首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Theoretical investigation has been made on obliquely propagating dust-acoustic (DA) solitary waves (SWs) in a magnetized dusty plasma which consists of non-inertial adiabatic electron and ion fluids, and inertial negatively as well as positively charged adiabatic dust fluids. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits a solitary wave solution for small but finite amplitude limit. It has been shown that the basic features (speed, height, thickness, etc.) of such DA solitary structures are significantly modified by adiabaticity of plasma fluids, opposite polarity dust components, and the obliqueness of external magnetic field. The SWs have been changed from compressive to rarefactive depending on the value of μ (a parameter determining the number of positive dust present in this plasma model). The present investigation can be of relevance to the electrostatic solitary structures observed in various dusty plasma environments (viz. cometary tails, upper mesosphere, Jupiter’s magnetosphere, etc.).  相似文献   

2.
The nonlinear propagation of ion-acoustic (IA) waves in a strongly coupled plasma system containing Maxwellian electrons and nonthermal ions has been theoretically and numerically investigated. The well-known reductive perturbation technique is used to derive both the Burgers and Korteweg?de Vries (KdV) equations. Their shock and solitary wave solutions have also been numerically analyzed in understanding localized electrostatic disturbances. It has been observed that the basic features (viz. polarity, amplitude, width, etc.) of IA waves are significantly modified by the effect of polarization force and other plasma parameters (e.g., the electron-to-ion number density ratio and ion-to-electron temperature ratio). This is a unique finding among all theoretical investigations made before, whose probable implications are discussed in this investigation. The implications of the results obtained from this investigation may be useful in understanding the wave propagation in both space and laboratory plasmas.  相似文献   

3.
The propagation of nonlinear periodic ion acoustic waves in a dusty plasma is considered for conditions in which the coefficient in the nonlinear equation that describes the quadratic nonlinearity of the medium is zero. An equation that accounts for the cubic nonlinearity of the system is derived, and its solution is found. The dependence of the phase velocity of a cnoidal wave on its amplitude and modulus is determined. In describing the effect of higher order nonlinearities on the properties of a dust ion acoustic wave, two coupled equations for the first- and second-order potentials are obtained. It is shown that the nonlinear ion flux generated by a cnoidal wave propagating in a medium with a cubic nonlinearity is proportional to the fourth power of the wave amplitude.  相似文献   

4.
A general method is developed for a numerical analysis of the frequency spectra of internal, internal-surface, and surface slow waves in a waveguide with transverse plasma density variations. For waveguides with a piecewise constant plasma filling, the spectra of slow waves are thoroughly examined in the limits of an infinitely weak and an infinitely strong external magnetic field. For a smooth plasma density profile, the frequency spectrum of long-wavelength surface waves remains unchanged, but a slow damping rate appears that is caused by the conversion of the surface waves into internal plasma waves at the plasma resonance point. As for short-wavelength internal waves, they are strongly damped by this effect. It is pointed out that, for annular plasma geometry, which is of interest from the experimental point of view, the spectrum of the surface waves depends weakly on the magnetic field strength in the waveguide.  相似文献   

5.
The basic properties of heavy-ion-acoustic (HIA) waves have been investigated in a collisionless plasma system which is supposed to be composed of nonthermal electrons, Boltzmann distributed light ions, and adiabatic positively charged inertial heavy ions. The Kortewg-de Vries and Burgers equations are derived in nonplanar (cylindrical and spherical) geometry by employing the standard reductive perturbation method for studying the basic features (viz. amplitude, phase speed, etc.) of HIA solitary and shock waves, which are associated with either positive or negative potential. It is found that the effects of nonplanar geometry, adiabaticity of positively charged inertial heavy ions, the presence of nonthermal (Cairns distributed) electrons, and number densities of the plasma components significantly modify the basic features of nonplanar HIA waves. It has been observed that the properties of solitary and shock waves associated with HIA waves in a nonplanar geometry differ from those in a planar geometry. The implications of our results may be helpful in understanding the electrostatic perturbations in various laboratory and astrophysical plasma environments.  相似文献   

6.
The problem of screening of the charge acquired by a dust grain in a two-temperature plasma is considered. The influence of the trapped ions on the screening effect and on the frictional force exerted on a dust grain by an ion flow is investigated. It is shown that the ions trapped by a grain radically reduce the frictional force in the ion flow because their distribution is determined by the temperature of the cold buffer gas. The mechanism for the onset of the reactive force that accelerates the grain in the direction opposite to that of the flow is explained. It is based on the momentum transfer from the flow of the ions that are additionally accelerated in the grain field to the atoms of the buffer gas. As a result, the momentum carried by the charge-exchange atoms out of the “ions + grain” system exceeds the momentum they have carried into the system; this gives rise to a reactive force directed opposite to the ion flow (the negative frictional force). The magnitude of the reactive force is estimated.  相似文献   

7.
8.
The effect of an external magnetic field on the dynamics of shock waves generated in an argon plasma due to both explosive processes on the cathode and expansion of the spark channel has been studied experimentally. It is shown that the expanding plasma of the cathode spot forms a shock wave and that the application of a longitudinal magnetic field decelerates the radial expansion of the cathode plasma. It is found that the intensities of some argon spectral lines increase in the presence of a magnetic field.  相似文献   

9.
The problem of the expansion of a magnetic field in a complex (e.g., dusty) plasma is considered, with a focus on the effects produced by the independent transport of charged components that does not break plasma quasineutrality. Solutions to a set of nonlinear equations are obtained for different initial and boundary conditions. In particular, it is shown that the field rapidly penetrates into the plasma when the dust is charged negatively and does not penetrate at all when the dust charge is positive.  相似文献   

10.
The time characteristics of grain charging, namely, the relaxation time of the steady grain charge and the charge fluctuations of grains of different sizes, are computed from particle simulations. The results obtained are compared with some theoretical predictions (primarily those derived from the drift-diffusion model). The simulations are carried out for nonmoving and moving two-temperature argon plasmas.  相似文献   

11.
The effect of the charge of a dust grain on the exchange of its heat with plasma particles and with neutral gas particles in an anisotropic dusty plasma with dissipative flows is discussed. It is shown, in particular, that nonuniform heating of the grain surface gives rise to the radiometric force, which may be stronger than the ion wind force. Also, the grain charge causes the thermophoretic force to change its sign.  相似文献   

12.
The dynamics of dust ion-acoustic solitons is analyzed in a wide range of dusty plasma parameters. The cases of both a positive dust grain charge arising due to the photoelectric effect caused by intense electromagnetic radiation and a negative grain charge established in the absence of electromagnetic radiation are considered. The ranges of plasma parameters and Mach numbers in which ??conservative?? (nondissipative) solitons can exist are determined. It is shown that, in dusty plasma with negatively charged dust grains, both compression and rarefaction solitons can propagate, whereas in plasma with positively charged dust grains, only compression solitons can exist. The evolution of soliton-like compression and rarefaction perturbations is studied by numerically solving the hydrodynamic equations for ions and dust grains, as well as the equation for dust grain charging. The main dissipation mechanisms, such as grain charging, ion absorption by dust grains, momentum exchange between ions and dust grains, and ion-neutral collisions are taken into account. It is shown that the amplitudes of soliton-like compression and rarefaction perturbations decrease in the course of their evolution and their velocities (the Mach numbers) decrease monotonically in time. At any instant of time, the shape of an evolving soliton-like perturbation coincides with the shape of a conservative soliton corresponding to the current value of the Mach number. It is shown that, after the interaction between any types of soliton-like perturbations, their velocities and shapes are restored (with a certain phase shift) to those of the corresponding perturbations propagating without interaction; i.e., they are in fact weakly dissipative solitons.  相似文献   

13.
The distributions of the electron density in a plasma produced by helicon waves and the correspond-ing wave amplitudes and phases are studied experimentally. The measurements were carried out in an argon plasma at a pressure of 3 mtorr and at an input RF power of up to 600 W. The magnetic field was caried in the range from 0 to 200 G. The efficiency of plasma production in both uniform and nonuniform fields is investigated. It is shown that, in a nonuniform magnetic field, the electron density can be substantially increased (up to 5×1012 cm?3) by placing an antenna in the region in which the magnetic field is weaker than in the main plasma.  相似文献   

14.
Analytic expressions for pair electron-grain and ion-grain radial distribution functions are derived under the assumption of a short-range binary interaction between mobile particles and an immobile charged grain, which is treated as a point particle.  相似文献   

15.
The effect of microwave radiation on a complex plasma produced by an external ionizer is studied using numerical simulations. It is shown that, as the radiation intensity increases, the scattering of the incident radiation by charged metal grains is enhanced and radiation at the second harmonic of the incident radiation appears in the scattered spectrum. This effect is associated with the grain charge oscillations caused by the nonlinear action of the microwave field. It is found that, under the action of strong microwave radiation, the grain charge can increase by one order of magnitude. It is shown that, when the microwave intensity is high enough, the distribution of the electric field near a dust grain is shown to change so radically that the field component normal to the grain surface can even change its sign.  相似文献   

16.
The propagation of ion-acoustic solitons in a warm dusty plasma containing two ion species is investigated theoretically. Using an approach based on the Korteveg de Vries equation, it is shown that the critical value of the negative ion density that separates the domains of existence of compression and rarefaction solitons depends continuously on the dust density. A modified Korteveg de Vries equation for the critical density is derived in the higher order of the expansion in the small parameter. It is found that the nonlinear coefficient of this equation is positive for any values of the dust density and the masses of positive and negative ions. For the case where the negative ion density is close to its critical value, a soliton solution is found that takes into account both the quadratic and cubic nonlinearities. The propagation of a solitary wave of arbitrary amplitude is investigated by the quasi-potential method. It is shown that the range of dust densities around the critical value within which solitary waves with positive and negative potentials can exist simultaneously is relatively wide.  相似文献   

17.
A study is made of the excitation of wake waves by a one-dimensional bunch of charged particles in an electron plasma in the presence of an intense monochromatic pump wave with circular polarization. In the main state (in the absence of a bunch), the interaction between a pump wave and a plasma is described by the Maxwell equations and the nonlinear relativistic hydrodynamic equations for a cold plasma. The excitation of linear waves by a one-dimensional bunch is investigated against a cold plasma background. It is shown that, in a certain range of the parameter values of the bunch, pump wave, and plasma, the amplitude of the excited transverse waves grows as the energy of the bunch particles increases until the relativistic factor of the bunch reaches a certain threshold value above which the transverse wave amplitude becomes essentially independent of the bunch particle energy and grows as the intensity and frequency of the pump wave increase. The amplitude and wavelength of the longitudinal field, which is shown to depend weakly on the energy of the bunch particles, grows with increasing the pump wave intensity.  相似文献   

18.
The properties of magnetosonic waves that propagate perpendicularly to the external magnetic field in a polydisperse dusty plasma and the frequencies of which are about the dust cyclotron frequency are analyzed. A dispersion relation containing integrals of functions of the dust grain radius is derived and investigated as a function of the parameters characterizing the polydisperse properties of dust. It is found that, in a polydisperse dusty plasma, the low-frequency magnetosonic mode splits into two branches. The first, lower frequency branch has a cutoff, while the higher frequency branch has a resonance. Between the two branches, there is a forbidden frequency range within which electromagnetic waves cannot propagate perpendicular to the magnetic field. The width of the forbidden frequency range is determined as a function of the slope of the distribution function of dust grains over radii and the interval within which the dust grain radii lie.  相似文献   

19.
The combined effects of the polarization force, free and trapped ions, and dust charge variation are incorporated in a rigorous study of the nonlinear dust acoustic waves (DAWs) propagating in an unmagnetized dusty plasma. Owing to the departure from the Boltzmann ion distribution, it is found that the nonlinear DAWs are governed by a modified Korteweg?de Vries (mKdV) equation. The association between the mKdV solitary wave and the DAW envelope in the system under consideration is discussed. A modified nonlinear Schrödinger equation appropriate for describing the modulated DAWs is derived. The modulation instability (MI) and the dependence of the system physical parameters on the polarization force, trapped ions, and dust charge variation have been analyzed. It is found that the critical curve separating the stable/unstable regions is strongly influenced by both of the polarization and the ion trapping parameters. Moreover, increasing the polarization leads to an increase of the critical wave number, while increasing the trapping parameter yields the opposite effect. The MI maximum growth rate decreases (increases) as the polarization (trapped ion) increases. The obtained results may be helpful in better understanding of space observations of the solar energetic particle flows in interplanetary space and the energetic particle events in the Earth’s magnetosphere.  相似文献   

20.
Charged particle transport and kinetic processes in a low-temperature dusty plasma are numerically simulated. Dust grains are represented as spheres with a given radius. The self-consistent electric field in the plasma surrounding a charged dust grain is calculated taking into account the perturbations of plasma quasineutrality near the grains. It is shown that applying an external electric field leads to a rearrangement of the plasma space charge and a break of the spherical symmetry of the electron and ion density distributions around the grain. The mutual influence of two identical charged dust grains is considered, and the energy of the electrostatic interaction between the grains is calculated. It is shown that this energy has a minimum at a certain finite distance between the grains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号