首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Generation of terahertz (THz) radiation has been a hot research topic in recent years. Plasmonic quantum cascade lasers (QCLs) are among the most compact and efficient sources to generate THz radiation. In this paper, we comprehensively study plasmonic QCLs designed based on the antenna-feedback structure to generate efficient radiation about the center frequency of 3 THz. By changing the geometric structure of the plasmonic cavity and using two-dimensional simulation, a minimum loss less than 5.9 cm?1 is achieved at the lasing frequency. It is also possible to control the orientation of the output beam either vertically or tilted by changing the geometry of the antenna design via chirped or non-chirped grating scheme. Moreover, the output characteristics of the QCL are simulated based on the three-level rate equations through which the dynamics of the laser, as well as the P-I curve, are investigated. Also, the gain spectra for two laser designs (with chirped and non-chirped gratings) are simulated and compared to each other. The results of this paper may provide deep insight into designing efficient laser sources in the THz region.

  相似文献   

2.
The generation and subsequent measurement of far-infrared radiation has found numerous applications in high-resolution spectroscopy, radio astronomy, and Terahertz imaging. For about 45 years, the generation of coherent, far-infrared radiation has been accomplished using the optically pumped molecular laser. Once far-infrared laser radiation is detected, the frequencies of these laser emissions are measured using a three-laser heterodyne technique. With this technique, the unknown frequency from the optically pumped molecular laser is mixed with the difference frequency between two stabilized, infrared reference frequencies. These reference frequencies are generated by independent carbon dioxide lasers, each stabilized using the fluorescence signal from an external, low pressure reference cell. The resulting beat between the known and unknown laser frequencies is monitored by a metal-insulator-metal point contact diode detector whose output is observed on a spectrum analyzer. The beat frequency between these laser emissions is subsequently measured and combined with the known reference frequencies to extrapolate the unknown far-infrared laser frequency. The resulting one-sigma fractional uncertainty for laser frequencies measured with this technique is ± 5 parts in 107. Accurately determining the frequency of far-infrared laser emissions is critical as they are often used as a reference for other measurements, as in the high-resolution spectroscopic investigations of free radicals using laser magnetic resonance. As part of this investigation, difluoromethane, CH2F2, was used as the far-infrared laser medium. In all, eight far-infrared laser frequencies were measured for the first time with frequencies ranging from 0.359 to 1.273 THz. Three of these laser emissions were discovered during this investigation and are reported with their optimal operating pressure, polarization with respect to the CO2 pump laser, and strength.  相似文献   

3.
The radiation source ELBE atDresden-Rossendorf is centered around asuperconducting ELectron accelerator ofhigh Brilliance and low Emittance (ELBE) which produces electronbeams up to 40 MeV. This new facility delivers secondary radiation of differentkinds. Special emphasis will be given tothe production of intense THz radiationfrom its Free-Electron Lasers (FEL). This radiation will be usedfor various research activities including the life sciences. Two additionalfemtosecond Ti:sapphire laser systems allowto exploit different methods of THzgeneration for such investigations.  相似文献   

4.

Terahertz (THz) quantum cascade lasers (QCLs) are electrically pumped and heterostructure based semiconductor laser sources with intersubband transitions of electrons in different layers of the quantum wells and barriers. The THz QCLs have high output power in THz region which make them important from application point of view. Recently intensive research has been carried out by researchers for obtaining efficient designs of THz sources. Most of the researchers have investigated the THz frequency range between 0.1 and 3 THz; however, the output power of the THz sources in the frequency range 3–5 THz is small because of transit time and resistance-capacitance effects. Nevertheless, the present review is focused for the development of efficient THz QCL sources in the frequency range from 3 to 5 THz where one of the major problem of thermal backfilling of the carriers has to be overcome by engineering the heterostructure.

  相似文献   

5.
The data is obtained on the effect of high-intensity pulses of terahertz (THz) radiation with a broad spectrum (0.2–3 THz) on cell cultures. We have evaluated the threshold exposure parameters of THz radiation causing genotoxic effects in fibroblasts. Phosphorylation of histone H2AX at Ser 139 (γH2AX) was chosen as a marker for genotoxicity and a quantitative estimation of γH2AX foci number in fibroblasts was performed after cell irradiation with THz pulses for 30 min. No genotoxic effects of THz radiation were observed in fibroblasts unless peak intensity and electric field strength exceeded 21 GW cm−2 and 2.8 MV cm−1, respectively. In tumor cell lines (neuroblastoma (SK-N-BE (2)) and glioblastoma (U87)), exposure to THz pulses with peak intensity of 21 GW cm−2 for 30 min caused no morphological changes as well as no statistically significant increase in histone phosphorylation foci number.  相似文献   

6.
7.
The problem of nonlinear Thomson scattering of a relativistically strong linearly polarized ultrashort laser pulse tightly focused into a spot with a diameter of D F ? λ (where λ is the laser wavelength) is solved. The energy, spectral, and angular distributions of radiation generated due to Thomson scattering from test electrons located in the focal region are found. The characteristics of scattered radiation are studied as functions of the tightness of laser focusing and the initial position of test particles relative to the center of the focal region for a given laser pulse energy. It is demonstrated that the ultratight focusing is not optimal for obtaining the brightest and hardest source of secondary electromagnetic radiation. The hardest and shortest radiation pulse is generated when the beam waist diameter is ?10λ.  相似文献   

8.
Compact and efficient terahertz (THz) polarization conversion components are of importance for applications where the small dimension of the laser device/system is critical. Here, we propose an ultracompact L-shaped subwavelength patterns on metal films to realize the THz polarization management. By optimizing the geometric parameters of single-layered and double-layered patterns, the linear-polarized THz incidence can be converted to elliptical polarized output or rotated by 90° efficiently due to the THz extraordinary optical transmission phenomenon. The physical mechanism is explored by mode analysis using numerical and analytical modeling.  相似文献   

9.
太赫兹(THz)光谱在生物大分子研究中的应用   总被引:3,自引:0,他引:3  
太赫兹(THz)辐射是一种新型的远红外相干辐射源,近年来,在生物大分子研究中得到了广泛的应用,特别是在生物分子的结构和动力学特性等方面有着巨大的应用潜力.结合THz光谱的特点,介绍了利用THz光谱对蛋白质、糖类及DNA等生物大分子的探索研究,以及THz技术在测定水环境与生物分子相互作用等方面的应用.探讨了该技术在生物学领域应用中有待解决的问题及发展前景.  相似文献   

10.
Based on the insulator-to-metal phase transition of vanadium dioxide (VO 2), a terahertz (THz) tunable metasurface lens (TML), which consists of a THz metasurface lens and a VO 2 film on Al 2 O 3 substrate, is proposed and experimentally verified. The focal intensity of the TML can be thermally controlled. The changes of the cross-polarized amplitude spectrum and the focal intensity during the heating and cooling processes are also investigated in detail. Any desired focal intensity can be obtained by adjusting the TML temperature. This TML and its approach will be of great significance for the development of the THz active devices.  相似文献   

11.
Results from experimental studies of bremsstrahlung and characteristic radiation spectra from laser targets irradiated with ultrashort laser pulses with intensities of up to ~1019 W/cm2 are presented. The continuous spectra of hard X-ray emission from Ta and Al targets and the line spectrum of copper were measured. The temperature of fast electrons was obtained from the measured hard X-ray spectra, and the Kα radiation yield from Ta was measured. The energy conversion efficiency of laser radiation into the copper characteristic radiation was obtained from the measured yield of Kα radiation.  相似文献   

12.

In this article, we demonstrate a tunable ultra-broadband metamaterial absorber (TUMA) in terahertz (THz) band which is based on the multilayered structure composed of an Au reflective layer, polyimide dielectric layers, and vanadium dioxide (VO2) periodic structures, respectively. We gain the tunable absorption spectra because of the room temperature phased-changed character of VO2. The relative bandwidth reaches to 81.2% and the absorption rate is over 90% at the frequency range of 1.63–3.86 THz when the temperature (t1) is 350 K, but when t1 = 300 K, the presented absorber is acted as a reflector whose absorption is small besides the frequency points of 9.75 THz and 9.81 THz. For the sake of comprehending the physical mechanism in-depth, the electric field (E-field) diagrams, the surface current distributions and the power loss density (PLD) of the TUMA are investigated. The influences of structural arguments and incident angle (θ) on the absorption are also analyzed. The emulated consequences show that the absorption spectrum can be regulated by changing structural parameters and incident angle and the tunable absorption regions can be obtained by altering the external temperature.

  相似文献   

13.
Modelling the interaction of terahertz(THz) radiation with biological tissueposes many interesting problems. THzradiation is neither obviously described byan electric field distribution or anensemble of photons and biological tissueis an inhomogeneous medium with anelectronic permittivity that is bothspatially and frequency dependent making ita complex system to model.A three-layer system of parallel-sidedslabs has been used as the system throughwhich the passage of THz radiation has beensimulated. Two modelling approaches havebeen developed a thin film matrix model anda Monte Carlo model. The source data foreach of these methods, taken at the sametime as the data recorded to experimentallyverify them, was a THz spectrum that hadpassed though air only.Experimental verification of these twomodels was carried out using athree-layered in vitro phantom. Simulatedtransmission spectrum data was compared toexperimental transmission spectrum datafirst to determine and then to compare theaccuracy of the two methods. Goodagreement was found, with typical resultshaving a correlation coefficient of 0.90for the thin film matrix model and 0.78 forthe Monte Carlo model over the full THzspectrum. Further work is underway toimprove the models above 1 THz.  相似文献   

14.

We present a THz emission enhancement of 41 times at 0.92 THz from a metasurface made of T-shaped resonators excited in a quasi-near-field zone. Such a metasurface has an intrinsic transmission minimum with Q factor of 4 at 1.25 THz under far-field excitation. When this metasurface is coupled onto the backside of a 625-μm-thick photoconductive emitter, the metasurface is below the Fraunhofer distance to the excitation source. As such, one broad enhancement around 0.47 THz and another extremely narrow enhancement at 0.92 THz in the emission spectrum are observed owing to a quasi-near-field excitation. Theoretically, the Q factor of the latter is up to 307, which is limited by the spectral resolution in experiment. The numerical simulations indicate that the T-shaped resonators serve as an array of plasmonic antennas resulting in the aforementioned emission enhancement of THz radiation.

  相似文献   

15.
Equipment that generates microwave radiation (MWR) spanning the frequency range of 300 MHz–100 GHz is becoming more common. While MWR lacks sufficient energy to break chemical bonds, the disagreement as to whether MWR exposure is detrimental to cellular dysfunction may be difficult to clarify using complex systems such as whole animals, cells, or cell extracts. Recently, the high frequency range of terahertz (THz) radiation has been explored and sources of radiation and its detectors have been developed. THz radiation is associated with the frequency interval from 100 GHz to 20 THz and constitutes the next frontier in imaging science and technology. In the present study, we investigated the effect of radiation in the low frequency THz range (100 GHz) on two defined molecular interactions. First, the interaction of soluble or immobilized calf alkaline phosphatase with the substrate p‐nitrophenylphosphate and second, the interaction between an antibody (mouse monoclonal anti‐DNP) and its antigen (DNP). Irradiation of enzyme either prior to addition of substrate or during the enzymatic reaction resulted in small but significant reductions in enzyme activity. These differences were not observed if the enzyme had previously been immobilized onto plastic microwells. Exposure of immobilized antigen to radiation did not influence the ability of the antigen to interact with antibody. However, irradiation appeared to decrease the stability of previously formed antigen–antibody complexes. Our data suggest that 100 GHz radiation can induce small but statistically significant alterations in the characteristics of these two types of biomolecular interactions. Bioelectromagnetics 30:167–175, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
The aim of this study was to investigate and quantify the production of spindle disturbances in A(L) cells, a human-hamster hybrid cell line, by 0.106 THz radiation (continuous wave). Monolayer cultures in petri dishes were exposed for 0.5 h to 0.106 THz radiation with power densities ranging from 0.043 mW/cm(2) to 4.3 mW/cm(2) or were kept under sham conditions (negative control) for the same period. As a positive control, 100 μg/ml of the insecticide trichlorfon, which is an aneuploidy-inducing agent, was used for an exposure period of 6 h. During exposure, the sample containers were kept at defined environmental conditions in a modified incubator as required by the cells. Based on a total of 6,365 analyzed mitotic cells, the results of two replicate experiments suggest that 0.106 THz radiation is a spindle-acting agent as predominately indicated by the appearance of spindle disturbances at the anaphase and telophase (especially lagging and non-disjunction of single chromosomes) of cell divisions. The findings in the present study do not necessarily imply disease or injury but may be important for evaluating possible underlying mechanisms.  相似文献   

17.
一种新型相干辐射--THz辐射在生物学中的应用   总被引:7,自引:0,他引:7  
脉冲THz辐射是一种新型的远红外相干辐射源,近年来在不同的研究领域得到了广泛的应用。本文简要介绍THz辐射产生、探测的基本原理和方法;THz辐射的基本性质和它在生物学研究中应用的物理基础;对生物体系进行时域光谱分析和成像研究所取得的成果和最新进展,以及对该领域研究前景的展望。  相似文献   

18.
Zhang  Hai-Feng  Liu  Guo-Biao  Huang  Tong  Zeng  Li 《Plasmonics (Norwell, Mass.)》2020,15(4):1035-1041

In this article, the design of a frequency reconfigurable broadband THz antenna based on vanadium dioxide (VO2) is investigated. Instead of being fed by the microstrip line directly, a windmill-shaped feeding structure is designed to provide a proximity-coupled feeding method. Many modes with contiguous resonant frequencies can be excited to obtain the wideband performance. The proposed antenna combines gold with metamaterial VO2. Thanks to insulator-metal phase transition characteristic of VO2 at phase transition temperature (68 °C), we can change the length of the resonant branches to realize frequency reconfiguration by changing the external temperature (T). The simulated results illustrate that when T = 50 °C (State I), such an antenna has a bandwidth of 35.2% (7.01–10 THz) with S11 below − 10 dB, and a maximum gain of 6.62 dBic. When T = 80 °C (State II), it has a bandwidth of 21.8% (5.77–7.18 THz) with S11 below − 10 dB, and a maximum gain of 4.49 dBic. Thus, we realize a design of a proximity-coupled antenna with reconfigurable wideband over the THz band.

  相似文献   

19.
Terahertz radiation is increasingly being applied in new and evolving technologies applied in areas such as homeland security and medical imaging. Thus a timely assessment of the potential hazards and health effects of occupational and general population exposure to THz radiation is required. We applied continuous-wave (CW) 0.1 THz radiation (0.031 mW/ cm(2)) to dividing lymphocytes for 1, 2 and 24 h and examined the changes in chromosome number of chromosomes 1, 10, 11 and 17 and changes in the replication timing of their centromeres using interphase fluorescence in situ hybridization (FISH). Chromosomes 11 and 17 were most vulnerable (about 30% increase in aneuploidy after 2 and 24 h of exposure), while chromosomes 1 and 10 were not affected. We observed changes in the asynchronous mode of replication of centromeres 11, 17 and 1 (by 40%) after 2 h of exposure and of all four centromeres after 24 h of exposure (by 50%). It is speculated that these effects are caused by radiation-induced low-frequency collective vibrational modes of proteins and DNA. Our results demonstrate that exposure of lymphocytes in vitro to a low power density of 0.1 THz radiation induces genomic instability. These findings, if verified, may suggest that such exposure may result in an increased risk of cancer.  相似文献   

20.
Vasin  B. L.  Mal’kova  S. V.  Osipov  M. V.  Puzyrev  V. N.  Saakyan  A. T.  Starodub  A. N.  Fedotov  S. I.  Fronya  A. A.  Shutyak  V. G. 《Plasma Physics Reports》2010,36(13):1255-1260
The optical scheme and design of a four-frequency polarizing microscope intended for simultaneous recording of plasma images in the wavelength range 0.4–1.1 μm with the spatial resolution 12 μm in the entire spectral range are described. The effectiveness of such a microscope in studies of plasmas produced on interaction of laser radiation with a target is demonstrated. The plasma images are obtained at the frequencies ω0, (3/2)ω0, 2ω0, and (5/2)ω0, where ω0 corresponds to the frequency of heating radiation. The transformation coefficient that characterizes the efficiency of conversion of heating radiation into the 2ω0, (3/2)ω0, and (5/2)ω0 harmonics generated in the plasma is determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号