首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A specific endonuclease from Arthrobacter luteus.   总被引:20,自引:0,他引:20  
A new restriction-like endonuclease, AluI, has been partially purified from Arthrobacter luteus. This enzyme cleaves bacteriophage λ DNA, adenovirus-2 DNA and simian virus 40 DNA at many sites including all sites cleaved by the endonuclease HindIII from Haemophilus influenzae serotype d. Radioactive oligonucleotides in pancreatic DNAase digests of (5′-32P)-labelled fragments of phage λ DNA released by the action of AluI had the 5′ terminal sequence pC-T-N-. The enzyme recognises the tetranucleotide sequence
and cleaves it at the position marked by the arrows.  相似文献   

2.
A new specific endonuclease, XhoI, has been partially purified from Xanthomonas holcicola. This enzyme cleaves adenovirus-2 DNA at five sites, bacteriophage λ DNA at one site, φX174 DNA at one site, but does not cleave simian virus 40 DNA. It recognizes the sequence
and cuts at the sites indicated by the arrows. Enzymes with identical specificity have also been found in Xanthomonas papavericola and Brevibacterium luteum.  相似文献   

3.
An additional sequence-specific endonuclease, XmaIII, has been partially purified from Xanthomonas malvacearum. XmaIII recognizes ten cleavage sites in adenovirus 2 DNA, two sites in bacteriophage lambda and no site in either simian virus 40 DNA or φX174 DNA. It recognizes the sequence
and cleaves at the sites indicated by the arrows. No other endonuclease with this particular nucleotide sequence specificity has been reported.  相似文献   

4.
A new site-specific endonuclease, BbeI, has been partially purified from the anaerobic bacterium, Bifidobac-terium breve. BbeI recognizes the hexanucleotide sequence
and cleaves it at the sites indicated by the arrows, producing 3′-cohesive termini four bases long.  相似文献   

5.
A new specific endonuclease from Xanthomonas badrii   总被引:12,自引:0,他引:12  
A restriction-like endonuelease, XbaI, has been partially purified from Xanthomonas badrii. This enzyme cleaves adenovirus-2 DNA at four sites, bacteriophage lambda DNA at only one site, and does not cleave simian virus 40 DNA. It recognizes the sequence
and cuts at the sites indicated by the arrows.  相似文献   

6.
Chloroplasts are the sites of photosynthesis in plants, and they contain their own multicopy, requisite genome. Chloroplasts are also major sites for production of reactive oxygen species, which can damage essential components of the chloroplast, including the chloroplast genome. Compared with mitochondria in animals, relatively little is known about the potential to repair oxidative DNA damage in chloroplasts. Here we provide evidence of DNA glycosylase-lyase/endonuclease activity involved in base excision repair of oxidized pyrimidines in chloroplast protein extracts of Arabidopsis thaliana. Three base excision repair components (two endonuclease III homologs and an apurinic/apyrimidinic endonuclease) that might account for this activity were identified by bioinformatics. Transient expression of protein-green fluorescent protein fusions showed that all three are targeted to the chloroplast and co-localized with chloroplast DNA in nucleoids. The glycosylase-lyase/endonuclease activity of one of the endonuclease III homologs, AtNTH2, which had not previously been characterized, was confirmed in vitro. T-DNA insertions in each of these genes were identified, and the physiological and biochemical phenotypes of the single, double, and triple mutants were analyzed. This mutant analysis revealed the presence of a third glycosylase activity and potentially another pathway for repair of oxidative DNA damage in chloroplasts.Reactive oxygen species (ROS)2 are inevitable by-products of metabolism in all aerobic organisms (1). Plants and algae are especially prone to photo-oxidative stress because of ROS generated during oxygenic photosynthesis. Several types of ROS are generated at various sites in the photosynthetic electron transport chain in chloroplasts, and their production is enhanced by such factors as excess or varying light intensities and extremes of temperature, drought, nutrient deficiencies, and herbicides (2). These ROS can damage many chloroplast constituents, including lipids, proteins, pigments, and the multicopy genome.Plants have evolved numerous mechanisms to deal with photo-oxidative stress, including dissipation of excess light energy, synthesis of antioxidant molecules and scavenging enzymes, and targeted repair (2). DNA repair of oxidized bases, such as thymine glycol (TG) or 8-oxoguanine, can be hypothesized as an important element of chloroplast photoprotection. Although there is considerable overlap in both the types of DNA lesions caused by different insults and the targeting of different DNA repair mechanisms, base excision repair (BER) is considered to be the main repair pathway for oxidative DNA damage, at least in the nucleus and mitochondrion (3, 4).BER repairs single damaged bases (because of oxidation, deamination, alkylation, etc.) in DNA by removing them, breaking the phosphodiester backbone, excising the sugar residue at the abasic site, and filling the gap (reviewed in Refs. 5, 6). BER begins with a DNA glycosylase or glycosylase-lyase. There are many types of glycosylases in any given organism and across taxa, and they are distinguishable by their substrate specificity, whether they are monofunctional (glycosylase activity only) or bifunctional (glycosylase plus apurinic/apyrimidinic (AP) lyase activities; see below), by the phylogenetic family in which they reside, and/or by conserved structural characteristics (reviewed in Refs. 68). The glycosylases involved in BER of oxidative DNA damage can be roughly divided into those that target either oxidized purines or oxidized pyrimidines (4, 9). For example, TG is a common type of oxidized pyrimidine, which is removed primarily by endonuclease III (Nth), endonuclease VIII (Nei), or their homologs (10). TG is only poorly mutagenic, but it strongly blocks polymerases, inducing cell cycle arrest and potentially cell death if it is not removed.After an appropriate glycosylase cleaves the N-glycosyl bond attaching a damaged base to deoxyribose, leaving an abasic site, the sugar-phosphate backbone is nicked. Bifunctional glycosylases also have an AP lyase activity that cleaves on the 3′ side of the AP site. However, the site still requires the function of a separate AP endonuclease that cuts on the 5′ side of the AP site to remove the 3′-deoxyribose residue at the nick site (11) before repair can continue. In the case of a monofunctional glycosylase, an AP endonuclease nicks the strand on the 5′ side of the AP site. Escherichia coli has two unrelated AP endonucleases, exonuclease III (Xth) and endonuclease IV (Nfo). In humans Ape1/Ref-1 is an Xth homolog, and in yeast Apn1p is an Nfo homolog (5, 12). Following generation of the AP site and nicking of the backbone, the gap is filled by a polymerase in either a short or long patch and then sealed by a ligase.BER of oxidative DNA lesions such TG has been studied intensively in E. coli, yeast, and mammals, whereas comparatively little is known about BER in plants. For example, only two genes involved in BER of oxidized pyrimidines have been characterized previously in the model plant Arabidopsis thaliana (13, 14), and their localization within the plant cell is unknown. An Nth homolog in Arabidopsis, AtNTH1 (At2g31450), has the expected bifunctional glycosylase-lyase activity in vitro (14). The ARP gene (At2g41460) in Arabidopsis encodes an enzyme with AP endonuclease activity (13).Here we present the results of experiments conducted to address whether there is BER of oxidized pyrimidines in the Arabidopsis chloroplast. Chloroplast protein extracts were assayed for glycosylase-lyase/endonuclease activity. The chloroplast localization of ARP, AtNTH1, and AtNTH2, a second Arabidopsis homolog of Nth, was tested experimentally, and the predicted activity of AtNTH2 was confirmed in vitro. In addition, an analysis of T-DNA insertion mutants affecting each of these three BER genes was performed.  相似文献   

7.
Summary A general method has been developed for the deletion of restriction endonuclease sites in bacterial plasmid DNA. The procedure involves partial digestion of the covalently closed circular plasmid DNA with an appropriate restriction endonuclease under conditions which allow accumulation of unit-length linear DNA molecules, controlled digestion of the exposed 5 ends with the 5-exonuclease, and in vivo recircularization of the resulting linear DNA in a bacterial host cell. The method has been used for the deletion of one of the two EcoRI sites in the plasmid pML2 (colE1-Km). Two of the resulting plasmids, pCR1 and pCR11, have a single EcoRI cleavage site, but retain genetic determinants specifying resistance to colicin E1 and kanamycin, and thus may be useful as vectors for the cloning and amplification of DNA in bacteria.  相似文献   

8.
A new restriction-like endonuclease, SlaI, was found and partially purified from Streptomyces lavendulae ATCC8664. This endonuclease cleaved bacteriophage lambda DNA at only one site, and cytosine-substituted bacteriophage T4 DNA at 16 sites. The recognition sequence was determined by using SlaI fragments of cytosine-substituted bacteriophage T4 DNA. The hexanucleotide recognized by SlaI endonuclease was
5′-C?T-C-G-A-G-3′
3′-G-A-G-C-A-↑C-5′
with the sites of cleavage as indicated by the arrows. Therefore, SlaI endonuclease was an isochizomer of XhoI endonuclease.  相似文献   

9.
10.
《Gene》1996,172(1):47-48
We report here the generation of a novel restriction endonuclease (ENase) activity with the 10-bp recognition sequence,
This specificity could be achieved by first methylating a substrate DNA with M·MamI in vivo, followed by in vitro R·DpnI restriction.  相似文献   

11.

Key message

Site-directed mutagenesis of nitrate reductase genes using direct delivery of purified Cas9 protein preassembled with guide RNA produces mutations efficiently in Petunia × hybrida protoplast system.

Abstract

The clustered, regularly interspaced, short palindromic repeat (CRISPR)-CRISPR associated endonuclease 9 (CRISPR/Cas9) system has been recently announced as a powerful molecular breeding tool for site-directed mutagenesis in higher plants. Here, we report a site-directed mutagenesis method targeting Petunia nitrate reductase (NR) gene locus. This method could create mutations efficiently using direct delivery of purified Cas9 protein and single guide RNA (sgRNA) into protoplast cells. After transient introduction of RNA-guided endonuclease (RGEN) ribonucleoproteins (RNPs) with different sgRNAs targeting NR genes, mutagenesis at the targeted loci was detected by T7E1 assay and confirmed by targeted deep sequencing. T7E1 assay showed that RGEN RNPs induced site-specific mutations at frequencies ranging from 2.4 to 21 % at four different sites (NR1, 2, 4 and 6) in the PhNR gene locus with average mutation efficiency of 14.9 ± 2.2 %. Targeted deep DNA sequencing revealed mutation rates of 5.3–17.8 % with average mutation rate of 11.5 ± 2 % at the same NR gene target sites in DNA fragments of analyzed protoplast transfectants. Further analysis from targeted deep sequencing showed that the average ratio of deletion to insertion produced collectively by the four NR-RGEN target sites (NR1, 2, 4, and 6) was about 63:37. Our results demonstrated that direct delivery of RGEN RNPs into protoplast cells of Petunia can be exploited as an efficient tool for site-directed mutagenesis of genes or genome editing in plant systems.
  相似文献   

12.
To study double-strand break (DSB)-induced mutations in mammalian chromosomes, we stably transfected thymidine kinase (tk)-deficient mouse fibroblasts with a DNA substrate containing a recognition site for yeast endonuclease I-SceI embedded within a functional tk gene. Cells were then electroporated with a plasmid expressing endonuclease I-SceI to induce a DSB, and clones that had lost tk function were selected. In a previous study of DSB-induced tk-deficient clones, we found that ~8% of recovered tk mutations involved the capture of one or more DNA fragments at the DSB site. Almost half of the DNA capture events involved the I-SceI expression plasmid, and several events involved retrotransposable elements. To learn whether only certain DNA sequences or motifs are efficiently captured, in the current work we electroporated an I-SceI expression plasmid along with HaeIII fragments of X174 genomic DNA. We report that 18 out of 132 tk-deficient clones recovered had captured DNA fragments, and 14 DNA capture events involved one or more fragments of X174 DNA. Microhomology existed at most junctions between X174 DNA and genomic sequences. Our work suggests that virtually any extrachromosomal DNA molecule may be recruited for the patching of DSBs in a mammalian genome.  相似文献   

13.

Background

Human apurinic/apyrimidinic endonuclease 1 (APE1) is a key DNA repair enzyme involved in both base excision repair (BER) and nucleotide incision repair (NIR) pathways. In the BER pathway, APE1 cleaves DNA at AP sites and 3′-blocking moieties generated by DNA glycosylases. In the NIR pathway, APE1 incises DNA 5′ to a number of oxidatively damaged bases. At present, physiological relevance of the NIR pathway is fairly well established in E. coli, but has yet to be elucidated in human cells.

Methodology/Principal Finding

We identified amino acid residues in the APE1 protein that affect its function in either the BER or NIR pathway. Biochemical characterization of APE1 carrying single K98A, R185A, D308A and double K98A/R185A amino acid substitutions revealed that all mutants exhibited greatly reduced NIR and 3′→5′ exonuclease activities, but were capable of performing BER functions to some extent. Expression of the APE1 mutants deficient in the NIR and exonuclease activities reduced the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to an alkylating agent, methylmethanesulfonate, suggesting that our APE1 mutants are able to repair AP sites. Finally, the human NIR pathway was fully reconstituted in vitro using the purified APE1, human flap endonuclease 1, DNA polymerase β and DNA ligase I proteins, thus establishing the minimal set of proteins required for a functional NIR pathway in human cells.

Conclusion/Significance

Taken together, these data further substantiate the role of NIR as a distinct and separable function of APE1 that is essential for processing of potentially lethal oxidative DNA lesions.  相似文献   

14.
The five EcoRI2 restriction sites in bacteriophage lambda DNA have been mapped at 0.445, 0.543, 0.656, 0.810, and 0.931 fractional lengths from the left end of the DNA molecule. These positions were determined electron-microscopically by single-site cleavage of hydrogen-bonded circular λ DNA molecules and by cleavage of various DNA heteroduplexes between λ DNA and DNA from well defined λ mutants. The DNA lengths of the EcoRI fragments are in agreement with their electrophoretic mobility on agarose gels but are not in agreement with their mobilities on polyacrylamide gels. These positions are different from those previously published by Allet et al. (1973). Partial cleavage of pure λ DNA by addition of small amounts of EcoRI endonuclease does not lead to random cleavage between molecules. Also, the first site cleaved is not randomly distributed among the five sites within a molecule. The site nearest the right end is cleaved first about ten times more frequently than either of the two center sites.  相似文献   

15.
16.
Frequencies of the C/T SNP alleles at position 2403 of the human coagulation factor VIII gene intron 1, containing the AluI restriction endonuclease recognition site, were examined. Genomic DNA samples for the analysis were obtained from the consulted women and their relatives from the families with hemophilia A. A total of 221 unrelated X chromosomes were studied. The two allelic variants were found with similar frequencies of T(Alu+), 0.53 and C(Alu?), 0.47. The heterozygosity index evaluated as equal to 0.50 was correlated with the experimental heterozygote number. The absence of a tight linkage between the AluI SNP and the widely used in the hemophilia A gene diagnostics HindIII polymorphism (C/T SNP at position 103 of intron 19) was demonstrated. Summarized informativity of these two markers for obligate carriers and for those detected in this study constituted 68% (32 out of 47). At the same time using one of the markers, only 40% (HindIII) and 51% (AluI) of the consulted women were informative. The new marker was used in 13 prenatal DNA diagnostics of hemophilia A. A new deletion polymorphism (del TGA, position 2281–2283 of intron 1) was described in close proximity of the AluI SNP with the frequency of about 0.05. among the five other SNP of the factor VIII gene examined (Bme18I, intron 1; HpaII, intron 13; MnlI, exon 14; Bst4CI, exon 25; and MseI, exon 26) no effective diagnostic markers were found. Only the MnlI polymorphism could be recommended for limited usage.  相似文献   

17.
We developed a rapid mutagenesis method based on a modification of the QuikChange® system (Stratagene) to systemically replace endogenous gene sequences with a unique similar size sequence tag. The modifications are as follows: 1: the length of the anchoring homologous sequences of both mutagenesis primers were increased to 16 – 22 bp to achieve melting temperatures greater than 80°C. 2: the final concentrations of both primers were increased to 5–10 ng/µl and the final concentration of template to 1–2 ng/µl. 3: the annealing temperature was adjusted when necessary from 52°C to 58°C. We generated 25 sequential mutants in the cloned espD gene (1.2 kb), which encodes an essential component of the type III secretion translocon required for the pathogenesis of enteropathogenic E. coli (EPEC) infection. Each mutation consisted of the replacement of 15 codons (45 bp) with 8 codons representing a 24 bp sequence containing three unique restriction endonuclease sites (KpnI/MfeI/SpeI) starting from the second codon. The insertion of the restriction endonuclease sites provides a convenient method for further insertions of purification and/or epitope tags into permissive domains. This method is rapid, site-directed and allows for the systematic creation of mutants evenly distributed throughout the entire gene of interest.  相似文献   

18.
An apparently full-length complementary DNA copy of in vitro polyadenylated MS2 RNA was synthesized with avian myeloblastosis virus RNA-dependent DNA polymerase. After the MS2 RNA template was removed from the complementary DNA strand with T1 and pancreatic RNase digestion, the complementary DNA became a good template for the synthesis of double-stranded MS2 DNA with Escherichia coli DNA polymerase I. We then constructed molecular chimeras by inserting the double-stranded MS2 DNA into the PstI restriction endonuclease cleavage site of the E. coli plasmid pBR322 by means of the poly(dA)· poly(dT) tailing procedure. An E. coli transformant carrying a plasmid with a nearly full-length MS2 DNA insertion, called pMS2-7, was chosen for further study. Correlation between the restriction cleavage site map of pMS2-7 DNA and the cleavage map predicted from the primary structure of MS2 RNA, and nucleotide sequence analysis of the 5′ and 3′ end regions of the MS2 DNA insertion, showed that the entire MS2 RNA had been faithfully copied, and that, except for 14 nucleotides corresponding to the 5′-terminal sequence of MS2 RNA, the fulllength DNA copy of the viral genetic information had been inserted into the plasmid. Restriction endonuclease analysis of the chimera plasmid DNA also revealed the presence of an extra DNA insertion which was identified as the translocatable element IS13 (see following paper).  相似文献   

19.
During lagging-strand DNA replication in eukaryotic cells primers are removed from Okazaki fragments by the flap endonuclease and DNA ligase I joins nascent fragments. Both enzymes are brought to the replication fork by the sliding clamp proliferating cell nuclear antigen (PCNA). To understand the relationship among these three components, we have carried out a synthetic lethal screen with cdc9-p, a DNA ligase mutation with two substitutions (F43A/F44A) in its PCNA interaction domain. We recovered the flap endonuclease mutation rad27-K325* with a stop codon at residue 325. We created two additional rad27 alleles, rad27-A358* with a stop codon at residue 358 and rad27-pX8 with substitutions of all eight residues of the PCNA interaction domain. rad27-pX8 is temperature lethal and rad27-A358* grows slowly in combination with cdc9-p. Tests of mutation avoidance, DNA repair, and compatibility with DNA repair mutations showed that rad27-K325* confers severe phenotypes similar to rad27Δ, rad27-A358* confers mild phenotypes, and rad27-pX8 confers phenotypes intermediate between the other two alleles. High-copy expression of POL30 (PCNA) suppresses the canavanine mutation rate of all the rad27 alleles, including rad27Δ. These studies show the importance of the C terminus of the flap endonuclease in DNA replication and repair and, by virtue of the initial screen, show that this portion of the enzyme helps coordinate the entry of DNA ligase during Okazaki fragment maturation.CELLULAR maintenance of genomic integrity is essential for the continued viability of all organisms. The fidelity of DNA replication has to be maintained and DNA insults have to be repaired to ensure that deleterious mutations are not passed on to progeny or cause cancerous growth. A number of cellular proteins have multiple roles in DNA replication, mutation avoidance, and repair. In Saccharomyces cerevisiae, the flap endonuclease, proliferating cell nuclear antigen (PCNA), and DNA ligase I encoded by RAD27, POL30, and CDC9, respectively, are all required for proper replication and also function to avoid mutation and to facilitate repair.The flap endonuclease, FEN-1 in humans, is a highly conserved structure-specific nuclease that has both endonuclease and 5′–3′ exonuclease activity. During lagging-strand replication these activities function to remove primers from Okazaki fragments, either by endonucleolytic cleavage of a flap made by strand displacement (Liu et al. 2004) or by sequential exonucleolytic removal of single nucleotides at the 5′ end of the primer (Murante et al. 1994).While deletion of RAD27 is not lethal to yeast cells, the rad27Δ mutant exhibits temperature-sensitive growth, is a mutator, and undergoes genomic instability (Johnson et al. 1995; Reagan et al. 1995; Tishkoff et al. 1997b; Chen and Kolodner 1999). In addition, its sensitivity to low doses of the methylating agent methylmethane sulfonate (MMS) implicates the participation of the enzyme in base excision repair (BER) (Reagan et al. 1995; Wu and Wang 1999). rad27Δ mutants have been reported to be either mildly sensitive to UV light or not sensitive to UV light (Reagan et al. 1995; Sommers et al. 1995). In the strain background that the mutant is mildly sensitive, its combination with rad2Δ yields a double mutant more sensitive than each single mutant, implying that the enzyme does not participate in RAD2-mediated nucleotide excision repair (NER) (Reagan et al. 1995). The flap endonuclease has also been implicated in double-strand break (DSB) repair by virtue of the incompatibility of rad27Δ with mutations of the DSB repair pathways (Tishkoff et al. 1997b; Symington 1998). In addition, either the yeast enzyme or its human ortholog has been shown to participate in reactions of homologous recombination, nonhomologous end joining, and telomere maintenance (Parenteau and Wellinger 1999, 2002; Wu et al. 1999; Wang et al. 2004; Kikuchi et al. 2005). Curiously, the rad27Δ mutant is not sensitive to gamma radiation but is sensitive to high doses of MMS that are thought to act as a radiomimetic agent (Reagan et al. 1995; Sommers et al. 1995).PCNA is the replicative clamp that acts as a scaffold to facilitate the loading of DNA replication and repair proteins, including DNA ligase I and the flap endonuclease to DNA (Warbrick 2000, 2006; Maga and Hubscher 2003). PCNA (POL30) is essential for cell viability, which is indicative of its central role in DNA metabolism. Biochemical characterization of its effect on the flap endonuclease shows that it stimulates its activity ∼50-fold, evidencing the productive nature of the interaction (Gomes and Burgers 2000; Tom et al. 2000; Frank et al. 2001; Stucki et al. 2001). The ability of DNA ligase to efficiently catalyze the formation of phosphodiester bonds in the DNA backbone may also be facilitated by its binding to PCNA. Tom et al. (2001) showed that, in vitro, PCNA enhances the ligation reaction 5-fold and that the stable association of DNA ligase with nicked duplex DNA requires PCNA.Both DNA ligase and the flap endonuclease bind to PCNA via their respective PCNA interactive peptide domains (PIP box). The PIP box is a conserved sequence motif of the amino acids QXXLXXFF. The PIP box fits into the interdomain connector loop (IDCL) of PCNA to provide a protein–protein interaction surface (Gomes and Burgers 2000; Chapados et al. 2004; Sakurai et al. 2005; Pascal et al. 2006). Mutations in the PIP box or the IDCL that impair the interaction of DNA ligase and the flap endonuclease to PCNA lead to genomic instability (Amin and Holm 1996; Eissenberg et al. 1997; Gary et al. 1999; Refsland and Livingston 2005; Subramanian et al. 2005). We have reported that the double mutants made by combinations of cdc9-p, rad27-p, and pol30-90—mutations with alterations of the PIP box or the IDCL in the respective proteins—have synergistic phenotypes with respect to MMS sensitivity and to trinucleotide repeat instability (Refsland and Livingston 2005). These results suggest that the two enzymes function in a concerted manner that is facilitated by PCNA.The precise nature of how PCNA coordinates the entry of the flap endonuclease and DNA ligase into the replication fork is not well understood. Biochemical and structural studies have begun to elucidate a possible ordering of these PCNA-mediated interactions. The possibility of such an ordering is underscored by the observation that DNA ligase adopts a toroidal conformation by completely encircling duplex DNA while interacting with PCNA (Pascal et al. 2004). Moreover, both PCNA and DNA ligase may be loaded onto the DNA in a mechanism utilizing the replication clamp loader replication factor C (RFC) (Levin et al. 2004; Vijayakumar et al. 2009), again suggesting a complete encirclement of the DNA by DNA ligase as well as by PCNA. PCNA and DNA ligase are similar in size and their interaction is likely to extend along the face of PCNA in a manner that would prevent other proteins such as the flap endonuclease from binding to the IDCL (Pascal et al. 2004, 2006). A biochemical study with purified yeast proteins showed that the two enzymes cannot bind simultaneously to PCNA (Subramanian et al. 2005). These studies suggest that a coordinated sequential interaction among PCNA, DNA ligase, and the flap endonuclease is important for replication and repair.Alternatively, both the flap endonuclease and DNA ligase may bind to the same molecule of PCNA. Since PCNA is a homotrimer, DNA ligase can potentially bind to one monomer while the flap endonuclease binds to another, using its extended C-terminal tail in a conformation allowing it to be tethered to PCNA concurrently with DNA ligase (Gomes and Burgers 2000; Sakurai et al. 2005). DNA ligase could also bind to PCNA in an extended conformation while the flap endonuclease cleaves the DNA. Sulfolobus solfataricus DNA ligase has been shown to have an open, extended conformation while binding to PCNA (Pascal et al. 2006). Presumably, once the flap endonuclease has removed the 5′ flap, DNA ligase acquires a closed, ring-shaped conformation to catalyze the joining of Okazaki fragments (Pascal et al. 2006).Exactly how the interaction of these enzymes with PCNA is coordinated in vivo, whether singly or concurrently, is not well understood. To further elucidate how the interaction of DNA ligase with PCNA is ordered, we performed a genetic screen to identify mutations that are synthetically lethal with cdc9-p (F44A/F35A), an allele of DNA ligase that has impaired binding to PCNA (Refsland and Livingston 2005; Subramanian et al. 2005). We postulated that genes recovered from this screen would function in DNA repair, replication, and recombination or would be involved in ordering the DNA ligase–PCNA interaction. From the screen we recovered a truncated allele of RAD27, rad27-K325*. This allele encodes a protein that lacks the PIP box and the entire C-terminal domain of the enzyme but retains the N terminus containing the nuclease activities. We have characterized this allele and compared it to two other rad27 alleles in which we have created different alterations of the C-terminal end of the flap endonuclease.  相似文献   

20.
Abasic (AP) sites are very frequent and dangerous DNA lesions. Their ability to block the advancement of a replication fork has been always viewed as a consequence of their inhibitory effect on the DNA synthetic activity of replicative DNA polymerases (DNA pols). Here we show that AP sites can also affect the strand displacement activity of the lagging strand DNA pol δ, thus preventing proper Okazaki fragment maturation. This block can be overcome through a polymerase switch, involving the combined physical and functional interaction of DNA pol β and Flap endonuclease 1. Our data identify a previously unnoticed deleterious effect of the AP site lesion on normal cell metabolism and suggest the existence of a novel repair pathway that might be important in preventing replication fork stalling.Loss of purine and pyrimidine bases is a significant source of DNA damage in prokaryotic and eukaryotic organisms. Abasic (apurinic and apyrimidinic) lesions occur spontaneously in DNA; in eukaryotes it has been estimated that about 104 depurination and 102 depyrimidation events occur per genome per day. An equally important source of abasic DNA lesions results from the action of DNA glycosylases, such as uracil glycosylase, which excises uracil arising primarily from spontaneous deamination of cytosines (1). Although most AP sites are removed by the base excision repair (BER)5 pathway, a small fraction of lesions persists, and DNA with AP lesions presents a strong block to DNA synthesis by replicative DNA polymerases (DNA pols) (2, 3). Several studies have been performed to address the effects of AP sites on the template DNA strand on the synthetic activity of a variety of DNA pols. The major replicative enzyme of eukaryotic cells, DNA pol δ, was shown to be able to bypass an AP lesion, but only in the presence of the auxiliary factor proliferating cell nuclear antigen (PCNA) and at a very reduced catalytic efficiency if compared with an undamaged DNA template (4). On the other hand, the family X DNA pols β and λ were shown to bypass an AP site but in a very mutagenic way (5). Recent genetic evidence in Saccharomyces cerevisiae cells showed that DNA pol δ is the enzyme replicating the lagging strand (6). According to the current model for Okazaki fragment synthesis (79), the action of DNA pol δ is not only critical for the extension of the newly synthesized Okazaki fragment but also for the displacement of an RNA/DNA segment of about 30 nucleotides on the pre-existing downstream Okazaki fragment to create an intermediate Flap structure that is the target for the subsequent action of the Dna2 endonuclease and the Flap endonuclease 1 (Fen-1). This process has the advantage of removing the entire RNA/DNA hybrid fragment synthesized by the DNA pol α/primase, potentially containing nucleotide misincorporations caused by the lack of a proofreading exonuclease activity of DNA pol α/primase. This results in a more accurate copy synthesized by DNA pol δ. The intrinsic strand displacement activity of DNA pol δ, in conjunction with Fen-1, PCNA, and replication protein A (RP-A), has been also proposed to be essential for the S phase-specific long patch BER pathway (10, 11). Although it is clear that an AP site on the template strand is a strong block for DNA pol δ-dependent synthesis on single-stranded DNA, the functional consequences of such a lesion on the ability of DNA pol δ to carry on strand displacement synthesis have never been investigated so far. Given the high frequency of spontaneous hydrolysis and/or cytidine deamination events, any detrimental effect of an AP site on the strand displacement activity of DNA pol δ might have important consequences both for lagging strand DNA synthesis and for long patch BER. In this work, we addressed this issue by constructing a series of synthetic gapped DNA templates with a single AP site at different positions with respect to the downstream primer to be displaced by DNA pol δ (see Fig. 1A). We show that an AP site immediately upstream of a single- to double-strand DNA junction constitutes a strong block to the strand displacement activity of DNA pol δ, even in the presence of RP-A and PCNA. Such a block could be resolved only through a “polymerase switch” involving the concerted physical and functional interaction of DNA pol β and Fen-1. The closely related DNA pol λ could only partially substitute for DNA pol β. Based on our data, we propose that stalling of a replication fork by an AP site not only is a consequence of its ability to inhibit nucleotide incorporation by the replicative DNA pols but can also stem from its effects on strand displacement during Okazaki fragment maturation. In summary, our data suggest the existence of a novel repair pathway that might be important in preventing replication fork stalling and identify a previously unnoticed deleterious effect of the AP site lesion on normal cell metabolism.Open in a separate windowFIGURE 1.An abasic site immediately upstream of a double-stranded DNA region inhibits the strand displacement activity of DNA polymerase δ. The reactions were performed as described under “Experimental Procedures.” A, schematic representation of the various DNA templates used. The size of the resulting gaps is indicated in nt. The position of the AP site on the 100-mer template strand is indicated relative to the 3′ end. Base pairs in the vicinity of the lesion are indicated by dashes. The size of the gaps (35–38 nt) is consistent with the size of ssDNA covered by a single RP-A molecule, which has to be released during Okazaki fragment synthesis when the DNA pol is approaching the 5′-end of the downstream fragment. When the AP site is covered by the downstream terminator oligonucleotide (Gap-3 and Gap-1 templates) the nucleotide placed on the opposite strand is C to mimic the situation generated by spontaneous loss of a guanine or excision of an oxidized guanine, whereas when the AP site is covered by the primer (nicked AP template), the nucleotide placed on the opposite strand is A to mimic the most frequent incorporation event occurring opposite an AP site. B, human PCNA was titrated in the presence of 15 nm (lanes 2–4 and 10–12) or 30 nm (lanes 6–8 and 14–16) recombinant human four subunit DNA pol δ, on a linear control (lanes 1–8) or a 38-nt gap control (lanes 9–16) template. Lanes 1, 5, 9, and 13, control reactions in the absence of PCNA. C, human PCNA was titrated in the presence of 60 nm DNA pol δ, on a linear AP (lanes 2–4) or 38-nt gap AP (lanes 6–9) template. Lanes 1 and 5, control reactions in the absence of PCNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号