首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whole genome base-resolution methylome sequencing allows for the most comprehensive analysis of DNA methylation, however, the considerable sequencing cost often limits its applications. While reduced representation sequencing can be an affordable alternative, over 80% of CpGs in the genome are not covered. Building on our recently developed TET-assisted pyridine borane sequencing (TAPS) method, we here described endonuclease enrichment TAPS (eeTAPS), which utilizes dihydrouracil (DHU)-cleaving endonuclease digestion of TAPS-converted DNA to enrich methylated CpG sites (mCpGs). eeTAPS can accurately detect 87% of mCpGs in the mouse genome with a sequencing depth equivalent to 4× whole genome sequencing. In comparison, reduced representation TAPS (rrTAPS) detected less than 4% of mCpGs with 2.5× sequencing depth. Our results demonstrate eeTAPS to be a new strategy for cost-effective genome-wide methylation analysis at single-CpG resolution that can fill the gap between whole-genome and reduced representation sequencing.  相似文献   

2.
Genetic polymorphisms can shape the global landscape of DNA methylation, by either changing substrates for DNA methyltransferases or altering the DNA binding affinity of cis-regulatory proteins. The interactions between CpG methylation and genetic polymorphisms have been previously investigated by methylation quantitative trait loci (mQTL) and allele-specific methylation (ASM) analysis. However, it remains unclear whether these approaches can effectively and comprehensively identify all genetic variants that contribute to the inter-individual variation of DNA methylation levels. Here we used three independent approaches to systematically investigate the influence of genetic polymorphisms on variability in DNA methylation by characterizing the methylation state of 96 whole blood samples in 52 parent-child trios from 22 nuclear pedigrees. We performed targeted bisulfite sequencing with padlock probes to quantify the absolute DNA methylation levels at a set of 411,800 CpG sites in the human genome. With mid-parent offspring analysis (MPO), we identified 10,593 CpG sites that exhibited heritable methylation patterns, among which 70.1% were SNPs directly present in methylated CpG dinucleotides. We determined the mQTL analysis identified 49.9% of heritable CpG sites for which regulation occurred in a distal cis-regulatory manner, and that ASM analysis was only able to identify 5%. Finally, we identified hundreds of clusters in the human genome for which the degree of variation of CpG methylation, as opposed to whether or not CpG sites were methylated, was associated with genetic polymorphisms, supporting a recent hypothesis on the genetic influence of phenotypic plasticity. These results show that cis-regulatory SNPs identified by mQTL do not comprise the full extent of heritable CpG methylation, and that ASM appears overall unreliable. Overall, the extent of genome-methylome interactions is well beyond what is detectible with the commonly used mQTL and ASM approaches, and is likely to include effects on plasticity.  相似文献   

3.
Discordant results obtained in bisulfite assays using MethPrimers (PCR primers designed using MethPrimer software or assuming that non-CpGs cytosines are non methylated) versus primers insensitive to cytosine methylation lead us to hypothesize a technical bias. We therefore used the two kinds of primers to study different experimental models and methylation statuses. We demonstrated that MethPrimers negatively select hypermethylated DNA sequences in the PCR step of the bisulfite assay, resulting in CpG methylation underestimation and non-CpG methylation masking, failing to evidence differential methylation statuses. We also describe the characteristics of “Methylation-Insensitive Primers” (MIPs), having degenerated bases (G/A) to cope with the uncertain C/U conversion. As CpG and non-CpG DNA methylation patterns are largely variable depending on the species, developmental stage, tissue and cell type, a variable extent of the bias is expected. The more the methylome is methylated, the greater is the extent of the bias, with a prevalent effect of non-CpG methylation. These findings suggest a revision of several DNA methylation patterns so far documented and also point out the necessity of applying unbiased analyses to the increasing number of epigenomic studies.  相似文献   

4.
In mammals, the existence of cytosine methylation on non-CpG sequences is controversial. Here, we adapted a LuminoMetric-based Assay (LUMA) to determine global non-CpG methylation levels in rodent and human tissues. We observed that < 1% cytosines in non-CpG motifs were methylated in 3T3-L1 fibroblasts, whereas 7–13% cytosines in non-CpG motifs were methylated in mouse tissues or embryonic fibroblasts. Analysis of cytosine methylation in human, rat, and mouse tissues by bisulfite sequencing revealed non-CpG methylation levels up to 7.5% of all non-CpG cytosines. These levels dropped to 1.5% when a second round of PCR was performed prior to bisulfite sequencing, providing an explanation for the common underestimation of non-CpG methylation levels. Collectively, our results provide evidence that non-CpG methylation exists at substantial levels in mammals.  相似文献   

5.
DNA methylation is an indispensible epigenetic modification required for regulating the expression of mammalian genomes. Immunoprecipitation-based methods for DNA methylome analysis are rapidly shifting the bottleneck in this field from data generation to data analysis, necessitating the development of better analytical tools. In particular, an inability to estimate absolute methylation levels remains a major analytical difficulty associated with immunoprecipitation-based DNA methylation profiling. To address this issue, we developed a cross-platform algorithm-Bayesian tool for methylation analysis (Batman)-for analyzing methylated DNA immunoprecipitation (MeDIP) profiles generated using oligonucleotide arrays (MeDIP-chip) or next-generation sequencing (MeDIP-seq). We developed the latter approach to provide a high-resolution whole-genome DNA methylation profile (DNA methylome) of a mammalian genome. Strong correlation of our data, obtained using mature human spermatozoa, with those obtained using bisulfite sequencing suggest that combining MeDIP-seq or MeDIP-chip with Batman provides a robust, quantitative and cost-effective functional genomic strategy for elucidating the function of DNA methylation.  相似文献   

6.
Non-CpG methylation occurring in the context of CNG sequences is found in plants at a large number of genomic loci. However, there is still little information available about non-CpG methylation in mammals. Efficient methods that would allow detection of scarcely localized methylated sites in small quantities of DNA are required to elucidate the biological role of non-CpG methylation in both plants and animals. In this study, we tested a new whole genome approach to identify sites of CCWGG methylation (W is A or T), a particular case of CNG methylation, in genomic DNA. This technique is based on digestion of DNAs with methylation-sensitive restriction endonucleases EcoRII-C and AjnI. Short DNAs flanking methylated CCWGG sites (tags) are selectively purified and assembled in tandem arrays of up to nine tags. This allows high-throughput sequencing of tags, identification of flanking regions, and their exact positions in the genome. In this study, we tested specificity and efficiency of the approach.  相似文献   

7.
Complementary to the time- and cost-intensive direct bisulfite sequencing, we applied reduced representation bisulfite sequencing (RRBS) to the human peripheral blood mononuclear cells (PBMC) from YH, the Asian individual whose genome and epigenome has been deciphered in the YH project and systematically assessed the genomic coverage, coverage depth and reproducibility of this technology as well as the concordance of DNA methylation levels measured by RRBS and direct bisulfite sequencing for the detected CpG sites. Our result suggests that RRBS can cover more than half of CpG islands and promoter regions with a good coverage depth and the proportion of the CpG sites covered by the biological replicates reaches 80-90%, indicating good reproducibility. Given a smaller data quantity, RRBS enjoys much better coverage depth than direct bisulfite sequencing and the concordance of DNA methylation levels between the two methods is high. It can be concluded that RRBS is a time and cost-effective sequencing method for unbiased DNA methylation profiling of CpG islands and promoter regions in a genome-wide scale and it is the method of choice to assay certain genomic regions for multiple samples in a rapid way.  相似文献   

8.
DNA methylation is one of the most studied epigenetic marks in the human genome, with the result that the desire to map the human methylome has driven the development of several methods to map DNA methylation on a genomic scale. Our study presents the first comparison of two of these techniques - the targeted approach of the Infinium HumanMethylation450 BeadChip® with the immunoprecipitation and sequencing-based method, MeDIP-seq. Both methods were initially validated with respect to bisulfite sequencing as the gold standard and then assessed in terms of coverage, resolution and accuracy. The regions of the methylome that can be assayed by both methods and those that can only be assayed by one method were determined and the discovery of differentially methylated regions (DMRs) by both techniques was examined. Our results show that the Infinium HumanMethylation450 BeadChip® and MeDIP-seq show a good positive correlation (Spearman correlation of 0.68) on a genome-wide scale and can both be used successfully to determine differentially methylated loci in RefSeq genes, CpG islands, shores and shelves. MeDIP-seq however, allows a wider interrogation of methylated regions of the human genome, including thousands of non-RefSeq genes and repetitive elements, all of which may be of importance in disease. In our study MeDIP-seq allowed the detection of 15,709 differentially methylated regions, nearly twice as many as the array-based method (8070), which may result in a more comprehensive study of the methylome.  相似文献   

9.
《Genomics》2021,113(5):3050-3057
DNA methylation is one of the main epigenetic mechanisms that regulate gene expression in a manner that depends on the genomic context and varies considerably across taxa. This DNA modification was first found in nuclear genomes of eukaryote several decades ago and it has also been described in mitochondrial DNA. It has recently been shown that mitochondrial DNA is extensively methylated in mammals and other vertebrates. Our current knowledge of mitochondrial DNA methylation in fish is very limited, especially in non-model teleosts. In this study, using whole-genome bisulfite sequencing, we determined methylation patterns within non-CpG (CH) and CpG (CG) contexts in the mitochondrial genome of Nile tilapia, a non-model teleost of high economic importance. Our results demonstrate the presence of mitochondrial DNA methylation in this species predominantly within a non-CpG context, similarly to mammals. We found a strand-specific distribution of methylation, in which highly methylated cytosines were located on the minus strand. The D-loop region had the highest mean methylation level among all mitochondrial loci. Our data provide new insights into the potential role of epigenetic mechanisms in regulating metabolic flexibility of mitochondria in fish, with implications in various biological processes, such as growth and development.  相似文献   

10.
DNA methylation is assumed to be complementary on both alleles across the genome, although there are exceptions, notably in regions subject to genomic imprinting. We present a genome-wide survey of the degree of allelic skewing of DNA methylation with the aim of identifying previously unreported differentially methylated regions (DMRs) associated primarily with genomic imprinting or DNA sequence variation acting in cis. We used SNP microarrays to quantitatively assess allele-specific DNA methylation (ASM) in amplicons covering 7.6% of the human genome following cleavage with a cocktail of methylation-sensitive restriction enzymes (MSREs). Selected findings were verified using bisulfite-mapping and gene-expression analyses, subsequently tested in a second tissue from the same individuals, and replicated in DNA obtained from 30 parent-child trios. Our approach detected clear examples of ASM in the vicinity of known imprinted loci, highlighting the validity of the method. In total, 2,704 (1.5%) of our 183,605 informative and stringently filtered SNPs demonstrate an average relative allele score (RAS) change ≥0.10 following MSRE digestion. In agreement with previous reports, the majority of ASM (∼90%) appears to be cis in nature, and several examples of tissue-specific ASM were identified. Our data show that ASM is a widespread phenomenon, with >35,000 such sites potentially occurring across the genome, and that a spectrum of ASM is likely, with heterogeneity between individuals and across tissues. These findings impact our understanding about the origin of individual phenotypic differences and have implications for genetic studies of complex disease.  相似文献   

11.
12.
Site-specific methylation of cytosines is a key epigenetic mark of vertebrate DNA. While a majority of the methylated residues are in the symmetrical (meC)pG:Gp(meC) configuration, a smaller, but significant fraction is found in the CpA, CpT and CpC asymmetric (non-CpG) dinucleotides. CpG methylation is reproducibly maintained by the activity of the DNA methyltransferase 1 (Dnmt1) on the newly replicated hemimethylated substrates (meC)pG:GpC. On the other hand, establishment and hereditary maintenance of non-CpG methylation patterns have not been analyzed in detail. We previously reported the occurrence of site- and allele-specific methylation at both CpG and non-CpG sites. Here we characterize a hereditary complex of non-CpG methylation, with the transgenerational maintenance of three distinct profiles in a constant ratio, associated with extensive CpG methylation. These observations raised the question of the signal leading to the maintenance of the pattern of asymmetric methylation. The complete non-CpG pattern was reinstated at each generation in spite of the fact that the majority of the sperm genomes contained either none or only one methylated non-CpG site. This observation led us to the hypothesis that the stable CpG patterns might act as blueprints for the maintenance of non-CpG DNA methylation. As predicted, non-CpG DNA methylation profiles were abrogated in a mutant lacking Dnmt1, the enzymes responsible for CpG methylation, but not in mutants defective for either Dnmt3a or Dnmt2.  相似文献   

13.
14.

Background

Recent progress in high-throughput technologies has greatly contributed to the development of DNA methylation profiling. Although there are several reports that describe methylome detection of whole genome bisulfite sequencing, the high cost and heavy demand on bioinformatics analysis prevents its extensive application. Thus, current strategies for the study of mammalian DNA methylomes is still based primarily on genome-wide methylated DNA enrichment combined with DNA microarray detection or sequencing. Methylated DNA enrichment is a key step in a microarray based genome-wide methylation profiling study, and even for future high-throughput sequencing based methylome analysis.

Results

In order to evaluate the sensitivity and accuracy of methylated DNA enrichment, we investigated and optimized a number of important parameters to improve the performance of several enrichment assays, including differential methylation hybridization (DMH), microarray-based methylation assessment of single samples (MMASS), and methylated DNA immunoprecipitation (MeDIP). With advantages and disadvantages unique to each approach, we found that assays based on methylation-sensitive enzyme digestion and those based on immunoprecipitation detected different methylated DNA fragments, indicating that they are complementary in their relative ability to detect methylation differences.

Conclusions

Our study provides the first comprehensive evaluation for widely used methodologies for methylated DNA enrichment, and could be helpful for developing a cost effective approach for DNA methylation profiling.  相似文献   

15.
16.
DNA methylation is globally reprogrammed during mammalian preimplantation development, which is critical for normal development. Recent reduced representation bisulfite sequencing (RRBS) studies suggest that the methylome dynamics are essentially conserved between human and mouse early embryos. RRBS is known to cover 5–10% of all genomic CpGs, favoring those contained within CpG-rich regions. To obtain an unbiased and more complete representation of the methylome during early human development, we performed whole genome bisulfite sequencing of human gametes and blastocysts that covered>70% of all genomic CpGs. We found that the maternal genome was demethylated to a much lesser extent in human blastocysts than in mouse blastocysts, which could contribute to an increased number of imprinted differentially methylated regions in the human genome. Global demethylation of the paternal genome was confirmed, but SINE-VNTR-Alu elements and some other tandem repeat-containing regions were found to be specifically protected from this global demethylation. Furthermore, centromeric satellite repeats were hypermethylated in human oocytes but not in mouse oocytes, which might be explained by differential expression of de novo DNA methyltransferases. These data highlight both conserved and species-specific regulation of DNA methylation during early mammalian development. Our work provides further information critical for understanding the epigenetic processes underlying differentiation and pluripotency during early human development.  相似文献   

17.
18.
Allele-specific DNA methylation (ASM) is well studied in imprinted domains, but this type of epigenetic asymmetry is actually found more commonly at non-imprinted loci, where the ASM is dictated not by parent-of-origin but instead by the local haplotype. We identified loci with strong ASM in human tissues from methylation-sensitive SNP array data. Two index regions (bisulfite PCR amplicons), one between the C3orf27 and RPN1 genes in chromosome band 3q21 and the other near the VTRNA2-1 vault RNA in band 5q31, proved to be new examples of imprinted DMRs (maternal alleles methylated) while a third, between STEAP3 and C2orf76 in chromosome band 2q14, showed non-imprinted haplotype-dependent ASM. Using long-read bisulfite sequencing (bis-seq) in 8 human tissues we found that in all 3 domains the ASM is restricted to single differentially methylated regions (DMRs), each less than 2kb. The ASM in the C3orf27-RPN1 intergenic region was placenta-specific and associated with allele-specific expression of a long non-coding RNA. Strikingly, the discrete DMRs in all 3 regions overlap with binding sites for the insulator protein CTCF, which we found selectively bound to the unmethylated allele of the STEAP3-C2orf76 DMR. Methylation mapping in two additional genes with non-imprinted haplotype-dependent ASM, ELK3 and CYP2A7, showed that the CYP2A7 DMR also overlaps a CTCF site. Thus, two features of imprinted domains, highly localized DMRs and allele-specific insulator occupancy by CTCF, can also be found in chromosomal domains with non-imprinted ASM. Arguing for biological importance, our analysis of published whole genome bis-seq data from hES cells revealed multiple genome-wide association study (GWAS) peaks near CTCF binding sites with ASM.  相似文献   

19.

Background  

Massively parallel sequencing readouts of epigenomic assays are enabling integrative genome-wide analyses of genomic and epigenomic variation. Pash 3.0 performs sequence comparison and read mapping and can be employed as a module within diverse configurable analysis pipelines, including ChIP-Seq and methylome mapping by whole-genome bisulfite sequencing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号