首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Spatial patterns of cell differentiation in developing tissues can be controlled by receptor tyrosine kinase (RTK) signaling gradients, which may form when locally secreted ligands activate uniformly expressed receptors. Graded activation of RTKs can span multiple cell diameters, giving rise to spatiotemporal patterns of signaling through the Extracellular Signal Regulated/Mitogen Activated Protein Kinase (ERK/MAPK), which connects receptor activation to multiple aspects of tissue morphogenesis. This general mechanism has been identified in numerous developmental contexts, from body axis specification in insects to patterning of the mammalian neocortex. We review recent quantitative studies of this mechanism in Drosophila oogenesis, an established genetic model of signaling through the Epidermal Growth Factor Receptor (EGFR), a highly conserved RTK.  相似文献   

2.
Reorganization of the actin cytoskeleton is crucial to the formation and function of the immunological synapse. Rho GTPases are critical mediators of cytoskeletal reorganization, and their activity at the synapse is likely to be stringently regulated. Guanine nucleotide exchange factors (GEFs) belonging to the Dbl family of proteins represent one major class of proteins that regulate the activity of Rho GTPases. Here we demonstrate that IBP, a homologue of SWAP-70, is a novel GEF for Rac1 and Cdc42 in T lymphocytes, which is recruited to the immunological synapse upon engagement of the antigen receptor. Mutational analysis supports a model whereby IBP is inactive in unstimulated cells. Upon engagement of the T cell receptor, its GEF activity is enhanced by tyrosine phosphorylation, as well as by binding newly generated phosphatidylinositol 3,4,5-trisphosphate. Although it is known that T cell receptor engagement leads to the recruitment of Vav to the immunological synapse, these findings indicate that other GEFs, such as IBP, also relocalize to this intercellular region. The recruitment and activation of distinct classes of GEFs may allow for precise control of Rho GTPase function at the crucial interface between T cells and antigen presenting cells.  相似文献   

3.
Receptor tyrosine kinases (RTKs) activate multiple downstream cytosolic tyrosine kinases following ligand stimulation. SRC family kinases (SFKs), which are recruited to activated RTKs through SH2 domain interactions with RTK autophosphorylation sites, are targets of many subfamilies of RTKs. To date, there has not been a systematic analysis of the downstream substrates of such receptor-activated SFKs. Here, we conducted quantitative mass spectrometry utilizing stable isotope labeling (SILAC) analysis to profile candidate SRC-substrates induced by the CSF-1R tyrosine kinase by comparing the phosphotyrosine-containing peptides from cells expressing either CSF-1R or a mutant form of this RTK that is unable to bind to SFKs. This analysis identified previously uncharacterized changes in tyrosine phosphorylation induced by CSF-1R in mammary epithelial cells as well as a set of candidate substrates dependent on SRC recruitment to CSF-1R. Many of these candidates may be direct SRC targets as the amino acids flanking the phosphorylation sites in these proteins are similar to known SRC kinase phosphorylation motifs. The putative SRC-dependent proteins include known SRC substrates as well as previously unrecognized SRC targets. The collection of substrates includes proteins involved in multiple cellular processes including cell-cell adhesion, endocytosis, and signal transduction. Analyses of phosphoproteomic data from breast and lung cancer patient samples identified a subset of the SRC-dependent phosphorylation sites as being strongly correlated with SRC activation, which represent candidate markers of SRC activation downstream of receptor tyrosine kinases in human tumors. In summary, our data reveal quantitative site-specific changes in tyrosine phosphorylation induced by CSF-1R activation in epithelial cells and identify many candidate SRC-dependent substrates phosphorylated downstream of an RTK.  相似文献   

4.
A long-standing issue in the field of signal transduction is to understand the cross-talk between receptor tyrosine kinases (RTKs) and heterotrimeric G proteins, two major and distinct signaling hubs that control eukaryotic cell behavior. Although stimulation of many RTKs leads to activation of trimeric G proteins, the molecular mechanisms behind this phenomenon remain elusive. We discovered a unifying mechanism that allows GIV/Girdin, a bona fide metastasis-related protein and a guanine-nucleotide exchange factor (GEF) for Gαi, to serve as a direct platform for multiple RTKs to activate Gαi proteins. Using a combination of homology modeling, protein–protein interaction, and kinase assays, we demonstrate that a stretch of ∼110 amino acids within GIV C-terminus displays structural plasticity that allows folding into a SH2-like domain in the presence of phosphotyrosine ligands. Using protein–protein interaction assays, we demonstrated that both SH2 and GEF domains of GIV are required for the formation of a ligand-activated ternary complex between GIV, Gαi, and growth factor receptors and for activation of Gαi after growth factor stimulation. Expression of a SH2-deficient GIV mutant (Arg 1745→Leu) that cannot bind RTKs impaired all previously demonstrated functions of GIV—Akt enhancement, actin remodeling, and cell migration. The mechanistic and structural insights gained here shed light on the long-standing questions surrounding RTK/G protein cross-talk, set a novel paradigm, and characterize a unique pharmacological target for uncoupling GIV-dependent signaling downstream of multiple oncogenic RTKs.  相似文献   

5.
Rho GTPases regulate the assembly of cellular actin structures and are activated by GEFs (guanine-nucleotide-exchange factors) and rendered inactive by GAPs (GTPase-activating proteins). Using the Rho GTPases Cdc42, Rac1 and RhoA, and the GTPase-binding portions of the effector proteins p21-activated kinase and Rhophilin1, we have developed split luciferase assays for detecting both GEF and GAP regulation of these GTPases. The system relies on purifying split luciferase fusion proteins of the GTPases and effectors from bacteria, and our results show that the assays replicate GEF and GAP specificities at nanomolar concentrations for several previously characterized Rho family GEFs (Dbl, Vav2, Trio and Asef) and GAPs [p190, Cdc42 GAP and PTPL1-associated RhoGAP]. The assay detected activities associated with purified recombinant GEFs and GAPs, cell lysates expressing exogenous proteins, and immunoprecipitates of endogenous Vav1 and p190. The results demonstrate that the split luciferase system provides an effective sensitive alternative to radioactivity-based assays for detecting GTPase regulatory protein activities and is adaptable to a variety of assay conditions.  相似文献   

6.
Signals triggered by diverse receptors modulate the activity of Rho family proteins, although the regulatory mechanism remains largely unknown. On the basis of their biochemical activity as guanine nucleotide exchange factors (GEFs), Dbl family proteins are believed to be implicated in the regulation of Rho family GTP-binding proteins in response to a variety of extracellular stimuli. Here we show that GEF activity of full-length proto-Dbl is enhanced upon tyrosine phosphorylation. When transiently coexpressed with the activated form of the non-receptor tyrosine kinase ACK1, a downstream target of Cdc42, Dbl became tyrosine-phosphorylated. In vitro GEF activity of Dbl toward Rho and Cdc42 was augmented following tyrosine phosphorylation. Moreover, accumulation of the GTP-bound form of Rho and Rac within the cell paralleled ACK-1-dependent tyrosine phosphorylation of Dbl. Consistently, activation of c-Jun N-terminal kinase downstream of Rho family GTP-binding proteins was also enhanced when Dbl was tyrosine-phosphorylated. Collectively, these findings suggest that the tyrosine kinase ACK1 may act as a regulator of Dbl, which in turn activates Rho family proteins.  相似文献   

7.
Beck SC  Meyer TF 《FEBS letters》2000,480(2-3):287-292
The target Rho GTPases of many guanine nucleotide exchange factors (GEFs) of the Dbl family remain to be identified. Here we report a new method: the yeast exchange assay (YEA), a rapid qualitative test to perform a wide range screen for GEF specificity. In this assay based on the two-hybrid system, a wild type GTPase binds to its effector only after activation by a specific GEF. We validated the YEA by activating GTPases by previously reported GEFs. We further established that a novel GEF, GEF337, activates RhoA in the YEA. GEF337 promoted nucleotide exchange on RhoA in vitro and promoted F-actin stress fiber assembly in fibroblasts, characteristic of RhoA activation.  相似文献   

8.
Vascular endothelial growth factor (VEGF) signaling is critical for both normal and disease-associated vascular development. Dysregulated VEGF signaling has been implicated in ischemic stroke, tumor angiogenesis, and many other vascular diseases. VEGF signals through several effectors, including the Rho family of small GTPases. As a member of this family, Rac1 promotes VEGF-induced endothelial cell migration by stimulating the formation of lamellipodia and membrane ruffles. To form these membrane protrusions, Rac1 is activated by guanine nucleotide exchange factors (GEFs) that catalyze the exchange of GDP for GTP. The goal of this study was to identify the GEF responsible for activating Rac1 in response to VEGF stimulation. We have found that VEGF stimulates biphasic activation of Rac1 and for these studies we focused on the peak of activation that occurs at 30 min. Inhibition of VEGFR-2 signaling blocks VEGF-induced Rac1 activation. Using a Rac1 nucleotide-free mutant (G15ARac1), which has a high affinity for binding activated GEFs, we show that the Rac GEF Vav2 associates with G15ARac1 after VEGF stimulation. Additionally, we show that depleting endothelial cells of endogenous Vav2 with siRNA prevents VEGF-induced Rac1 activation. Moreover, Vav2 is tyrosine phosphorylated upon VEGF treatment, which temporally correlates with Rac1 activation and requires VEGFR-2 signaling and Src kinase activity. Finally, we show that depressing Vav2 expression by siRNA impairs VEGF-induced endothelial cell migration. Taken together, our results provide evidence that Vav2 acts downstream of VEGF to activate Rac1.  相似文献   

9.
Recognition of cognate Rho GTPases by guanine-nucleotide exchange factors (GEF) is fundamental to Rho GTPase signaling specificity. Two main GEF families use either the Dbl homology (DH) or the DOCK homology region 2 (DHR-2) catalytic domain. How DHR-2-containing GEFs distinguish between the GTPases Rac and Cdc42 is not known. To determine how these GEFs specifically recognize the two Rho GTPases, we studied the amino acid sequences in Rac2 and Cdc42 that are crucial for activation by DOCK2, a Rac-specific GEF, and DOCK9, a distantly related Cdc42-specific GEF. Two elements in the N-terminal regions of Rac2 and Cdc42 were found to be essential for specific interactions with DOCK2 and DOCK9. One element consists of divergent amino acid residues in the switch 1 regions of the GTPases. Significantly, these residues were also found to be important for GTPase recognition by Rac-specific DOCK180, DOCK3, and DOCK4 GEFs. These findings were unexpected because the same residues were shown previously to interact with GTPase effectors rather than GEFs. The other element comprises divergent residues in the beta3 strand that are known to mediate specific recognition by DH domain containing GEFs. Remarkably, Rac2-to-Cdc42 substitutions of four of these residues were sufficient for Rac2 to be specifically activated by DOCK9. Thus, DOCK2 and DOCK9 specifically recognize Rac2 and Cdc42 through their switch 1 as well as beta2-beta3 regions and the mode of recognition via switch 1 appears to be conserved among diverse Rac-specific DHR-2 GEFs.  相似文献   

10.
11.
12.
13.
Rho family small GTPases are involved in diverse signaling processes including immunity, growth, and development. The activity of Rho GTPases is regulated by cycling between guanosine diphosphate (GDP)-bound inactive and guanosine triphosphate (GTP)-bound active forms, in which guanine nucleotide exchange factors (GEFs) predominantly function to promote activation of the GTPases. In animals, most Rho GEFs possess a Dbl (diffuse B-cell lymphoma) homology (DH) domain which functions as a GEF-catalytic domain. However, no proteins with the DH domain have been identified in plants so far. Instead, plant-specific Rho GEFs with the PRONE domain responsible for GEF activity have been found to constitute a large family in plants. In this study, we found rice homologs of human SWAP70, Oryza sativa (Os) SWAP70A and SWAP70B, containing the DH domain. OsSWAP70A interacted with rice Rho GTPase OsRac1, an important signaling factor for immune responses. The DH domain of OsSWAP70A exhibited the GEF-catalytic activity toward OsRac1 as found in animal Rho GEFs, indicating that plants have the functional DH domains. Transient expression of OsSWAP70A enhanced OsRac1-mediated production of reactive oxygen species in planta. Reduction of OsSWAP70A and OsSWAP70B mRNA levels by RNA interference resulted in the suppression of chitin elicitor-induced defense gene expression and ROS production. Thus, it is likely that OsSWAP70 regulates immune responses through activation of OsRac1.  相似文献   

14.
The Rho family GTPases Rac, Rho and Cdc42 are critical in regulating the actin-based cytoskeleton, cell migration, growth, survival and gene expression. These GTPases are activated by guanine nucleotide-exchange factors (GEFs). A biochemical search for Cdc42 activators led to the cloning of zizimin1, a new protein whose overexpression induces Cdc42 activation. Sequence comparison combined with mutational analysis identified a new domain, which we named CZH2, that mediates direct interaction with Cdc42. CZH2-containing proteins constitute a new superfamily that includes the so-called 'CDM' proteins that bind to and activate Rac. Together, the results suggest that CZH2 is a new GEF domain for the Rho family of proteins.  相似文献   

15.
Rho GTPases are molecular “switches” that cycle between “on” (GTP-bound) and “off” (GDP-bound) states and regulate numerous cellular activities such as gene expression, protein synthesis, cytoskeletal rearrangements, and metabolic responses. Dysregulation of GTPases is a key feature of many diseases, especially cancers. Guanine nucleotide exchange factors (GEFs) of the Dbl family are activated by mitogenic cell surface receptors and activate the Rho family GTPases Cdc42, Rac1, and RhoA. The molecular mechanisms that regulate GEFs from the Dbl family are poorly understood. Our studies reveal that Dbl is phosphorylated on tyrosine residues upon stimulation by growth factors and that this event is critical for the regulated activation of the GEF. These findings uncover a novel layer of complexity in the physiological regulation of this protein.  相似文献   

16.
G-protein-coupled receptors (GPCRs) typically activate c-Jun N-terminal kinase (JNK) through the G protein betagamma subunit (Gbetagamma), in a manner dependent on Rho family small GTPases, in mammalian cells. Here we show that JNK activation by the prototypic Gq-coupled alpha1B-adrenergic receptor is mediated by the alpha subunit of Gq (Galphaq), not by Gbetagamma, using a transient transfection system in human embryonic kidney cells. JNK activation by the alpha1B-adrenergic receptor/Galphaq was selectively mediated by mitogen-activated protein kinase kinase 4 (MKK4), but not MKK7. Also, MKK4 activation by the alpha1B-adrenergic receptor/Galphaq required c-Src and Rho family small GTPases. Furthermore, activation of the alpha1B-adrenergic receptor stimulated JNK activity through Src family tyrosine kinases and Rho family small GTPases in hamster smooth muscle cells that natively express the alpha1B-adrenergic receptor. Together, these results suggest that the alpha1B-adrenergic receptor/Galphaq may up-regulate JNK activity through a MKK4 pathway dependent on c-Src and Rho family small GTPases in mammalian cells.  相似文献   

17.
Wang L  Zhu K  Zheng Y 《Biochemistry》2004,43(46):14584-14593
Activation of many Rho family GTPase pathways involves the signaling module consisting of the Dbl-like guanine nucleotide exchange factors (GEFs), the Rho GTPases, and the Rho GTPase specific effectors. The current biochemical model postulates that the GEF-stimulated GDP/GTP exchange of Rho GTPases leads to the active Rho-GTP species, and subsequently the active Rho GTPases interact with and activate the effectors. Here we report an unexpected finding that the Dbl oncoprotein, Cdc42 GTPase, and PAK1 can form a complex through their minimum functional motifs, i.e., the Dbl-homolgy (DH) and Pleckstrin-homology domains of Dbl, Cdc42, and the PBD domain of PAK1. The Dbl-Cdc42-PAK1 complex is sensitive to the nucleotide-binding state of Cdc42 since either dominant negative or constitutively active Cdc42 readily disrupts the ternary binding interaction. The complex formation depends on the interactions between the DH domain of Dbl and Cdc42 and between Cdc42 and the PBD domain of PAK1 and can be reconstituted in vitro by using the purified components. Furthermore, the Dbl-Cdc42-PAK1 ternary complex is active in generating signaling output through the activated PAK1 kinase in the complex. The GEF-Rho-effector ternary intermediate is also found in other Dbl-like GEF, Rho GTPase, and effector interactions. Finally, PAK1, through the PDB domain, is able to accelerate the GEF-induced GTP loading onto Cdc42. These results suggest that signal transduction through Cdc42 and possibly other Rho family GTPases could involve tightly coupled guanine nucleotide exchange and effector activation mechanisms and that Rho GTPase effector may have a feedback regulatory role in the Rho GTPase activation.  相似文献   

18.
Signaling through receptor tyrosine kinases (RTKs) is a major mechanism for intercellular communication during development and in the adult organism, as well as in disease-associated processes. The phosphorylation status and signaling activity of RTKs is determined not only by the kinase activity of the RTK but also by the activities of protein tyrosine phosphatases (PTPs). This review discusses recently identified PTPs that negatively regulate various RTKs and the role of PTP inhibition in ligand-induced RTK activation. The contributions of PTPs to ligand-independent RTK activation and to RTK inactivation by other classes of receptors are also surveyed. Continued investigation into the involvement of PTPs in RTK regulation is likely to unravel previously unrecognized layers of RTK control and to suggest novel strategies for interference with disease-associated RTK signaling.  相似文献   

19.
20.
SmgGDS is an atypical guanine nucleotide exchange factor (GEF) that promotes both cell proliferation and migration and is up-regulated in several types of cancer. SmgGDS has been previously shown to activate a wide variety of small GTPases, including the Ras family members Rap1a, Rap1b, and K-Ras, as well as the Rho family members Cdc42, Rac1, Rac2, RhoA, and RhoB. In contrast, here we show that SmgGDS exclusively activates RhoA and RhoC among a large panel of purified GTPases. Consistent with the well known properties of GEFs, this activation is catalytic, and SmgGDS preferentially binds to nucleotide-depleted RhoA relative to either GDP- or GTPγS-bound forms. However, mutational analyses indicate that SmgGDS utilizes a distinct exchange mechanism compared with canonical GEFs and in contrast to known GEFs requires RhoA to retain a polybasic region for activation. A homology model of SmgGDS highlights an electronegative surface patch and a highly conserved binding groove. Mutation of either area ablates the ability of SmgGDS to activate RhoA. Finally, the in vitro specificity of SmgGDS for RhoA and RhoC is retained in cells. Together, these results indicate that SmgGDS is a bona fide GEF that specifically activates RhoA and RhoC through a unique mechanism not used by other Rho family exchange factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号