首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chitinase and β-1,-3-glucanase activities increased coordinately in pea (Pisum sativum L. cv “Dot”) pods during development and maturation and when immature pea pods were inoculated with compatible or incompatible strains of Fusarium solani or wounded or treated with chitosan or ethylene. Up to five major soluble, basic proteins accumulated in stressed immature pods and in maturing untreated pods. After separation of these proteins by chromatofocusing, an enzymic function could be assigned to four of them: two were chitinases and two were β-1,3-glucanases. The different molecular forms of chitinase and β-1,3-glucanase were differentially regulated. Chitinase Ch1 (mol wt 33,100) and β-1,3-glucanase G2 (mol wt 34,300) were strongly induced in immature tissue in response to the various stresses, while chitinase Ch2 (mol wt 36,200) and β-1,3-glucanase G1 (mol wt 33,500) accumulated during the course of maturation. With a simple, three-step procedure, both chitinases and both β-1,3-glucanases were purified to homogeneity from the same extract. The two chitinases were endochitinases. They differed in their pH optimum, in specific activity, in the pattern of products formed from [3H]chitin, as well as in their relative lysozyme activity. Similarly, the two β-1,3-glucanases were endoglucanases that showed differences in their pH optimum, specific activity, and pattern of products released from laminarin.  相似文献   

2.
Mature `Bartlett' pear (Pyrus communis) fruits were ripened at 20 C. Fruits at different stages of ripeness were homogenized, and extracts of the low speed pellet (crude cell wall) were prepared. These extracts contained polygalacturonase, pectin esterase, and activity against seven p-nitrophenyl glycoside substrates. Polygalacturonase, α-galactosidase, and α-mannosidase increased in activity as the fruit ripened. Cellulase and activities against pear wall xylan and arabinan were absent from the extracts.  相似文献   

3.
The changes in activities of soluble β-galactosidase and two forms of wall-bound β-galactosidases extracted with NaCl and EDTA were investigated throughout the development of muskmelon (Cucumis melo L. cv Prince) fruits. DEAE-cellulose ion-exchange chromatography of soluble β-galactosidase revealed the presence of two isoforms. Soluble isoform I was detected in all stages throughout the fruit development, whereas soluble isoform II appeared around 34 d after anthesis when fruit ripening initiated. Both NaCl- and EDTA-released β-galactosidase activities also increased as ripening proceeded. The soluble and wall-bound forms behaved differently upon ion-exchange chromatography. Enzymological properties such as optimum pH, optimum temperature, Km values for p-nitrophenyl β-d-galactopyranoside, and inhibition by metal ions were nearly similar in all forms. Molecular sizes of pectic polymers and hemicelluloses extracted from fruit mesocarp cell walls were shifted from larger to smaller polymers during ripening, as determined by gel filtration profiles. NaCl-released β-galactosidase from cell walls of ripe fruits had the ability to degrade in vitro the pectin extracted from preripe fruit cell walls to smaller sizes of pectin similar to those that were observed in ripe cell walls in situ. Both soluble isoform I and II were able to degrade in vitro the 5% KOH-extractable hemicellulose from preripe fruit cell walls to sizes of molecules similar to those that were observed in ripe cell walls in situ. Soluble isoform I and the NaCl-released form from ripe fruits were able to modify in vitro 24% KOH-extractable hemicellulose from preripe cell walls to sizes of molecules similar to those that were observed in ripe fruits in situ.  相似文献   

4.
Pressey R 《Plant physiology》1983,71(1):132-135
Tomatoes (Lycopersicon esculentum L.) contained a high level of β-galactosidase activity which was due to three forms of the enzyme. During tomato ripening, the sum of their activities remained relatively constant, but the levels of the individual forms of β-galactosidase changed markedly. The three enzymes were separated by a combination of chromatography of DEAE-Sephadex A-50 and Sephadex G-100. During ripening of tomatoes, β-galactosidases I and III levels decreased but the β-galactosidase II level increased more than 3-fold. The three enzymes were optimally active near pH 4, and all were inhibited by galactose and galactonolactone. However, the enzymes differed in molecular weight, Km value with p-nitrophenyl-β-galactoside, and stability with respect to pH and temperature. β-Galactosidase II was the only enzyme capable of hydrolyzing a polysaccharide that was isolated from tomatoes and that consisted primarily of β-1, 4-linked galactose. The ability of β-galactosidase II to degrade the galactan and the increase in its activity during tomato ripening suggest a possible role for this enzyme in tomato softening.  相似文献   

5.
Degradation of Cell Wall Polysaccharides during Tomato Fruit Ripening   总被引:26,自引:17,他引:9       下载免费PDF全文
Changes in neutral sugar, uronic acid, and protein content of tomato (Lycopersicon esculentum Mill) cell walls during ripening were characterized. The only components to decline in amount were galactose, arabinose, and galacturonic acid. Isolated cell walls of ripening fruit contained a water-soluble polyuronide, possibly a product of in vivo polygalacturonase action. This polyuronide and the one obtained by incubating walls from mature green fruit with tomato polygalacturonase contained relatively much less neutral sugar than did intact cell walls. The ripening-related decline in galactose and arabinose content appeared to be separate from polyuronide solubilization. In the rin mutant, the postharvest loss of these neutral sugars occurred in the absence of polygalacturonase and polyuronide solubilization. The enzyme(s) responsible for the removal of galactose and arabinose was not identified; a tomato cell wall polysaccharide containing galactose and arabinose (6:1) was not hydrolyzed by tomato β-galactosidase.  相似文献   

6.
The ultrastructure of isolated cell walls of Saccharomyces cerevisiae from the log and stationary phases of growth was studied after treatment with the following enzymes: purified endo-β-(1 → 3)-glucanase and endo-β-(1 → 6)-glucanase produced by Bacillus circulans; purified exo-β-glucanase and endo-β-(1 → 3)-glucanase produced by Schizosaccharomyces versatilis; commercial Pronase. While exo-β-glucanase from S. versatilis had no electron microscopically detectable effect on the walls, Pronase removed part of the external amorphous wall material disclosing an amorphous wall layer in which fibrils were indistinctly visible. Amorphous wall material was completely removed by the effect of either endo-β-(1 → 3)- or endo-β-(1 → 6)-glucanase of B. circulans or by a mixture of the two enzymes. As a result of these treatments a continuous fibrillar component appeared, composed of densely interwoven microfibrils resisting further action by both of the B. circulans enzymes. The fibrillar wall component was also demonstrated in untreated cell walls by electron microscopy after negative staining. Because of the complete disappearance of the fibrils following treatment with the S. versatilis endo-β-(1 → 3)-glucanase it can be concluded that this fibrillar component is composed of β-(1 → 3)-linked glucan. Bud scars were the only wall structures resistant to the effect of the latter enzyme.  相似文献   

7.
Chitinase and β-1,3-glucanase purified from pea pods acted synergistically in the degradation of fungal cell walls. The antifungal potential of the two enzymes was studied directly by adding protein preparations to paper discs placed on agar plates containing germinated fungal spores. Protein extracts from pea pods infected with Fusarium solani f.sp. phaseoli, which contained high activities of chitinase and β-1,3-glucanase, inhibited growth of 15 out of 18 fungi tested. Protein extracts from uninfected pea pods, which contained low activities of chitinase and β-1,3-glucanase, did not inhibit fungal growth. Purified chitinase and β-1,3-glucanase, tested individually, did not inhibit growth of most of the test fungi. Only Trichoderma viride was inhibited by chitinase alone, and only Fusarium solani f.sp. pisi was inhibited by β-1,3-glucanase alone. However, combinations of purified chitinase and β-1,3-glucanase inhibited all fungi tested as effectively as crude protein extracts containing the same enzyme activities. The pea pathogen, Fusarium solani f.sp. pisi, and the nonpathogen of peas, Fusarium solani f.sp. phaseoli, were similarly strongly inhibited by chitinase and β-1,3-glucanase, indicating that the differential pathogenicity of the two fungi is not due to differential sensitivity to the pea enzymes. Inhibition of fungal growth was caused by the lysis of the hyphal tips.  相似文献   

8.
Lysis of Yeast Cell Walls: Glucanases from Bacillus circulans WL-12   总被引:7,自引:1,他引:6       下载免费PDF全文
Endo-β-(1 → 3)- and endo-β-(1 → 6)-glucanases are produced in high concentration in the culture fluid of Bacillus circulans WL-12 when grown in a mineral medium with bakers' yeast cell walls as the sole carbon source. Much lower enzyme levels were found when laminarin, pustulan, or mannitol was the substrate. The two enzyme activities were well separated during Sephadex G-100 chromatography. The endo-β-(1 → 3)-glucanase was further purified by diethylaminoethyl-cellulose and hydroxyapatite chromatography, whereas the endo-β-(1 → 6)-glucanase could be purified further by diethylamino-ethyl-cellulose and carboxymethyl cellulose chromatography. The endo-β-(1 → 3)-glucanase was specific for the β-(1 → 3)-glucosidic bond, but it did not hydrolyze laminaribiose; laminaritriose was split very slowly. β-(1 → 4)-Bonds in oat glucan in which the glucosyl moiety is substituted in the 3-position were also cleaved. The kinetics of laminarin hydrolysis (optimum pH 5.0) were complex but appeared to follow Michaelis-Menten theory, especially at the lower substrate concentrations. Glucono-δ-lactone was a noncompetitive inhibitor and Hg2+ inhibited strongly. The enzyme has no metal ion requirements or essential sulfhydryl groups. The purified β-(1 → 6)-glucanase has an optimum pH of 5.5, and its properties were studied in less detail. In contrast to the crude culture fluid, the two purified β-glucanases have only a very limited hydrolytic action on cell wall of either bakers' yeast or of Schizosaccharomyces pombe. Although our previous work had assumed that the two glucanases studied here are responsible for cell wall lysis, it now appears that the culture fluid contains in addition a specific lytic enzyme which is eliminated during the extensive purification process.  相似文献   

9.
Evans ML 《Plant physiology》1974,54(2):213-215
Research on the mode of action of auxin in the promotion of growth has shown that auxin treatment leads to hydrogen ion secretion and wall acidification. It has recently been reported that auxin stimulates cell wall β-galactosidase activity in Avena coleoptiles, presumably by causing cell wall acidification, since the pH optimum for the enzyme is about 5.0. It has been suggested that enhancement of β-galactosidase and/or other glycosidase activity mediates growth promotion by auxin or low pH. This hypothesis was tested by examining the effect of inhibitors of β-galactosidase and β-glucosidase. Severe inhibition of measureable β-galactosidase or β-glucosidase activity was found to have no effect on auxin- or acid-promoted growth. It is concluded that neither β-galactosidase nor β-glucosidase plays an important role in short term growth promotion by auxin or acid. The data do not rule out the possibility that some other cell wall glycosidase is involved in auxin or acid action.  相似文献   

10.
Sock J  Rohringer R  Kang Z 《Plant physiology》1990,94(3):1376-1389
Endo-β-1,3-glucanase activity in intercellular washing fluid (IWF) from leaves of wheat (Triticum aestivum) increased 10-fold 4 days after leaves were infected with the wheat stem rust fungus (Puccinia graminis f.sp. tritici), while exo-β-1,3-glucanase activity remained unchanged at a low level. Heat and ethylene stress had no effect, whereas mercury treatment resulted in a 2-fold increase in endo-β-1,3-glucanase activity. With a new method of activity staining using laminarin-Remazol brilliant blue as substrate in overlay gels, 18 electrophoretic forms of endo-β-1,3-glucanase were detected in IWF from unstressed leaves and up to 24 forms in IWF from stem rust-infected leaves. Most of the increase in β-1,3-glucanase activity and in the number of β-1,3-glucanases after rust infection was due to a nonspecific, stress-related effect on the plant, but two major forms of the enzyme probably originated from the fungus. β-1,3-Glucanase was localized cytochemically with anti-barley-β-1,3-glucanase antibodies. With preembedding labeling, the enzyme was demonstrated on the outside of host and fungal cell walls. Postembedding labeling localized the enzyme in the host plasmalemma and in the domain of host cell walls adjoining the plasmalemma, throughout walls of intercellular hyphal cells and haustoria, in the fungal cytoplasm, and in the extrahaustorial matrix. Cross-reactivity of β-1,3-glucanases from wheat and germinated uredospores of the rust fungus with the anti-barley-β-1,3-glucanase antibodies was confirmed in dot blot assays and on Western blots.  相似文献   

11.
1. The activities of β-galactosidase, β-glucosidase, β-glucuronidase and N-acetyl-β-glucosaminidase from rat kidney have been compared when 4-methylumbelliferyl glycosides are used as substrates. 2. Separation by gel electrophoresis at pH7·0 indicated slow- and fast-moving components of rat-kidney β-galactosidase. 3. The fast-moving component is also associated with the total β-glucosidase activity and inhibition experiments indicate that a single enzyme species is responsible for both activities. 4. DEAE-cellulose chromatography and filtration on Sephadex gels suggests that the β-glucosidase component is a small acidic molecule, of molecular weight approx. 40000–50000, with optimum pH5·5–6·0 for β-galactosidase and β-glucosidase activities. 5. The major β-galactosidase component has low electrophoretic mobility, a calculated molecular weight of 80000 and optimum pH3·7.  相似文献   

12.
The in vitro production of chitinases and β-1,3-glucanases by Stachybotrys elegans, a mycoparasite of Rhizoctonia solani, was examined under various culture conditions, such as carbon and nitrogen sources, pH, and incubation period. Production of both enzymes was influenced by the carbon source incorporated into the medium and was stimulated by acidic pH and NaNO3. The activity of both enzymes was very low in culture filtrates from cells grown on glucose and sucrose compared with that detected on chitin (for chitinases) and cell wall fragments (for β-1,3-glucanases). Protein electrophoresis revealed that, depending on the carbon source used, different isoforms of chitinases and β-1,3-glucanases were detected. S. elegans culture filtrates, possessing β-1,3-glucanase and chitinase activities, were capable of degrading R. solani mycelium.  相似文献   

13.
A single pulse of O3 (0.15 microliter per liter, 5 hours) induced β-1,3-glucanase and chitinase activities in O3-sensitive and -tolerant tobacco (Nicotiana tabacum L.) cultivars. In the O3-sensitive cultivar Bel W3, the response was rapid (maximum after 5 to 10 hours) and was far more pronounced for β-1,3-glucanase (40- to 75-fold) than for chitinase (4-fold). In the O3-tolerant cultivar Bel B, β-1,3-glucanase was induced up to 30-fold and chitinase up to 3-fold under O3 concentrations that did not lead to visible damage. Northern blot hybridization showed a marked increase in β-1,3-glucanase mRNA in cultivar Bel W3 between 3 and 24 hours following O3 treatment, a transient induction in cultivar Bel B, and no change in control plants. The induction of β-1,3-glucanase and chitinase activities following O3 treatment occurred within the leaf cells and was not found in the intercellular wash fluids. In addition, O3 treatment increased the amount of the β-1,3-glucan callose, which accumulated predominantly around the necrotic spots in cultivar Bel W3. The results demonstrate that near-ambient O3 levels can induce pathogenesis-related proteins and may thereby alter the disposition of plants toward pathogen attack.  相似文献   

14.
Xylan degradation and production of β-xylanase and β-xylosidase activities were studied in cultures of Cellulomonas uda grown on purified xylan from birchwood. β-Xylanase activity was found to be associated with the cells, although in various degrees. The formation of β-xylanase activity was induced by xylotriose and repressed by xylose. β-Xylosidase activity was cell bound. Both constitutive and inducible β-xylosidase activities were suggested. β-Xylanase and β-xylosidase activities were inhibited competitively by xylose. β-Xylanase activity had a pronounced optimum pH of 5.8, whereas the optimum pH of β-xylosidase activity ranged from 5.4 to 6.1. The major products of xylan degradation by a crude preparation of β-xylanase activity, in decreasing order of amount, were xylobiose, xylotriose, xylose, and small amounts of xylotetraose. This pattern suggests that β-xylanase activity secreted by C. uda is of the endosplitting type. Supernatants of cultures grown on cellulose showed not only β-glucanase but also β-xylanase activity. The latter could be attributed to an endo-1,4-β-glucanase activity which had a low β-xylanase activity.  相似文献   

15.
Three of the ten acidic `pathogenesis-related' (PR) proteins known to accumulate in Nicotiana tabacum cv Samsun NN reacting hypersensitively to tobacco mosaic virus, namely −O, −N and −2, have been shown to have 1,3-β-glucanase (EC 3.2.1.39) activity. By using sera raised against each protein purified to homogeneity close serological relationships have been demonstrated between the three proteins. The same specific sera cross-reacted with a basic protein which is also a 1,3-β-glucanase induced by virus infection and which can be considered as a new basic pathogenesis-related protein of tobacco. Protein PR-O and the basic 1,3-β-glucanase display about the same specific enzymatic activity, i.e. 50-fold and 250-fold higher than specific activities of proteins PR-N and -2 respectively.  相似文献   

16.
Infection of immature pea pods with Fusarium solani f.sp. phaseoli (a non-pathogen of peas) or f.sp. pisi (a pea pathogen) resulted in induction of chitinase and β-1,3-glucanase. Within 30 hours, activities of the two enzymes increased 9-fold and 4-fold, respectively. Chitinase and β-1,3-glucanase were also induced by autoclaved spores of the two F. solani strains and by the known elicitors of phytoalexins in pea pods, cadmium ions, actinomycin D, and chitosan. Furthermore, exogenously applied ethylene caused an increase of chitinase and β-1,3-glucanase in uninfected pods. Fungal infection or treatment with elicitors strongly increased ethylene production by immature pea pods. Infected or elicitor-treated pea pods were incubated with aminoethoxyvinylglycine, a specific inhibitor of ethylene biosynthesis. This lowered stress ethylene production to or below the level of uninfected controls; however, chitinase and β-1,3-glucanase were still strongly induced. It is concluded that ethylene and fungal infection or elicitors are separate, independent signals for the induction of chitinase and β-1,3-glucanase.  相似文献   

17.
1. In barley, β-glucosidase and β-galactosidase are separate enzymes. The former also displays β-d-fucosidase activity. 2. In the limpet, Patella vulgata, β-glucosidase activity is associated with the β-d-fucosidase, previously shown to be a separate entity from the β-galactosidase also present. 3. Almond emulsin presents all three activities as a single enzyme. Each is equally inhibited by glucono-, galactono- and d-fucono-lactone. 4. In rat epididymis, there is no significant β-glucosidase activity, nor is there appreciable inhibition of the β-galactosidase and β-d-fucosidase activities of the preparation by gluconolactone.  相似文献   

18.
Several glycosidases have been isolated from suspensioncultured sycamore (Acer pseudoplatanus) cells. These include an α-galactosidase, an α-mannosidase, a β-N-acetyl-glucosaminidase, a β-glucosidase, and two β-galactosidases. The pH optimum of each of these enzymes was determined. The pH optima, together with inhibition studies, suggest that each observed glycosidase activity represents a separate enzyme. Three of these enzymes, β-glucosidase, α-galactosidase, and one of the β-galactosidases, have been shown to be associated with the cell surface. The enzyme activities associated with the cell surface were shown to possess the ability to degrade to a limited extent isolated sycamore cell walls. It was found that the activities of β-glucosidase and of one of the β-galactosidases increase as the cells go through a period of growth and decrease as cell growth ceases.  相似文献   

19.
The β-galactosidase from the Antarctic gram-negative bacterium Pseudoalteromonas haloplanktis TAE 79 was purified to homogeneity. The nucleotide sequence and the NH2-terminal amino acid sequence of the purified enzyme indicate that the β-galactosidase subunit is composed of 1,038 amino acids with a calculated Mr of 118,068. This β-galactosidase shares structural properties with Escherichia coli β-galactosidase (comparable subunit mass, 51% amino sequence identity, conservation of amino acid residues involved in catalysis, similar optimal pH value, and requirement for divalent metal ions) but is characterized by a higher catalytic efficiency on synthetic and natural substrates and by a shift of apparent optimum activity toward low temperatures and lower thermal stability. The enzyme also differs by a higher pI (7.8) and by specific thermodynamic activation parameters. P. haloplanktis β-galactosidase was expressed in E. coli, and the recombinant enzyme displays properties identical to those of the wild-type enzyme. Heat-induced unfolding monitored by intrinsic fluorescence spectroscopy showed lower melting point values for both P. haloplanktis wild-type and recombinant β-galactosidase compared to the mesophilic enzyme. Assays of lactose hydrolysis in milk demonstrate that P. haloplanktis β-galactosidase can outperform the current commercial β-galactosidase from Kluyveromyces marxianus var. lactis, suggesting that the cold-adapted β-galactosidase could be used to hydrolyze lactose in dairy products processed in refrigerated plants.  相似文献   

20.
The occurrence of enzymes associated with bean leaf abscission was investigated in bean (Phaseolus vulgaris) flower reproductive organs in which catabolic cell wall events are essential during anther and pistil development. Cellulase activity was detected in high levels in both pistil and anthers of bean flowers before anthesis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by immunoblotting with 9.5 cellulase antibody identified a protein in anthers and pistil with the same size (51 kilodaltons) and serologically closely related to the abscission cellulase. The accumulation of 9.5 cellulase protein in the anther is developmentally regulated and increases from undetectable levels at very young stages of anther development to high levels as the anther matures. In the pistil, the 9.5 cellulase was localized in the upper part of the pistil where the stigma and the stylar neck reside and was detected in the youngest developmental stage analyzed. Antibodies against basic chitinase, which accumulates to high levels in abscission zones after exposure to ethylene, identified a protein with the same size (33 kilodaltons) and serologically closely related, in both anthers and upper portion of the pistil. In contrast, a 45-kilodalton protein and the basic β-1,3-glucanase associated with abscission were undetected in bean reproductive organs. Interestingly, β-1,3-glucanase activity was detected in young bean anthers and decreased at anthesis, but the anther β-1,3-glucanase is serologically unrelated to the basic β-1,3-glucanase. Thus, it appears that the basic cellulase and chitinase occur in combination in many plant processes that require major cell wall disruption, whereas hemicellulases such as β-1,3-glucanase are specific to each process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号