首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
13(S)-Hydroxy-[12,13-3H]octadecadienoic acid (13-HODE), a linoleic acid oxidation product that has vasoactive properties, was rapidly taken up by bovine aortic endothelial cells. Most of the 13-HODE was incorporated into phosphatidylcholine, and 80% was present in the sn -2 position. The amount of 13-HODE retained in the cells gradually decreased, and radiolabeled metabolites with shorter reverse-phase high-performance liquid chromatography retention times (RT) than 13-HODE accumulated in the extracellular fluid. The three major metabolites were identified by gas chromatography combined with mass spectrometry as 11-hydroxyhexadecadienoic acid (11-OH-16:2), 9-hydroxytetradecadienoic acid (9-OH-14:2), and 7-hydroxydodecadienoic acid (7-OH-12:2). Most of the radioactivity contained in the cell lipids remained as 13-HODE. However, some 11-OH-16:2 and several unidentified products with longer RT than 13-HODE were detected in the cell lipids. Normal human skin fibroblasts also converted 13-HODE to the three major chain-shortened metabolites, but Zellweger syndrome fibroblasts produced only a very small amount of 11-OH-16:2. Therefore, the chain-shortened products probably are formed primarily by peroxisomal beta-oxidation. These findings suggest that peroxisomal beta-oxidation may constitute a mechanism for the inactivation and removal of 13-HODE from the vascular wall. Because this is a gradual process, some 13-HODE that is initially incorporated remains in endothelial phospholipids, especially phosphatidylcholine. This may be the cause of some of the functional perturbations produced by 13-HODE in the vascular wall.  相似文献   

2.
12(S)-hydroxyeicosatetraenoic acid (12[S]-HETE) and 13(S)-hydroxyoctadecadienoic acid (13[S]-HODE), lipoxygenase metabolites of arachidonic acid and linoleic acid, respectively, previously have been suggested to regulate tumor cell adhesion to endothelium during metastasis. Adhesion of rat Walker carcinosarcoma (W256) cells to a rat endothelial cell monolayer was enhanced after treatment with 12(S)-HETE and this 12(S)-HETE enhanced adhesion was blocked by 13(S)-HODE. Protein kinase inhibitors, staurosporine, calphostin C, and 1-(5-isoquinoline-sulfonyl)-2-methylpiperazine, inhibited the 12(S)-HETE enhanced W256 cell adhesion. Depleting W256 cells of protein kinase C (PKC) with phorbol 12-myristate-13-acetate abolished their ability to respond to 12(S)-HETE. Treatment of W256 cells with 12(S)-HETE induced a 100% increase in membrane-associated PKC activity whereas 13(S)-HODE inhibited the effect of 12(S)-HETE on PKC translocation. High-performance liquid chromatographic analysis revealed that in W256 cells 12-HETE and 13-HODE were two of the major lipoxygenase metabilites of arachidonic acid and linoleic acid, respectively. Therefore, these two metabolites may provide an alternative signaling pathway for the regulation of PKC. Further, these findings suggest that the regulation of tumor cell adhesion to endothelium by 12(S)-HETE and 13(S)-HODE may be a PKC-dependent process.  相似文献   

3.
The linoleic acid metabolite, 13-oxooctadecadienoic acid (13-OXO), is reactive with cellular thiols. In the present report, incubations of HT-29 or CaCo-2 homogenates with 13-OXO and GSH indicate that HT-29 cell homogenates produce a 13-OXO-GSH conjugate. The conjugate formed was likely of enzymatic origin as chiral-phase HPLC showed the major product consisted of only one of two possible diastereomers. The glutathione transferase activity (GST), using chlorodinitrobenzene, was found to be 126 nmol/mg/min in HT-29 cells and 21 nmol/mg/min in CaCo-2 cells. These levels of activity are consistent with the relative ability of the two cell lines to conjugate GSH to 13-OXO. Incubation of intact HT-29 cells with either 13-OXO, or the metabolic precursor 13-hydroxyoctadecadienoic acid (13-HODE), showed detectable 13-OXO-GSH conjugate in the media, but none in the cells. The stereochemistry of the extracellular conjugate suggested an enzymatic origin. In additional experiments, the labeling of cellular protein by 13-HODE was much more specific than the labeling of protein by 13-OXO suggesting that in situ generation of 13-OXO from 13-HODE confers selectivity on the reactions between cellular thiols and 13-OXO. These results demonstrate that in HT-29 cells, 13-HODE is converted to 13-OXO which then either reacts with cellular protein or is conjugated to GSH by GST. The 13-OXO-GSH conjugate is then exported from the cell.  相似文献   

4.
The presence of polymorphonuclear leukocytes (PMNs) within the airways is a characteristic feature of a variety of lung diseases. Pulmonary alveolar macrophages (PAMs) and epithelial cells release many different factors which contribute to the recruitment of inflammatory cells into infected airways. PAMs and tracheal epithelial cells are able to produce linoleic acid metabolites (9-HODE and 13-HODE) besides arachidonic acid metabolites. The objective of the present study was to determine whether 9-HODE and 13-HODE possess chemotactic activity for isolated PMNs. It was found that 9-HODE and 13-HODE induced a chemotactic response of both human and bovine PMNs in vitro. The HODEs evoked chemotaxis with a linear dose response from 10(-10) to 10(-6) M to the same extent as the arachidonic acid metabolite 15-HETE. At 10(-8) M, 9-HODE and 13-HODE were approximately half as potent in inducing chemotaxis as compared to LTB4.  相似文献   

5.
Some studies report that endothelial cells preferentially take up the lipoxygenase-derived arachidonic acid metabolite, 5-hydroxyeicosatetraenoic acid (5-HETE), released from stimulated leukocytes (polymorphonuclear leukocytes, PMNs), whereas others report that endothelial cells preferentially take up 12-HETE released from platelets. The biological relevance of these observations, however, is unknown. Recently, we and others have found that, under basal conditions, endothelial cells, PMNs and tumor cells metabolize linoleic acid via the lipoxygenase enzyme to 13-hydroxyoctadecadienoic acid (13-HODE). We propose that endogenous levels of these metabolites regulate blood-vessel wall cell adhesion. In this study, we have measured (1) the relative binding of 5-, 12- and 15-HETE, and 13-HODE to endothelial cell monolayers, and (2) their effects on endothelial cell adhesivity with platelets, PMNs and tumor cells. There was a dose-related and specific binding of 5-[3H]HETE to endothelial cells but no binding of 12- or 15-HETE or 13-HODE. Platelet or PMN adhesion to endothelial cells was unaffected by the 5-HETE binding, but tumor cell adhesion was blocked by 40% (P less than 0.01). Interestingly, preincubation of endothelial cells with 13-HODE, 12-HETE or 15-HETE decreased platelet adhesion to endothelial cells (P less than 0.05), even though these metabolites did not bind to the endothelial cells. We conclude that 5-HETE preferentially binds to endothelial cells and interferes with a specific receptor for tumor cells, whereas the other metabolites neither bind to cells nor affect cell adhesion.  相似文献   

6.
The current study assessed the differential incorporation of 12-hydroperoxyeicosatetraenoic acid (12-HPETE), arachidonic acid (AA), 12-hydroxyeicosatetraenoic acid (12-HETE) and the linoleic acid (LA) oxidation products, 13-hydroxyoctadecadienoic acid (13-HODE) and 13-hydroperoxyoctadecadienoic acid (13-HPODE), into human umbilical vein endothelial cells (HUVEC). Approximately 80-90% of AA (10(-8)-10(-5)M) and 80% of LA (10(-8)-10(-5)M) were incorporated into HUVEC within 12h, while less than 50% of the hydroxy metabolites (12-HETE, 12-HPETE, 13-HODE, 13-HPODE) were incorporated into HUVEC over 48h. Further, treatment of HUVEC with either 12-HPETE or 13-HPODE (concentrations of 10(-5)M) had no effect on cell number at a 48h time point when compared with control. These results demonstrate that exogeneous hydroxy metabolites are incorporated into HUVEC to a lesser degree than were endogenous fatty acids. Further, we speculate that 12-HPETE and 13-HPODE are rapidly metabolized to substances without significant cytotoxic effects.  相似文献   

7.
Upon incubation with human leukocytes, [1-14C] linoleic acid is almost exclusively transformed into 13-hydroxy-9Z, 11E-octadecadienoic acid (13-HODE) if the linoleic acid concentration is lower than 50 microM. Identification of 13-HODE was done by GLC-MS at the level of its methyl ester, trimethylsilyl ether and by comparison with authentic 13-HODE in two different HPLC systems. Analysis of the products by chiral phase HPLC shows that 13(S)-hydroxy-9Z, 11E-octadecadienoic acid is by far the major metabolite formed by human leukocytes. Comparison of reactions performed with intact or lyzed cells suggests that the formation of 13(S)-HODE by human leukocytes occurs in two steps, a dioxygenation catalyzed by a 15-lipoxygenase and a reduction of intermediate 13-HPODE by a glutathione-dependent peroxidase.  相似文献   

8.
Antibodies against 13-hydroxyoctadecadienoic acid (13-HODE) were produced in rabbits by immunizing the animal with 13-HODE-thyroglobulin conjugate. The antibodies appeared to be rather specific for 13-HODE since other hydroxy fatty acids showed minimal crossreaction. The radioimmunoassay was capable of detecting 50 pg per assay tube and was applied to the study of the biosynthesis of 13-HODE in platelets and leukocytes. In contrast to reported findings from endothelial cells, A-23187, thrombin and collagen stimulated synthesis and release of 13-HODE from platelets. However, insignificant synthesis of 13-HODE was found in leukocytes following A-23187 stimulation. Exogenous addition of linoleic acid stimulated the synthesis of 13-HODE from both platelets and leukocytes. The majority of 13-HODE synthesized was found in the medium. These studies suggest that both types of blood cells possess active (omega-6) lipoxygenase. Platelets may use endogenously released linoleic acid to synthesize 13-HODE, whereas leukocytes may utilize linoleic acid released from other cell types for 13-HODE synthesis.  相似文献   

9.
We have recently demonstrated a novel cytotoxic effect of human platelets against Toxoplasma gondii and a role for thromboxane (TX) in this process (Yong et al., 1991). We now report on the spectrum of lipid mediators released by human platelets after interaction with T. gondii. In addition to TXB2, human platelets after incubation with T. gondii for 90 min released 12-hydroxyheptadecatrienoic acid (12-HHT), 12-hydroxyeicosatetraenoic acid (12-HETE), and an unidentified peak (UVmax 234 nm) as determined by reverse-phase high-performance liquid chromatography. Thermospray-liquid chromatography/mass spectrometry analysis and straight-phase HPLC identified the unknown peak as a mixture of 13-hydroxyoctadecadienoic acid (HODE) and 9-HODE. Radiolabeling studies with [14C]linoleic acid indicated that the platelets were the cellular source of the octadecanoids with 13-HODE (87.7%) greater than 9-HODE (12.3%). Inhibitor studies with indomethacin indicated that 13-HODE was a lipoxygenase product and 9-HODE was a cyclooxygenase product of linoleic acid. Thus, Toxoplasma-stimulated platelets release oxygenated products of both arachidonic acid and linoleic acid which may be important in the host response to T. gondii infection.  相似文献   

10.
Lipid mediators released by inflammatory and immune cells play an important role in inflammatory and immune processes. Most attention has been focussed on arachidonic-derived mediators, including prostaglandins, thromboxanes, leukotrienes, and lipoxins. Literature data, however, suggest that also metabolites of the unsaturated fatty acid linoleic acid may be important in this respect. We have studied the formation and release of 9-hydroxy- and 13-hydroxy-linoleic acid (9-HODE and 13-HODE) by enriched populations of human peripheral blood neutrophils, eosinophils, basophils, monocytes, and lymphocytes. We demonstrate that the eosinophil preferentially produces 13-HODE, whereas the other cell types produce equal amounts of 9-HODE and 13-NODE. The biological significance of these findings is discussed.  相似文献   

11.
The 15-omega-lipoxygenase enzyme in endothelial cells metabolizes endogenous linoleic acid (18:2) into 13-hydroxyoctadecadienoic acid (13-HODE) under basal conditions, i.e., in unstimulated endothelial cells. 13-HODE is thought to regulate the non-adhesivity of the endothelium, contributing to vessel wall/blood cell biocompatibility. We performed experiments, therefore, to determine the relationship between basal levels of cAMP, 13-HODE synthesis, and platelet/endothelial cell adhesion. We found that 13-HODE synthesis increased with elevated cAMP levels and that the elevated 13-HODE levels correlated with increased 18:2 turnover in the triacylglycerol pool. In contrast, neither 18:2 nor arachidonic acid (20:4) turnover in the phospholipid nor prostacyclin (PGI2) production were changed with elevated cAMP levels. Platelet/endothelial cell adhesion was inversely proportional to 13-HODE synthesis. We conclude that intracellular 13-HODE influences platelet/vessel wall interactions, is synthesized from 18:2 released from the endogenous triacylglycerol pool, and that this pathway is modulated by intracellular cAMP levels.  相似文献   

12.
The effect of 13-hydroxyoctadeca-9,11-dienoic acid (13-HODE), a major lipoxygenase product of endothelial cell linoleic acid metabolism on thrombin-induced platelet thromboxane B2 (TxB2), and 12-hydroxyeico-satetraenoic acid (12-HETE) production was evaluated. 13-HODE inhibited thrombin-induced TxB2 production in human platelets in a concentration-dependent manner. At concentrations of 10 and 30 microM, 13-HODE inhibited TxB2 production by 28 +/- 8% (1SE, n = 5; P less than 0.05) and 48 +/- 6% (P less than 0.01) respectively. 13-HODE (30 microM) also inhibited the production of platelet hydroxyheptadecatrienoic acid (38 +/- 5%, P less than 0.01). A concomitant stimulation of 12-HETE production by 13-HODE was observed (25 +/- 5% and 49 +/- 22% over control values at 10 and 30 microM respectively, P less than 0.01). Our results demonstrate a differential effect of 13-HODE on thrombin stimulated platelet cyclooxygenase and lipoxygenase metabolites.  相似文献   

13.
Characterization of the stereospecificity of the derivatives of arachidonic acid and linoleic acid produced by endothelial cells is needed to define the enzymatic origin of these compounds and their role in vascular physiology. In studies utilizing two bovine endothelial cell lines (CPAE and AG04762), both free 15-hydroxyeicosatetraenoic acid (15-HETE) and 11-hydroxyeicosatetraenoic acid (11-HETE) were generated during incubations with exogenous arachidonic acid and both free 9-hydroxyoctadecadienoic acid (9-HODE) and 13-hydroxyoctadecadienoic acid (13-HODE) were generated during incubations with exogenous linoleic acid. Esterification of 15-HETE, 9-HODE and 13-HODE during these incubations was demonstrated. The analyses included reversed-phase high performance liquid chromatography of the free acid and its methyl ester and chiral separation of the methyl ester on straight phase chiral columns. The ratio of 9-HODE/13-HODE averaged 2.7 in the chromatographic analyses of the extracts of the incubations with linoleic acid. The combined production of 13-HODE and 9-HODE from linoleic acid was four times greater than that of 15-HETE and 11-HETE from arachidonic acid. With regard to the products of the CPAE endothelial cell line, the S/R ratio of the stereoisomers averaged 1.5 for free 15-HETE, 5.7 for free 13-HODE and 0.2 for free 9-HODE. The 11-HETE had strict (R) stereospecificity. The products from the AG04762 endothelial cell line had similar stereochemistry. All these stereochemical findings point to the activity of a cyclooxygenase rather than that of a lipoxygenase.  相似文献   

14.
A method for determination of the lipoxygenase products of linoleic acid (9- and 13-hydroxyoctadecadienoic acid; 9-HODE, 13-HODE) and of arachidonic acid (5-, 8-, 9-, 11-, 12-, and 15-hydroxyeicosatetraenoic acid; 5-, 8-, 9-, 11-, 12-, and 15-HETE) is described. The method combines solid-phase extraction, derivatization to the corresponding fully hydrogenated methylester/trimethylsilylether derivatives and capillary gas chromatography coupled with electron impact mass spectrometry. Each regioisomeric HODE and HETE shows a unique pair of mass spectrometric fragment ions originating from fission of the fatty acid carbon chain at the hydroxylated position. The carboxyl-terminal fragment is used for quantification relative to a carboxyl-18O2-labeled analogue added as internal standard and the methyl-terminal fragment is monitored for confirmation. The assay can be extended for quantification of the complete hydroxylation profile of linoleic and arachidonic acid. Applications of this assay are demonstrated for the quantification of HODEs and HETEs in normal, hyperplastic, and neoplastic mouse epidermis. In mouse epidermis papilloma, the tissue levels of 8- and 12-HETE were found to be increased by one to two orders of magnitude compared to levels in normal epidermis.  相似文献   

15.
Arachidonic acids (AA) and linoleic acids (LAs) are metabolized, in several tissues, to hydroxylated metabolites that are important mediators of many physiological and pathophysiological processes. The conjugation of leukotriene B4 (LTB4), 5-hydroxyeicosatetraenoic acid (HETE), 12-HETE, 15-HETE, and 13-hydroxyoctadecadienoic acid (HODE) by the human UDP-glucuronosyltransferase (UGT) enzymes was investigated. All substrates tested were efficiently conjugated by human liver microsomes to polar derivatives containing the glucuronyl moiety as assessed by mass spectrometry. The screening analyses with stably expressed UGT enzymes in HK293 showed that glucuronidation of LTB4 was observed with UGT1A1, UGT1A3, UGT1A8, and UGT2B7, whereas UGT1A1, UGT1A3, UGT1A4, and UGT1A9 also conjugated most of the HETEs and 13-HODE. LA and AA metabolites also appear to be good substrates for the UGT2B subfamily members, especially for UGT2B4 and UGT2B7 that conjugate all HETE and 13-HODE. Interestingly, UGT2B10 and UGT2B11, which are considered as orphan enzymes since no conjugation activity has so far been demonstrated with these enzymes, conjugated 12-HETE, 15-HETE, and 13-HODE. In summary, our data showed that several members of UGT1A and UGT2B families are capable of converting LA and AA metabolites into glucuronide derivatives, which is considered an irreversible step to inactivation and elimination of endogenous substances from the body.  相似文献   

16.
Fatty acid-derived inflammatory mediators are considered to play an important role in airway hyperresponsiveness of asthmatic patients. The pulmonary macrophage may be an important source for these mediators in airway tissue. We investigated the metabolism of arachidonic acid and linoleic acid by human bronchoalveolar lavage cells, mainly comprising pulmonary macrophages. Arachidonic was mainly metabolized by 5-lipoxygenase, giving rise to the formation of leukotriene B4 and 5-hydroxy-eicosatetraenoic acid (5-HETE). Linoleic acid was converted to 5 major metabolites, including the 9-hydroxy and 13-hydroxy derivatives, 9- and 13-hydroxy-octadecadienoic acid (9- and 13-HODE). The formation of HODEs could be inhibited by cyclooxygenase inhibitors as well as lipoxygenase inhibitors, indicating that both enzymic species play a role in the generation of HODEs.  相似文献   

17.
18.
An improved method for the measurement of lipid peroxidation in vivo has been recently developed, where total hydroxyoctadecadienoic acid (HODE) and 7-hydroxycholesterol (FCOH) were determined by GC/MS analysis from physiological samples after reduction with sodium borohydride and saponification by potassium hydroxide. In this method, both free and ester forms of hydroperoxides and ketones as well as hydroxides of linoleic acid and cholesterol are measured as HODE and FCOH, respectively. The ratio of stereo-isomer, (Z, E)-HODE/(E, E)-HODE, could be also measured. In the present study, in order to examine the effect of continuous, slow flux of free radicals in vivo, a water-soluble radical generator was administered to rats and mice and the amounts of HODE and 8-isoprostane in plasma and liver were measured. It was found that the administration of free radical-generating azo compound increased the level of HODE and decreased the (Z, E)-HODE/(E, E)-HODE ratio in both plasma and liver. The level of HODE was much higher than 8-isoprostane.  相似文献   

19.
Previous studies in our laboratory revealed a high expression of 15-lipoxygenase-1 in human colorectal carcinomas, suggesting the importance of lipoxygenase in colorectal tumor development. In this report, we have investigated the metabolism of arachidonic and linoleic acid by intestinal tissues of Min mice, an animal model for intestinal neoplasia. The polyp and normal tissues from Min mice intestine were homogenized, incubated with arachidonic or linoleic acid, and analyzed by reverse-, straight-, and chiral-phase HPLC. Arachidonic acid was converted to prostaglandins E2 and F2alpha. Little 12- or 15-hydroxyeicosatetraenoic acid was detected. Cyclooxygenase (COX)-2 was detected in polyps and the adjacent normal tissues by Western immunoblotting, but neither COX-1 nor leukocyte-type 12-lipoxygenase, the murine ortholog to human 15-lipoxygenase-1, was detected. These tissue homogenates converted linoleic acid to an equal mixture of 9(S)- and 13(S)-hydroxyoctadecadienoic acid (HODE). Inhibition of lipoxygenase activity with nordihydroguaiaretic acid blocked HODEs formation, but the COX inhibitor indomethacin did not. Degenerative-nested PCR analyses using primers encoded by highly conserved sequences in lipoxygenases detected 5-lipoxygenase, leukocyte-type 12-lipoxygenase, platelet-type 12-lipoxygenase, 8-lipoxygenase, and epidermis-type lipoxygenase-3 in mouse intestinal tissue. All of these PCR products represent known lipoxygenase that are not reported to utilize linoleic acid preferentially as substrate and do not metabolize linoleic acid to an equal mixture of 9(S)- and 13(S)-HODE. This somewhat unique profile of linoleate product formation in Min mice intestinal tissue suggests the presence of an uncharacterized and potentially novel lipoxygenase(s) that may play a role in intestinal epithelial cell differentiation and tumor development.  相似文献   

20.
The biological role of lipid peroxidation products has continued to receive a great deal of attention not only for the elucidation of pathological mechanisms but also for their practical application to clinical use as bio-markers. In the last fifty years, lipid peroxidation has been the subject of extensive studies from the viewpoints of mechanisms, dynamics, product analysis, involvement in diseases, inhibition, and biological signaling. Lipid hydroperoxides are formed as the major primary products, however they are substrates for various enzymes and they also undergo various secondary reactions. In this decade, F2-isoprostanes from arachidonates and neuroprostanes from docosahexanoates have been proposed as bio-markers. Although these markers are formed by a free radical-mediated oxidation, the yields from the parent lipids are minimal. Compared to these markers, hydroperoxy octadecadienoates (HPODE) from linoleates and oxysterols from cholesterols are yielded by much simpler mechanisms from more abundant parent lipids in vivo. Recently, the method in which both free and ester forms of hydroperoxides and ketones as well as hydroxides of linoleic acid and cholesterol are measured as total hydroxyoctadecadienoic acid (tHODE) and 7-hydroxycholesterol (t7-OHCh), respectively, was proposed. The concentrations of tHODE and t7-OHCh determined by GC-MS analysis from physiological samples were much higher than that of 8-iso-prostagrandin F(2alpha). In addition to this advantage, hydrogen-donor activity of antioxidants in vivo could be determined by the isomeric-ratio of HODE (9- and 13-(Z,E)-HODE/9- and 13-(E,E)-HODE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号