首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
Erwinia amylovora causes fire blight disease of apple, pear, and other members of the Rosaceae. Here we present the first evidence for autoinduction in E. amylovora and a role for an N-acyl-homoserine lactone (AHL)-type signal. Two major plant virulence traits, production of extracellular polysaccharides (amylovoran and levan) and tolerance to free oxygen radicals, were controlled in a bacterial-cell-density-dependent manner. Two standard autoinducer biosensors, Agrobacterium tumefaciens NTL4 and Vibrio harveyi BB886, detected AHL in stationary-phase cultures of E. amylovora. A putative AHL synthase gene, eamI, was partially sequenced, which revealed homology with autoinducer genes from other bacterial pathogens (e.g., carI, esaI, expI, hsII, yenI, and luxI). E. amylovora was also found to carry eamR, a convergently transcribed gene with homology to luxR AHL activator genes in pathogens such as Erwinia carotovora. Heterologous expression of the Bacillus sp. strain A24 acyl-homoserine lactonase gene aiiA in E. amylovora abolished induction of AHL biosensors, impaired extracellular polysaccharide production and tolerance to hydrogen peroxide, and reduced virulence on apple leaves.  相似文献   

12.
13.
Synthesis of the autoinducer signal involved in the cell density-dependent activation of Vibrio fischeri luminescence is directed by luxI. The autoinducer is N-(3-oxohexanoyl)homoserine lactone, and little is known about its synthesis. We have measured autoinducer synthesis by amino acid auxotrophs of Escherichia coli that contained luxI on a high-copy-number plasmid. Experiments with cell suspensions starved for methionine or homoserine show that either methionine or S-adenosylmethionine but not homoserine or homoserine lactone is required for autoinducer synthesis. The S-adenosylmethionine synthesis inhibitor cycloleucine blocks methionine-dependent autoinducer synthesis. Thus, it appears that S-adenosylmethionine rather than methionine is the molecule required for autoinducer synthesis. The amount of 15N-labeled methionine incorporated into the autoinducer by growing cultures of a homoserine and a methionine auxotroph was measured by mass spectrometry. The labeling studies show that even in the presence of homoserine, almost all of the autoinducer produced contains the 15N label from methionine. Thus, it appears that S-adenosylmethionine serves as the amino acid substrate in the luxI-dependent synthesis of the V. fischeri autoinducer.  相似文献   

14.
Nine Acinetobacter strains from patients and hospital environment were analyzed for virulence markers, quorum sensing signal production, and the presence of luxI and luxR genes. The strains had several properties in common: growth in iron limited condition, biofilm formation, and no active protease secretion. Significantly higher catechol production was determined in patient isolates (P < 0.03), but other invasiveness markers, such as lipase secretion, amount of biofilm, cell motility, antibiotic resistance, and hemolysin production, showed large variability. Notably, all members of the so-called A. calcoaceticus-A. baumannii complex, regardless of whether the source was a patient or environmental, secreted mediumto long-chain N-acyl homoserine lactones (AHL) and showed blue light inhibition of cell motility. In these strains, a luxI homologue with a homoserine lactone synthase domain and a luxR putative regulator displaying the typical AHL binding domain were identified.  相似文献   

15.
16.
Synthesis of the Vibrio fischeri autoinducer, a signal involved in the cell density-dependent activation of bioluminescence, is directed by the luxI gene product. The LuxI protein catalyzes the synthesis of N-acyl-homoserine lactones from S-adenosylmethionine and acylated-acyl carrier protein. We have gained an appreciation of the LuxI regions and amino acid residues involved in autoinducer synthesis by isolating and analyzing mutations generated by random and site-specific mutagenesis of luxI. By random mutagenesis we isolated 13 different single amino acid substitutions in the LuxI polypeptide. Eleven of these substitutions resulted in no detectable autoinducer synthase activity, while the remaining two amino acid substitutions resulted in reduced but detectable activity. The substitutions that resulted in no detectable autoinducer synthase activity mapped to two small regions of LuxI. In Escherichia coli, wild-type luxI showed dominance over all of the mutations. Because autoinducer synthesis has been proposed to involve formation of a covalent bond between an acyl group and an active-site cysteine, we constructed site-directed mutations that altered each of the three cysteine residues in LuxI. All of the cysteine mutants retained substantial activity as an autoinducer synthase in E. coli. Based on the analysis of random mutations we propose a model in which there are two critical regions of LuxI, at least one of which is an intimate part of an active site, and based on the analysis of site-directed mutations we conclude that an active-site cysteine is not essential for autoinducer synthase activity.  相似文献   

17.
Expression of Vibrio fischeri luminescence genes requires an inducer, termed autoinducer, and a positive regulatory element, the luxR gene product. A plasmid containing a tac promoter-controlled luxR was mutagenized in vitro with hydroxylamine, and luxR mutant plasmids were identified by their inability to complement a luxR deletion mutation in trans. Sixteen luxR mutant plasmids were obtained, ten of which encoded full-length but inactive luxR gene products as demonstrated by a Western immunoblot analysis. The effects of 1 of the 10 mutations could be overcome by the addition of autoinducer at a high concentration. The mutations in each of the 10 mutant plasmids that directed the synthesis of an inactive LuxR protein were identified by DNA sequencing. Of the 10 proteins encoded by the mutant luxR plasmids, 9 differed from the normally active LuxR in only a single amino acid residue. The amino acid residue substitutions in the proteins encoded by the nine mutant luxR genes clustered in two regions. One region around the middle of the polypeptide encoded by luxR was hypothesized to represent an autoinducer-binding domain, and the other region towards the carboxy terminus of the gene product was hypothesized to constitute a lux operator DNA-binding domain or a lux operator DNA recognition domain.  相似文献   

18.
19.
20.
One mechanism that bacteria have adopted to regulate the production of antimicrobial compounds is population-density-dependent LuxRI-type quorum sensing (QS), exploiting the production of N-acyl homoserine lactone (AHL) autoinducer signals. In biocontrol bacteria, most known cases involve the AHL control of phenazine antibiotics production by rhizospheric pseudomonads. This work is the first to demonstrate that phenazines are not the only group of biocontrol-related antibiotics whose production is regulated by QS systems. Strain HRO-C48 of Serratia plymuthica isolated from the rhizosphere of oilseed rape and described as a chitinolytic bacterium, which protects crops against Verticillium wilt, was also shown to produce wide-range antibiotic pyrrolnitrin and several AHLs, including N-butanoyl-HSL, N-hexanoyl-HSL and N-3-oxo-hexanoyl-HSL (OHHL). The genes splI and splR, which are analogues of luxI and luxR genes from other Gram-negative bacteria, were cloned and sequenced. The mutant AHL-4 (splI::miniTn5) was simultaneously deficient in the production of AHLs and pyrrolnitrin, as well as in its ability to suppress the growth of several fungal plant pathogens in vitro. However, pyrrolnitrin production could be restored in this mutant by introduction of the splIR genes cloned into a plasmid or by addition of the conditioned medium from strain C48 or OHHL standard to the growth medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号