首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regimes of the instabilities of an annular relativistic electron beam in a waveguide with an annular plasma are systematically analyzed and classified. The growth rates of the instabilities are calculated different limiting cases, and the resonance conditions for the development of the instabilities are determined. The fastest growing instability of a high-current relativistic electron beam in a waveguide with a dense plasma is considered. The possible onset of a low-frequency instability of a beam in a waveguide with a low-density plasma is investigated. Typical examples of how the growth rates depend on the perturbation wavenumbers are presented for systems with parameters close to the experimental ones.  相似文献   

2.
The excitation of plasma oscillations in a thin-walled annular plasma by an annular electron beam in a cylindrical waveguide is considered in the linear approximation. The instability growth rates and spatial amplification coefficients in the beam-plasma system under the conditions of the Cherenkov and anomalous Doppler resonances are obtained and compared with those in a transversely homogeneous system. The contributions from different instability mechanisms are analyzed.  相似文献   

3.
A theoretical study is made of the surface electromagnetic eigenmodes that are excited by an annular charged-particle beam due to dissipative instability and propagate across the external axial magnetic field in a cylindrical metal waveguide partially filled with plasma. A self-consistent set of differential equations for a cold low-density charged-particle beam moving above the plasma surface is constructed in the single-mode approximation and is solved numerically. It is shown that the larger the dissipation, the slower the instability growth rate and the larger the wave amplitude in the saturation stage of the instability. An increase in the transverse dimensions of a charged-particle beam results in a slower growth of the dissipative instability, in which case, however, the beam transfers a larger fraction of its kinetic energy to the wave.  相似文献   

4.
The amplitude of the wave generated in a plasma during the development of beam-plasma instability is nonuniform in the longitudinal direction. The ponderomotive force associated with this nonuniformity leads to a redistribution of the plasma density; as a result, the wave amplitude and its spatial distribution change. As the beam current grows, the ponderomotive force plays an increasingly important role and radically changes the mechanism by which the beam-plasma instability saturates. Ion acoustic waves generated by the ponderomotive force propagate in the direction opposite to the propagation direction of the beam, thereby ensuring distributed feedback and giving rise to a strong low-frequency self-modulation of the wave amplitude and phase. Results are presented from experimental investigations of the self-modulation regime of the beam-plasma instability in a magnetized plasma waveguide. Theoretical estimates of the parameters of the low-frequency self-modulation agree well with the experimental data.  相似文献   

5.
The problem of the excitation of plasma waves by a thin-walled annular electron beam in a waveguide filled entirely with a plasma is analyzed in the quasistatic approximation. The instability growth rates are derived and are studied as functions of the waveguide parameters. The evolution of different seed perturbations in the nonlinear stage of the instability is investigated.  相似文献   

6.
The excitation of microwave oscillations by an electron beam in a hybrid plasma waveguide—a slow-wave structure (a sequence of inductively coupled resonators) with a plasma-filled transport channel—is studied both experimentally and theoretically. It is shown that the governing role in the generation of microwaves and their transmission to a feeder line is played by the spatial and temporal plasma-density variations associated with low-frequency ion plasma oscillations. The microwave pressure gives rise to low-frequency plasma oscillations with a rise time shorter than their period. This nonlinear mechanism for the excitation of low-frequency oscillations has a threshold in terms of the microwave power. The unsteady character of the spatial distribution of the plasma density results in intermittent microwave generation and shortens the duration of microwave pulses.  相似文献   

7.
Results are presented from three-dimensional particle-in-cell simulations of relaxation of an electron beam in a plasma. When penetrating into the plasma, the electron beam generates the return current carried by the plasma electrons. In a collisionless plasma, the relaxation mechanism is related to the onset of an electromagnetic filamentation instability. The instability leads to the generation of a quasistatic magnetic field, which decays due to the magnetic field reconnection in the final stage of the system evolution.  相似文献   

8.
The problem of the excitation of electron waves in a thin-walled annular cold plasma in a cylindrical waveguide by a straight relativistic electron beam in a finite magnetic field is considered. The dispersion properties of a waveguide system with parameters close to the experimental ones are investigated. It is shown that the growth rate of the excited high-frequency plasma wave is comparable to that of the low-frequency wave, which is weakly sensitive to the strength of the longitudinal magnetic field.  相似文献   

9.
A nonlinear theory is developed that describes the interaction between an annular electron beam and an electromagnetic surface wave propagating strictly transverse to a constant external axial magnetic field in a cylindrical metal waveguide partially filled with a cold plasma. It is shown theoretically that surface waves with positive azimuthal mode numbers can be efficiently excited by an electron beam moving in the gap between the plasma column and the metal waveguide wall. Numerical simulations prove that, by applying a constant external electric field oriented along the waveguide radius, it is possible to increase the amplitude at which the surface waves saturate during the beam instability. The full set of equations consisting of the waveenvelope equation, the equation for the wave phase, and the equations of motion for the beam electrons is solved numerically in order to construct the phase diagrams of the beam electrons in momentum space and to determine their positions in coordinate space (in the radial variable-azimuthal angle plane).  相似文献   

10.
Results are presented from numerical simulations of the dynamics of beam instability in a finite plasma volume (plasma-filled cavity) in a weak magnetic field. It is shown that, in such a system, the low group velocity of the plasma waves excited by an electron beam can result in the generation and amplification of an electric field; strong electron heating in the axial region; and, as a consequence, the generation of a high potential at the axis. The quasistatic radial electric field so produced accelerates ions toward the periphery of the plasma column, forming a directed ion beam with an energy much higher than the thermal energy of the bulk plasma electrons.  相似文献   

11.
A study is made of the linear and nonlinear stages of the low-frequency instability of an ensemble of ions that execute radial oscillations in the electric field of the space charge of an unneutralized high-current relativistic electron beam. Nonlinear mechanisms for stabilizing the low-frequency ion instability are considered. It is shown, in particular, that, under certain conditions, the development of the low-frequency instability can lead to the ejection of ions onto the walls of the drift chamber.  相似文献   

12.
The nonlinear dynamics of the instability of a straight high-density relativistic electron beam under the conditions of the stimulated Cherenkov effect in a plasma waveguide is studied both analytically and numerically. It is shown that, for a beam of sufficiently high density such that the stabilizing factors are nonlinear frequency shifts and for a plasma described in a linear approximation, the basic equations have soliton-like solutions and the electron beam after saturation of the instability relaxes to its initial, weakly perturbed state, provided that only one harmonic of the plasma and the beam density is taken into account. The analytical solutions obtained here for this case correlate well with the numerical ones. A more general model that accounts for the generation of higher harmonics of the plasma and the beam density does not yield soliton-like solutions for the time evolution of the amplitudes of the plasma and beam waves. In such a model, the instability will be collective again: it can be described analytically (at least, up to the time at which it saturates) by using equations with cubic nonlinearities and the method of expansion of the electron trajectories and momenta.  相似文献   

13.
A nonlinear theory of the instability of a straight relativistic dense electron beam in a plasma waveguide is derived for conditions of the stimulated collective Cherenkov effect. A study is made of a waveguide with a dense plasma such that the plasma wave excited by the beam during the instability can be escribed, with a good degree of accuracy, as a potential wave. General relativistic nonlinear equations are btained that describe the temporal dynamics of beam-plasma instabilities with allowance for plasma nonlinearity and the generation of harmonics of the initial perturbation. Under the assumption that the resonant interaction between the beam waves and the plasma waves is weak, the general equations are reduced to relativistic equations with cubic nonlinearities by using the method of expansion in small perturbations of the trajectories and momenta of the beam and plasma electrons. The reduced equations are solved analytically, the time scales on which the instability saturates are determined, and the nonlinear saturation amplitudes are obtained. A comparison between analytical solutions to the reduced equations and numerical solutions to the general nonlinear equations shows them to be in good agreement. Nonlinear processes caused by the relativistic nature of the beam are found to prevent stochastization of the system in the nonlinear stage of the well-developed instability. In contrast, a nonrelativistic electron beam is found to be subject to significant anomalous nonlinear stochastization.  相似文献   

14.
A study is made of the processes that occur in an inhomogeneous nonisothermal plasma in a strong external magnetic field and whose characteristic frequencies are lower than the ion Langmuir frequency but higher than the collision frequency. An expression for the ponderomotive force of the low-frequency field is derived. The excitation of a long-wavelength low-frequency drift wave during the development of the modulational instability of a drift pump wave is investigated. The growth rates of the instability are obtained, and the conditions for its onset are determined. The possible relation of the modulational instability to the formation of structures in the plasma is discussed.  相似文献   

15.
A one-dimensional nonlinear analytic theory of the filamentation instability of a high-current ion beam is formulated. The results of 2.5-dimensional numerical particle-in-cell simulations of acceleration and stability of an annular compensated ion beam (CIB) in a linear induction particle accelerator are presented. It is shown that additional transverse injection of electron beams in magnetically insulated gaps (cusps) improves the quality of the ion-beam distribution function and provides uniform beam acceleration along the accelerator. The CIB filamentation instability in both the presence and the absence of an external magnetic field is considered.  相似文献   

16.
Microwave generation by an electron beam in a coaxial transmission line in which the inner and outer conductors are both corrugated is studied theoretically. An annular electron beam propagates in a transport channel filled entirely with plasma. The eigenmodes of the plasma-filled coaxial line are studied, as well as how they are affected by the plasma density. It is shown that, in the presence of a plasma, the microwaves are amplified to a significantly greater extent and the spectrum of the generated microwaves is broader. The nonlinear amplification regime is analyzed. The maximum possible amplitude of the longitudinal electric field and the interaction efficiency are determined as functions of the plasma density. A comparison between the results obtained and the analogous parameters of a vacuum structure shows that plasma-filled hybrid structures are more promising than vacuum sources.  相似文献   

17.
A general mathematical model is proposed that is based on the Vlasov kinetic equation with a self-consistent field and describes the nonlinear dynamics of the electromagnetic instabilities of a relativistic electron beam in a spatially bounded plasma. Two limiting cases are analyzed, namely, high-frequency (HF) and low-frequency (LF) instabilities of a relativistic electron beam, of which the LF instability is a qualitatively new phenomenon in comparison with the known Cherenkov resonance effects. For instabilities in the regime of the collective Cherenkov effect, the equations containing cubic nonlinearities and describing the nonlinear saturation of the instabilities of a relativistic beam in a plasma are derived by using the methods of expansion in small perturbations of the trajectories and momenta of the beam electrons. Analytic expressions for the amplitudes of the interacting beam and plasma waves are obtained. The analytical results are shown to agree well with the exact solutions obtained numerically from the basic general mathematical model of the instabilities in question. The general mathematical model is also used to discuss the effects associated with variation in the constant component of the electron current in a beam-plasma system.  相似文献   

18.
Phenomena accompanying the injection of a dense plasma beam from the payload of a rocket into ionospheric plasma are analyzed. The dynamics of both the quasineutral plasma beam and the beam-induced disturbances in the ionospheric plasma are investigated. It is shown that the electric field in the beam has a complicated structure, which leads to the generation of currents in both the beam and the ambient ionospheric plasma. The transverse size of the disturbance zone in the ionospheric plasma is found to greatly exceed the beam diameter. The proposed model of the current closing in the ionospheric plasma agrees well with the experimental data. The xenon beam temperature at moderate distances from the injector is determined by using the plasma shadow theory. It is found that the ion beam temperature is at least four times lower than the plasma temperature in the injection zone. This unexpected result is explained by the adiabatic cooling of the current system. The critical radius beyond which a constant temperature in the beam is established is found to be less than 11 m.  相似文献   

19.
The characteristics of a high-current electron beam-driven microwave amplifier—a dielectric Cherenkov maser—are investigated in the framework of linear theory for the case of a plasma layer present at the surface of the maser slow-wave structure. The dispersion relation for axisymmetric perturbations is obtained for the conventional configuration (a circular dielectric-lined waveguide and a thin annular beam propagating within the vacuum region inside the annular plasma) in the model of a fully magnetized plasma and beam. The results of numerically solving the dispersion relation for different beam and plasma parameters are presented, and an analysis based on these results is given with regard to the features of the beam interaction with the hybrid waves of the system (both hybrid waveguide and hybrid plasma modes). For the hybrid waveguide mode, the dependences of the spatial growth rate on the frequency demonstrate an improvement in the gain at moderate plasma densities, along with narrowing the amplification band and shifting it toward higher frequencies. For the hybrid plasma mode, the interaction with a mildly relativistic (200–250 keV) beam, when the wave phase velocity is close to the speed of light in the dielectric medium, is most interesting and, therefore, has been studied in detail. It is shown that, depending on the beam and plasma parameters, different regimes of the hybrid plasma mode coupling to the hybrid waveguide mode or a usual, higher order plasma mode take place; in particular, a flat gain vs. frequency dependence is possible over a very broad band. The parameters at which the ?3-dB bandwidth calculated for the 30-dB peak gain exceeds an octave are found.  相似文献   

20.
The nature of the zebra pattern in continual type-IV solar radio bursts is discussed. It is shown that, when a weakly relativistic monoenergetic proton beam propagates in a highly nonisothermal plasma, the energy of the slow beam mode can be negative and explosive instability can develop due to the interaction of the slow and fast beam modes with ion sound. Due to weak spatial dispersion, ion sound generation is accompanied by cascade merging, which leads to stabilization of explosive instability. The zebra pattern forms due to the scattering of fast protons by ion sound harmonics. The efficiency of the new mechanism is compared with that of previously discussed mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号