60 S subunit when suspended in a higher salt buffer (e.g.0.4 m KCl, 25 mM Tris-HCl, pH 7.5, 6 mM magnesium acetate, 5 mM beta-mercaptoethanol). The Tm of this reassociated complex is also 47 degrees C. The results indicate that in yeast ribosomes the 5.8 S-26 S rRNA interaction is stabilized by ribosomal proteins but that the association is sufficiently loose to permit a reversible dissociation of the 5.8 S rRNA molecule.  相似文献   

11.
Photolysis of [3H]tetracycline in the presence of Escherichia coli ribosomes results in an approximately 1:1 ratio of labelling ribosomal proteins and RNAs. In this work we characterize crosslinks to both 16S and 23S RNAs. Previously, the main target of photoincorporation of [3H]tetracycline into ribosomal proteins was shown to be S7, which is also part of the one strong binding site of tetracycline on the 30S subunit. The crosslinks on 23S RNA map exclusively to the central loop of domain V (G2505, G2576 and G2608) which is part of the peptidyl transferase region. However, experiments performed with chimeric ribosomal subunits demonstrate that peptidyltransferase activity is not affected by tetracycline crosslinked solely to the 50S subunits. Three different positions are labelled on the 16S RNA, G693, G1300 and G1338. The positions of these crosslinked nucleotides correlate well with footprints on the 16S RNA produced either by tRNA or the protein S7. This suggests that the nucleotides are labelled by tetracycline bound to the strong binding site on the 30S subunit. In addition, our results demonstrate that the well known inhibition of tRNA binding to the A-site is solely due to tetracycline crosslinked to 30S subunits and furthermore suggest that interactions of the antibiotic with 16S RNA might be involved in its mode of action.  相似文献   

12.
RNA subunit structure of Mason-Pfizer monkey virus.   总被引:8,自引:7,他引:1       下载免费PDF全文
Mason-Pfizer monkey virus 60-70S RNA has a molecular weight of 8 times 10-6 when analyzed on polyacrylamide gels. Dissociation of 60-70S RNA of Mason-Pfizer monkey virus and murine leukemia virus by heat or formamide (40%) resulted in conversion to identical subunit structures of 2.8 times 10-6 daltons; treatment with lower amounts of formamide revealed a partial dissociation of Mason-Pfizer monkey virus 60-70S RNA released three low-molecular-weight RNA species of 10-5, 3,5 times 10-4, and 2.5 times 10-4.  相似文献   

13.
B77 avian sarcoma virus RNA was labeled with (methyl-3H) methionine under conditions that prevent non-methyl incorporation of 3H radioactivity into purine rings. From the determined values for the extent of methylation of 4S RNA isolated from infected chicken embryo cells, it was estimated that 30 to 40S RNA subunits that results from heat denaturation of the 60 to 70S RNA contain approximately 21 methyl groups, of which 14 to 16 are present at internal positions as N6 -methyladenosine residues. In addition, each of the virion RNA subunits appears to contain about two methyl groups in the "capped" 5' -terminal structure m7G(5')ppp(5') gm. These properties are consistent with the hypothesis that the 30 to 40S genome RNA os oncornaviruses also serves an mRNA function in infected cells.  相似文献   

14.
The signal recognition particle (SRP) from Escherichia coli consists of 4.5S RNA and protein Ffh. It is essential for targeting ribosomes that are translating integral membrane proteins to the translocation pore in the plasma membrane. Independently of Ffh, 4.5S RNA also interacts with elongation factor G (EF-G) and the 30S ribosomal subunit. Here we use a cross-linking approach to probe the conformation of 4.5S RNA in SRP and in the complex with the 30S ribosomal subunit and to map the binding site. The UV-activatable cross-linker p-azidophenacyl bromide (AzP) was attached to positions 1, 21, and 54 of wild-type or modified 4.5S RNA. In SRP, cross-links to Ffh were formed from AzP in all three positions in 4.5S RNA, indicating a strongly bent conformation in which the 5' end (position 1) and the tetraloop region (including position 54) of the molecule are close to one another and to Ffh. In ribosomal complexes of 4.5S RNA, AzP in both positions 1 and 54 formed cross-links to the 30S ribosomal subunit, independently of the presence of Ffh. The major cross-linking target on the ribosome was protein S7; minor cross-links were formed to S2, S18, and S21. There were no cross-links from 4.5S RNA to the 50S subunit, where the primary binding site of SRP is located close to the peptide exit. The functional role of 4.5S RNA binding to the 30S subunit is unclear, as the RNA had no effect on translation or tRNA translocation on the ribosome.  相似文献   

15.
16.
A ribonuclease extracted from the venom of the cobra Naja oxiana, which shows an unusual specificity for double-stranded RNA regions, was used to obtain new insight on the topography of Escherichia coli ribosomal 16 S RNA in the 30 S subunit and in the 70 S couple. 32P-labeled 30 S subunits or reconstituted 70 S tight couples containing 32P-labeled 16 S RNA have been digested under progressively stronger conditions. The cleavage sites have been precisely localized and the chronology of the hydrolysis process studied.The enzyme cleaves the 16 S RNA within 30 S subunits at 21 different sites, which are not uniformly distributed along the molecule. These results provide valuable information on the 16 S RNA topography and evidence for secondary structure features.The binding of the 50 S subunit markedly reduces the rate of the 16 S RNA hydrolysis and provides protection for several cleavage sites. Four of them are clustered in the 3′-terminal 200 nucleotides of the molecule, one in the middle (at position 772) and one in the 5′ domain (at position 336). Our results provide further evidence that the 3′-terminal and central regions of the RNA chain are close to each other in the ribosome structure and lie at the interface of the two subunits. They also suggest that the 5′ domain is probably not involved exclusively in structure and assembly.  相似文献   

17.
Heating the 60 to 70S ribonucleic acid (RNA) of Rous sarcoma virus (RSV) destroys both its subunit structure and its high template activity for RSV deoxyribonucleic acid (DNA) polymerase. In comparative analyses, it was found that the template activity of the RNA has a thermal transition of 70 C, whereas the 60 to 70S structure dissociates into 30 to 40S and several distinct small subunits with a T(m) of 55 C. Analysis by velocity sedimentation and isopycnic centrifugation of the primary DNA product obtained by incubation of 60 to 70S RSV RNA with RSV DNA polymerase indicated that most, but perhaps not all, DNA was linked to small (<10S) RSV RNA primer. Sixty percent of the high template activity of 60 to 70S RSV RNA lost after heat dissociation could be recovered by incubation of the total RNA under annealing conditions. The template activity of purified 30 to 40S subunits isolated from 60 to 70S RSV RNA was not enhanced significantly by annealing. However, in the presence of small (<10S) subunits also isolated from 60 to 70S RNA, the template activity of 30 to 40S RNA subunits was increased to the same level as that of reannealed total 60 to 70S RNA. It was concluded that neither the 30 to 40S subunits nor most of the 4S subunits of 60 to 70S RSV RNA contribute much as primers to the template activity of 60 to 70S RSV RNA. The predominant primer molecule appears to be a minor component of the <10S subunit fraction of 60 to 70S RSV RNA. Its electrophoretic mobility is similar to, and its dissociation temperature from 60 to 70S RSV RNA is higher than that of the bulk of 60 to 70S RSV RNA-associated 4S RNA. The role of primers in DNA synthesis by RSV DNA polymerase is discussed.  相似文献   

18.
In trans-translation transfer messenger RNA (tmRNA) and small protein B (SmpB) rescue ribosomes stalled on truncated or in other ways problematic mRNAs. SmpB promotes the binding of tmRNA to the ribosome but there is uncertainty about the number of participating SmpB molecules as well as their ribosomal location. Here, the interaction of SmpB with ribosomal subunits and ribosomes was studied by isolation of SmpB containing complexes followed by chemical modification of ribosomal RNA with dimethyl sulfate, kethoxal and hydroxyl radicals. The results show that SmpB binds 30S and 50S subunits with 1:1 molar ratios and the 70S ribosome with 2:1 molar ratio. SmpB-footprints are similar on subunits and the ribosome. In the 30S subunit, SmpB footprints nucleotides that are in the vicinity of the P-site facing the E-site, and in the 50S subunit SmpB footprints nucleotides that are located below the L7/L12 stalk in the 3D structure of the ribosome. Based on these results, we suggest a mechanism where two molecules of SmpB interact with tmRNA and the ribosome during trans-translation. The first SmpB molecule binds near the factor-binding site on the 50S subunit helping tmRNA accommodation on the ribosome, whereas the second SmpB molecule may functionally substitute for a missing anticodon stem–loop in tmRNA during later steps of trans-translation.  相似文献   

19.
The 50 to 70S RNA of the Harvey sarcoma-Moloney leukemia virus (MLV) complex consists of 30 to 40S RNA subunits of two different size classes and contains sequences homologous to Moloney mouse leukemia virus and to information contained in a C-type rat virus, termed NRK virus. We have isolated by preparative gel electrophoresis the large (component 1) and the small (component 2) 30 to 40S RNA species from the Harvey sarcoma-MLV complex. Harvey RNA component 1 was completely complementary to DNA transcribed from MLV RNA and showed no homology to DNA transcribed from NRK virus when annealed under conditions of DNA excess. Harvey RNA component 2 was about 65% complementary to MLV DNA and about 33% complementary to NRK virus DNA. Approximately 60 to 80% of the MLV-specific sequences in RNA component 2 is either a distinct molecular species or is part of a hydrid molecular including NRK virus- and MLV-specific sequences. The rest of the MLV sequences in component 2 could be accounted for by degraded component 1 co-purifying with component 2. The possible role of these sequences in the ability of the virus to transform cells is discussed.  相似文献   

20.
A large number of intra-RNA and RNA-protein cross-link sites have been localized within the 23S RNA from E. coli 50 S ribosomal subunits. These sites, together with other data, are sufficient to constrain the secondary structure of the 23 S molecule into a compact three-dimensional shape. Some of the features of this structure are discussed, in particular, those relating to the orientation of tRNA on the 50 S subunit as studied by site-directed cross-linking techniques. A corresponding model for the 16S RNA within the 30 S subunit has already been described, and here a site-directed cross-linking approach is being used to determine the path followed through the subunit by messenger RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号