首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The propagation of periodic ion-acoustic waves in plasma with two-temperature electrons and cold ions is analyzed. The equations for the wave potential are derived in the first- and second-orders of the perturbation theory, and their nonsecular periodic solutions are obtained. The average nonlinear ion flux is determined, and its properties are studied as functions of the ratios between the densities and temperatures of the cold and hot electron components. The conditions are analyzed under which the ion flux is co- or counter-directed to the wave propagation direction. For the case in which, depending on the plasma parameters, the ion flux at a given wave amplitude can be either positive or negative, the domains of existence of positive and negative ion fluxes in the “temperature ratio-density ratio” plane are determined.  相似文献   

2.
The propagation of nonlinear periodic ion acoustic waves in a dusty plasma is considered for conditions in which the coefficient in the nonlinear equation that describes the quadratic nonlinearity of the medium is zero. An equation that accounts for the cubic nonlinearity of the system is derived, and its solution is found. The dependence of the phase velocity of a cnoidal wave on its amplitude and modulus is determined. In describing the effect of higher order nonlinearities on the properties of a dust ion acoustic wave, two coupled equations for the first- and second-order potentials are obtained. It is shown that the nonlinear ion flux generated by a cnoidal wave propagating in a medium with a cubic nonlinearity is proportional to the fourth power of the wave amplitude.  相似文献   

3.
A study is made of the propagation of ion acoustic waves in a collisionless unmagnetized dusty plasma containing degenerate ion and electron gases at nonzero temperatures. In linear theory, a dispersion relation for isothermal ion acoustic waves is derived and an exact expression for the linear ion acoustic velocity is obtained. The dependence of the linear ion acoustic velocity on the dust density in a plasma is calculated. An analysis of the dispersion relation reveals parameter ranges in which the problem has soliton solutions. In nonlinear theory, an exact solution to the basic equations is found and examined. The analysis is carried out by Bernoulli’s pseudopotential method. The ranges of the phase velocities of periodic ion acoustic waves and the velocities of solitons are determined. It is shown that these ranges do not overlap and that the soliton velocity cannot be lower than the linear ion acoustic velocity. The profiles of the physical quantities in a periodic wave and in a soliton are evaluated, as well as the dependence of the critical velocity of solitons on the dust density in a plasma.  相似文献   

4.
The properties of solitary Alfvén waves are studied for different ratios between the thermal plasma pressure and the magnetic pressure. It is shown that the wave propagation is accompanied by the generation of a nonlinear ion current along the magnetic field, the contribution of which to the Sagdeev potential was previously ignored. An expression for the quasi-potential of Alfvén waves with allowance for this effect is derived. It is found that Alfvén waves are compression waves in the inertial limit, whereas kinetic Alfvén waves are rarefaction waves. In a high-pressure plasma, a solitary wave has the form of either a well or a hump in the plasma density, depending on the relations between the Mach number, angle between the wave propagation direction and the magnetic field, and the value of the plasma beta.  相似文献   

5.
An analytical nonlinear gasdynamic theory of ion-acoustic waves in an e-p-i plasma is developed for the case in which all the plasma components in the wave undergo polytropic compression and rarefaction. An exact solution to the basic equations is found and analyzed by the Bernoulli pseudopotential method. The parameter range in which periodic waves can propagate and the range in which solitary waves (solitons) exist are determined. It is shown that the propagation velocity of a solitary is always higher than the linear ion sound velocity. The profiles of all the physical quantities in both subsonic and supersonic waves are calculated. The results obtained agree well with both the data from other papers and particular limiting cases.  相似文献   

6.
A theory is presented for appearance of periodic band patterns of ion concentration and electric potential associated with electric current surrounding a unicellular or multicellular system of a cylindrical shape. A flux continuity at the membrane (or the surface) is reduced to a nonlinear equation expressing passive and active fluxes across the membrane and intracellular diffusion flux. It is shown that, when an external parameter is varied from the sub-critical region, i.e. the homogeneous flux state, a symmetry breaking along a longitudinal axis usually appears prior to the one along a circumferential direction. The spectrum analysis shows that the correlation length is longer in the longitudinal direction. Growth of the band pattern from a patch-shaped pattern is demonstrated by the use of numerical calculations of proton concentration on the two-dimensional space of cylindrical surface. An experimental example of formative process of H+ banding is given for the internodal cell ofChara. It is shown that small patches on the surface decline or are sometimes gathered to the band surrounding the circle. The resulting pattern is suggested as a kind of dissipative structure appearing far from equilibrium.  相似文献   

7.
A mechanism is proposed that can lead to radial ion acceleration in a plasma discharge excited by an electron beam in a relatively weak longitudinal magnetic field. The mechanism operates as follows. The beam generates an azimuthally asymmetric slow potential wave, which traps electrons. Trapped magnetized electrons drift radially with a fairly high velocity under the combined action of the azimuthal wave field (which is constant for them) and a relatively weak external longitudinal magnetic field. The radial electron flux generates a radial charge-separation electric field, which accelerates unmagnetized plasma ions in the radial direction. The ion flux densities and energies achievable in experiments with kiloelectronvolt electron beams in magnetic fields of up to 100 G are estimated.  相似文献   

8.
The Burgers equation is obtained to study the characteristics of nonlinear propagation of ionacoustic shock, singular kink, and periodic waves in weakly relativistic plasmas containing relativistic thermal ions, nonextensive distributed electrons, Boltzmann distributed positrons, and kinematic viscosity of ions using the well-known reductive perturbation technique. This equation is solved by employing the (G'/G)-expansion method taking unperturbed positron-to-electron concentration ratio, electron-to-positron temperature ratio, strength of electrons nonextensivity, ion kinematic viscosity, and weakly relativistic streaming factor. The influences of plasma parameters on nonlinear propagation of ion-acoustic shock, periodic, and singular kink waves are displayed graphically and the relevant physical explanations are described. It is found that these parameters extensively modify the shock structures excitation. The obtained results may be useful in understanding the features of small but finite amplitude localized relativistic ion-acoustic shock waves in an unmagnetized plasma system for some astrophysical compact objects and space plasmas.  相似文献   

9.
The propagation of lower hybrid (LH) waves in a tokamak plasma in the presence of an LH resonance surface is studied experimentally with the use of a specially elaborated technique based on the backscattering of the probing microwave radiation in the upper hybrid resonance region. The technique provides resolution in the wave vectors of the scattering density fluctuations. The conditions are determined under which the LH wave propagates in accordance with the predictions of linear theory and is converted into the short-wave-length ion Bernstein mode. The parameter range is found in which the predictions of linear theory fail to hold and the nonlinear effects come into play during LH wave conversion. The radial wavelengths of the LH and ion Bernstein waves are determined.  相似文献   

10.
A nonlinear theory is constructed that describes steady-state ion-acoustic waves in an ideal plasma in which the electron component is a degenerate Fermi gas and the ion component is a classical gas. The parameter ranges in which such a plasma can exist are determined, and dispersion relations for ion-acoustic waves are obtained that make it possible to find the linear ion-acoustic velocity. Analytic gas-dynamic models of ion sound are developed for a plasma with the ion component as a cold, an isothermal, or an adiabatic gas, and moreover, the solutions to the equations of all the models are brought to a quadrature form. Profiles of a subsonic periodic and a supersonic solitary wave are calculated, and the upper critical Mach numbers of a solitary wave are determined. For a plasma with cold ions, the critical Mach number is expressed by an explicit exact formula.  相似文献   

11.
An original mathematical model of viscous fluid motion in a tapered and distensible tube is presented. The model equations are deduced by assuming a two-dimensional flow and taking into account the nonlinear terms in the fluid motion equations, as well as the nonlinear deformation of the tube wall. One distinctive feature of the model is the formal integration with respect to the radial coordinate of the Navier-Stokes equations by power series expansion. The consequent computational frame allows an easy, accurate evaluation of the effects produced by changing the values of all physical and geometrical tube parameters. The model is employed to study the propagation along an arterial vessel of a pressure pulse produced by a single flow pulse applied at the proximal vessel extremity. In particular, the effects of the natural taper angle of the arterial wall on pulse propagation are investigated. The simulation results show that tapering considerably influences wave attenuation but not wave velocity. The substantially different behavior of pulse propagation, depending upon whether it travels towards the distal extremity or in the opposite direction, is observed: natural tapering causes a continuous increase in the pulse amplitude as it moves towards the distal extremity; on the contrary, the reflected pulse, running in the opposite direction, is greatly damped. For a vessel with physical and geometrical properties similar to those of a canine femoral artery and 0.1 degree taper angle, the forward amplification is about 0.9 m-1 and the backward attenuation is 1.4 m-1, so that the overall tapering effect gives a remarkably damped pressure response. For a natural taper angle of 0.14 degrees the perturbation is almost extinct when the pulse wave returns to the proximal extremity.  相似文献   

12.
13.
Electromagnetic radiation effects are calculated for the case of the solar radiation spectrum in the vicinity of the Earth. The influence of the photoelectric effect on the propagation of nonlinear waves in complex plasmas is studied when the dust grains acquire large positive charges. Exact solutions to nonlinear equations in the form of steady-state shocks that do not involve electron-ion collisions are found, and the conditions for their existence are obtained. In contrast to the classical collisionless shock waves, the dissipation due to the dust charging involves the interaction of the electrons and ions with the dust grains in the form of microscopic grain currents and the photoelectric current. The nonsteady problem of the evolution of a perturbation and its transformation into a nonlinear wave structure is considered. The evolution of an intense, initially nonmoving region with a constant increased ion density is investigated. It is shown that the evolution of a rather intense nonmoving region with a constant increased ion density can result in the formation of a shock wave. In addition to the compressional wave, a rarefaction region (dilatation wave) appears. The presence of a dilatation wave finally leads to the destruction of the shock structure. The possibility is discussed of the observation of shock waves related to dust charging in the presence of electromagnetic radiation in active rocket experiments, which involve the release of a gaseous substance in the Earth's ionosphere in the form of a high-speed plasma jet at altitudes of 500–600 km.  相似文献   

14.
The spatio-temporal dynamics of traveling waves in glycolysis as it occurs in yeast extract have been studied, both theoretically and experimentally. We describe this phenomenon with the distributed Selkov model that accounts for the reactions of phosphofructokinase, which is a key enzyme of the glycolytic reaction cascade. To describe the experimentally observed phase waves in an open spatial reactor we introduce a non-homogeneous flux of substrate in the model. The experimental observation that waves can change their direction of propagation during the experiment is considered in the model. The mechanism for such a change in wave direction is discussed.  相似文献   

15.
To have a better understanding of the flow of blood in arteries a theoretical analysis of the pressure wave propagation through a viscous incompressible fluid contained in an initially stressed tube is considered. The fluid is assumed to be Newtonian. The tube is taken to be elastic and isotropic. The analysis is restricted to tubes with thin walls and to waves whose wavelengths are very large compared with the radius of the tube. It is further assumed that the amplitude of the pressure disturbance is sufficiently small so that nonlinear terms of the inertia of the fluid are negligible compared with linear ones. Both circumferential and longitudinal initial stresses are considered; however, their origins are not specified. Initial stresses enter equations as independent parameters. A frequency equation, which is quadratic in the square of the propagation velocity is obtained. Two out of four roots of this equation give the velocity of propagation of two distinct outgoing waves. The remaining two roots represent incoming waves corresponding to the first two waves. One of the waves propagates more slowly than the other. As the circumferential and/or longitudinal stress of the wall increases, the velocity of propagation and transmission per wavelength of the slower wave decreases. The response of the fast wave to a change in the initial stress is on the opposite direction.  相似文献   

16.
A study is made of the decay instability of a lower hybrid wave with a finite wave vector (k 0≠0) and a large amplitude such that the oscillatory velocity of the electrons with respect to the ions cannot be neglected. It is shown that, depending on the angle between the propagation direction of the lower hybrid wave and the external magnetic field and the angle through which the wave is scattered, the decay instability is primarily governed either by the oscillatory electron motion with respect to the ions or by the nonlinear response of the plasma to the lower hybrid wave propagating in it. The role of the nonlinear frequency shift in the saturation of the lower hybrid decay instability is clarified.  相似文献   

17.
A study is made of the propagation of steady-state large-amplitude longitudinal plasma waves in a cold collisionless plasma with allowance for both electron and ion motion. Conditions for the existence of periodic potential waves are determined. The electric field, potential, frequency, and wavelength are obtained as functions of the wave phase velocity and ion-to-electron mass ratio. Taking into account the ion motion results in the nonmonotonic dependence of the frequency of the waves with the maximum possible amplitudes on the wave phase velocity. Specifically, at low phase velocities, the frequency is equal to the electron plasma frequency for linear waves. As the phase velocity increases, the frequency first decreases insignificantly, reaches its minimum value, and then increases. As the phase velocity increases further, the frequency continues to increase and, at relativistic phase velocities, again becomes equal to the plasma frequency. Finally, as the phase velocity approaches the speed of light, the frequency increases without bound.  相似文献   

18.
It is believed that static magnetic fields (SMF) cannot affect the pattern formation of the Belousov-Zhabotinsky (BZ) reaction, which has been frequently studied as a simplified experimental model of a nonequilibrium open system, because SMF produces no induced current and the magnetic force of SMF far below 1 T is too low to expect the effects on electrons in the BZ reaction. In the present study, we examined whether the velocity of chemical waves in the unstirred BZ reaction can be affected by a moderate-intensity SMF exposure depending on the spatial magnetic gradient. The SMF was generated by a parallel pair of attracting rectangular NdFeB magnets positioned opposite each other. The respective maximum values of magnetic flux density (B(max)), magnetic flux gradient (G(max)), and the magnetic force product of the magnetic flux density its gradient (a magnetic force parameter) were 206 mT, 37 mT/mm, and 3,000 mT(2)/mm. The ferroin-catalyzed BZ medium was exposed to the SMF for up to 16 min at 25 degrees C. The experiments demonstrated that the wave velocity was significantly accelerated primarily by the magnetic gradient. The propagation of the fastest wave front indicated a sigmoid increase along the peak magnetic gradient line, but not along the peak magnetic force product line. The underlying mechanisms of the SMF effects on the anomalous wave propagation could be attributed primarily to the increased concentration gradient of the paramagnetic iron ion complexes at the chemical wave fronts induced by the magnetic gradient.  相似文献   

19.
In contrast to the mechanisms of segmental and peristaltic contractions in the small intestine, not much is known about the mechanism of pendular contractions. High-resolution electrical and mechanical recordings were performed from isolated segments of the rabbit ileum during pendular contractions. The electrical activities were recorded with 32 extracellular electrodes while motility was assessed simultaneously by video tracking the displacements of 20-40 serosal markers. The electrical activities consisted of slow waves, followed by spikes, that propagated in either the aboral or oral direction. The mechanical activity always followed the initial electrical activity, describing a contraction phase in one direction followed by a relaxation phase in the opposite direction. Pendular displacements were always in rhythm with the slow wave, whereas the direction of the displacements was dictated by the origin of the slow wave. If the slow wave propagated aborally, then the pendular displacement occurred in the oral direction, whereas if the slow wave propagated in the oral direction, then the displacement occurred in the aboral direction. In the case of more complex propagation patterns, such as in the area of pacemaking or collision, direction of displacements remained always opposite to the direction of the slow wave. In summary, the direction and pattern of propagation of the slow wave determine the rhythm and the direction of the pendular motility. The well-known variability in pendular movements is caused by the variability in the propagation of the underlying slow wave.  相似文献   

20.
From first-principles computation, we reveal that optical bifacial transmission can be induced within an asymmetric metallic subwavelength structure. This phenomenon can be explained by a concrete picture in which the intensity of the driving forces for surface plasmon or charge wave is asymmetric for the two incident directions. Two distinguished different numerical methods, finite difference time domain (FDTD), and rigorous coupled wave analysis (RCWA) are utilized to verify that optical bifacial transmission can exist for linear plasmonic metamaterial. Previous results are also reviewed to confirm the physical meaning of optical bifacial transmission for a planar linear metamaterial. The incident light can provide direct driving forces for surface plasmon in one direction. While in the opposite direction, forces provided by the light diffraction are quite feeble. With the asymmetric driving forces, the excitation, propagation, and light-charge conversion of surface plasmon give the rise of bifacial charge-oscillation-induced transmission. In periodic a structure, the excitation of surface plasmon polariton can lead to the spoof vanish of such phenomenon. The transmissions for two incident directions get the same in macroscopic while the bifacial still exists in microscale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号