共查询到20条相似文献,搜索用时 15 毫秒
1.
A stable regime of the amplification of a slow plasma wave in a plasma waveguide during the injection of a high-current relativistic electron beam is obtained. For an input-signal frequency of 9.1 GHz, there exists a range of plasma densities in which the spectrum of the output microwave radiation lies in a 0.5-GHz-wide band. For a 40-kW input power at a frequency of 9.1 GHz, the maximum output power is 8 MW. It is shown experimentally for the first time that the beam-plasma amplifier can operate at frequencies of 9.1 GHz and 12.9 GHz. The range of plasma densities in which the regime of amplification is observed agrees with the results of calculations based on linear theory. 相似文献
2.
M. V. Kuzelev O. T. Loza A. A. Rukhadze P. S. Strelkov A. G. Shkvarunets 《Plasma Physics Reports》2001,27(8):669-691
The principles of plasma relativistic microwave electronics based on the stimulated Cherenkov emission of electromagnetic waves during the interaction of a relativistic electron beam with a plasma are formulated. A theory of relativistic Cherenkov plasma microwave oscillators and amplifiers is developed, and model experimental devices are elaborated and investigated. The emission mechanisms are studied theoretically. The efficiencies and frequency spectra of relativistic Cherenkov plasma microwave oscillators and ampli-fiers are calculated. The theoretical predictions are confirmed by the experimental data: the power of the devices attains 500 MW, the microwave frequency can be continuously tuned over a wide band with an upper-to-lower boundary frequency ratio of 7 (from 4 to 28 GHz), and the emission frequency bandwidth can be varied from several percent to 100 percent. These microwave sources have no analogs in vacuum microwave electronics. 相似文献
3.
The Cherenkov interaction of a high-current relativistic electron beam with a spatially bounded plasma was studied experimentally. In the generation of electromagnetic radiation, an important role is played by the counterpropagating plasma wave produced due to the reflection from the end of the plasma column. It is shown that, at the resonant value of the magnetic field, the normal Doppler effect occurs and the amplitude of the counterpropagating wave decreases. This effect was used to design and create a plasma relativistic microwave amplifier in which 10% of the beam energy is converted into radiation. The radiation frequency is 9.1 GHz, and the radiation spectrum width (±0.17%) is determined by the microwave-pulse duration. The maximum radiation power is 100 MW, the gain factor being 32 dB. 相似文献
4.
Reasons for the occurrence of microwave noise at the output of a plasma relativistic amplifier have been analyzed. It is found that, in the absence of an input signal, the emission spectrum of the plasma relativistic microwave amplifier is similar to that of an electron beam in vacuum. It is concluded that microwave noise at the output of the amplifier appears as a result of amplification of the intrinsic noise of the electron beam. The emission characteristics of a relativistic electron beam formed in a magnetically insulated diode with an explosive emission cathode in vacuum have been studied experimentally for the first time. An important point is that, in this case, there is no virtual cathode in the drift space. 相似文献
5.
I. S. Alekseev I. E. Ivanov P. S. Strelkov V. P. Tarakanov D. K. Ulyanov 《Plasma Physics Reports》2017,43(3):340-345
A method based on the detection of emission of a dielectric screen with metal microinclusions in open air is applied to visualize the transverse structure of a high-power microwave beam. In contrast to other visualization techniques, the results obtained in this work provide qualitative information not only on the electric field strength, but also on the structure of electric field lines in the microwave beam cross section. The interpretation of the results obtained with this method is confirmed by numerical simulations of the structure of electric field lines in the microwave beam cross section by means of the CARAT code. 相似文献
6.
The dependences of the radiation parameters of a plasma relativistic microwave amplifier on the external factors have been studied both experimentally and numerically. The calculated dependences are found to agree qualitatively with the measured ones. In contrast to experimental studies, numerical simulations make it possible to examine physical processes occurring inside the plasma waveguide. Good agreement between the measured and calculated dependences of the radiation parameters on the external factors shows that information provided by numerical simulations of the processes occurring inside the plasma waveguide can be considered quite reliable. The electromagnetic field structure and electron beam dynamics inside the plasma waveguide have been investigated. 相似文献
7.
I. L. Bogdankevich D. M. Grishin A. V. Gunin I. E. Ivanov S. D. Korovin O. T. Loza G. A. Mesyats D. A. Pavlov V. V. Rostov P. S. Strelkov D. K. Ul’yanov 《Plasma Physics Reports》2008,34(10):855-859
A repetitively rated microwave oscillator whose frequency can be varied electronically from pulse to pulse in a predetermined manner is created for the first time. The microwave oscillator has a power on the order of 108 W and is based on the Cherenkov interaction of a high-current relativistic electron beam with a plasma preformed before each pulse. Electronic control over the plasma properties allows one to arbitrarily vary the microwave frequency from pulse to pulse at a pulse repetition rate of up to 50 Hz. 相似文献
8.
P. S. Strelkov V. P. Tarakanov I. E. Ivanov D. V. Shumeiko 《Plasma Physics Reports》2014,40(8):640-649
A relativistic plasma microwave amplifier with a gain of about 30 dB and an output power of about 60–100 MW in the frequency range from 2.4 to 3.2 GHz is studied experimentally. The total duration of the output microwave pulse is equal to the duration of the current pulse of the driving relativistic electron beam (500 ns); however, the maximum output power is observed only within 200 ns. It is shown that variations in the output microwave power during the current pulse of the annular relativistic electron beam are caused by variations in the beam radius and thickness. Analysis of the experimental data and results of numerical simulations show that the thickness of the electron beam is determined by the density of the cathode emission current. 相似文献
9.
10.
The authors describe an operational amplifier with an adjustable frequency response and its use in membrane physiology, using the voltage clamp and current clamp method. The amplifier eliminates feedback poles causing oscillation. It consists of a follower with a high input resistance in the form of a tube and of an actual amplifier with an adjustable frequency response allowing the abolition of clicks by one pole and of oscillation by two poles in the 500 Hz divided by infinity range. Further properties of the amplifier: a long-term voltage drift of 1 mv, a temperature voltage drift of 0.5 mv/degrees K, input resistance greater than 1 GOhm, amplification greater than 80 dB, output +/- 12 v, 25 ma, noise, measured from the width of the oscilloscope track in the presence of a ray of normal brightness, not exceeding 50 muv in the 0-250 kHz band, f1 = 1 MHz. A short report on the amplifier was published a few years ago (Gulísek and Hencek 1973). 相似文献
11.
A new approach to the construction of low frequency (1 Hz -- 20 kHz) active filters, based on the application of a pair of IC operational amplifiers forming a separate module and a plug-in unit containing RC tuning circuits, is described. The electronic circuits and the design of the filters are presented with all details. 相似文献
12.
Atwater JE 《Carbohydrate research》2000,327(3):219-221
Complex permittivities (epsilon*) for microwave radiation between 0.5 and 26 GHz have been determined for alpha-, beta-, and gamma-cyclodextrins in the solid state at room temperature. For the real component of epsilon*, maxima occur near 0.6 GHz, and the relation beta > alpha > gamma is evident across the full-frequency spectrum. Dielectric loss is significant only between 5 and 12 GHz for beta- and gamma-cyclodextrins with maxima near 7.5 GHz. 相似文献
13.
Adult male mice had the lower halves of their bodies exposed in a waveguide system to 2.45 GHz microwave radiation for 30 min. The half body dose-rate of 43 W kg-1 had been shown in a previous study [7] to deplete severely the heat-sensitive stages of sperm production. The males were mated at intervals to adult hybrid females over the following 8-10 weeks. There was no significant reduction in post-implantation survival, suggesting that the microwave exposure did not have a mutagenic effect on the male germ cells. However, pregnancy rate was significantly reduced in weeks 3, 4, 5 and 6; reaching a minimum of about 10% of the control value in weeks 4 and 5. The occurrence of low values in weeks 4 and 5 correlated well with the expected reductions in sperm count due to the pattern of depletion of the spermatogenic epithelium of the testes. Thus it was concluded that the reduced pregnancy rate resulted from reduced male fertility. Pre-implantation survival can also be affected by reduced sperm count [8] and was significantly reduced in this study but it correlated less well with the anticipated heat response. A further study is in progress looking at the contribution of sperm count and sperm abnormality to the results. 相似文献
14.
Some behavioral effects of short-term exposure of rats to 2.45 GHz microwave radiation 总被引:1,自引:0,他引:1
Rats were tested for neurobehavioral alterations immediately after exposure to 2.45-GHz (CW) microwave radiation at 10 mW/cm2 for 7 h. Behavioral tests used were locomotor activity, startle to an acoustic stimulus and acquisition and retention of a shock-motivated passive avoidance task. Both horizontal and vertical components of locomotor activity were assessed in 5-min epochs for a period of 30 min using photoelectric detectors. Microwave-exposed animals exhibited less activity than sham-exposed animals. This was most evident during the last 10-15 min of the 30-min test session. Twenty identical acoustical stimuli (8 KHz, 110 dB) were delivered to each rat at 40-s intervals. The microwave-exposed animals were less responsive to the stimuli than sham-exposed animals. Microwave exposure had no effect on the retention of a passive avoidance procedure when tested at 1 week after training. Both the locomotor activity and acoustic startle data demonstrate that, under the conditions of this experiment, microwave exposure may alter responsiveness of rats to novel environmental conditions or stimuli. 相似文献
15.
16.
Plasma membrane calcium pumps in smooth muscle: from fictional molecules to novel inhibitors 总被引:5,自引:0,他引:5
Plasma membrane Ca2+ pumps (PMCA pumps) are Ca2+-Mg2+ ATPases that expel Ca2+ from the cytosol to extracellular space and are pivotal to cell survival and function. PMCA pumps are encoded by the genes PMCA1, -2, -3, and -4. Alternative splicing results in a large number of isoforms that differ in their kinetics and activation by calmodulin and protein kinases A and C. Expression by 4 genes and a multifactorial regulation provide redundancy to allow for animal survival despite genetic defects. Heterozygous mice with ablation of any of the PMCA genes survive and only the homozygous mice with PMCA1 ablation are embryolethal. Some PMCA isoforms may also be involved in other cell functions. Biochemical and biophysical studies of PMCA pumps have been limited by their low levels of expression. Delineation of the exact physiological roles of PMCA pumps has been difficult since most cells also express sarco/endoplasmic reticulum Ca2+ pumps and a Na+-Ca2+-exchanger, both of which can lower cytosolic Ca2+. A major limitation in the field has been the lack of specific inhibitors of PMCA pumps. More recently, a class of inhibitors named caloxins have emerged, and these may aid in delineating the roles of PMCA pumps. 相似文献
17.
Manti L Braselmann H Calabrese ML Massa R Pugliese M Scampoli P Sicignano G Grossi G 《Radiation research》2008,169(5):575-583
The case for a DNA-damaging action produced by radiofrequency (RF) signals remains controversial despite extensive research. With the advent of the Universal Mobile Telecommunication System (UMTS) the number of RF-radiation-exposed individuals is likely to escalate. Since the epigenetic effects of RF radiation are poorly understood and since the potential modifications of repair efficiency after exposure to known cytotoxic agents such as ionizing radiation have been investigated infrequently thus far, we studied the influence of UMTS exposure on the yield of chromosome aberrations induced by X rays. Human peripheral blood lymphocytes were exposed in vitro to a UMTS signal (frequency carrier of 1.95 GHz) for 24 h at 0.5 and 2.0 W/kg specific absorption rate (SAR) using a previously characterized waveguide system. The frequency of chromosome aberrations was measured on metaphase spreads from cells given 4 Gy of X rays immediately before RF radiation or sham exposures by fluorescence in situ hybridization. Unirradiated controls were RF-radiation- or sham-exposed. No significant variations due to the UMTS exposure were found in the fraction of aberrant cells. However, the frequency of exchanges per cell was affected by the SAR, showing a small but statistically significant increase of 0.11 exchange per cell compared to 0 W/kg SAR. We conclude that, although the 1.95 GHz signal (UMTS modulated) does not exacerbate the yield of aberrant cells caused by ionizing radiation, the overall burden of X-ray-induced chromosomal damage per cell in first-mitosis lymphocytes may be enhanced at 2.0 W/kg SAR. Hence the SAR may either influence the repair of X-ray-induced DNA breaks or alter the cell death pathways of the damage response. 相似文献
18.
The remarkable power amplifier [1] of the cochlea boosts low-level and compresses high-level vibrations of the basilar membrane (BM) [2]. By contributing maximally at the characteristic frequency (CF) of each point along its length, the amplifier ensures the exquisite sensitivity, narrow frequency tuning, and enormous dynamic range of the mammalian cochlea. The motor protein prestin in the outer hair cell (OHC) lateral membrane is a prime candidate for the cochlear power amplifier [3]. The other contender for this role is the ubiquitous calcium-mediated motility of the hair cell stereocilia, which has been demonstrated in vitro and is based on fast adaptation of the mechanoelectrical transduction channels [4, 5]. Absence of prestin [6] from OHCs results in a 40-60 dB reduction in cochlear neural sensitivity [7]. Here we show that sound-evoked BM vibrations in the high-frequency region of prestin(-/-) mice cochleae are, surprisingly, as sensitive as those of their prestin(+/+) siblings. The BM vibrations of prestin(-/-) mice are, however, broadly tuned to a frequency approximately a half octave below the CF of prestin(+/+) mice at similar BM locations. The peak sensitivity of prestin(+/+) BM tuning curves matches the neural thresholds. In contrast, prestin(-/-) BM tuning curves at their best frequency are >50 dB more sensitive than the neural responses. We propose that the absence of prestin from OHCs, and consequent reduction in stiffness of the cochlea partition, changes the passive impedance of the BM at high frequencies, including the CF. We conclude that prestin influences the cochlear partition's dynamic properties that permit transmission of its vibrations into neural excitation. Prestin is crucial for defining sharp and sensitive cochlear frequency tuning by reducing the sensitivity of the low-frequency tail of the tuning curve, although this necessitates a cochlear amplifier to determine the narrowly tuned tip. 相似文献
19.
Results are presented from experiments on the acceleration of electrons by a 2.45-GHz microwave field in an adiabatic mirror trap under electron cyclotron resonance conditions, the electric and wave vectors of the wave being orthogonal to the trap axis. At a microwave electric field of ≥10 V/cm and air pressures of 10?6–10?4 Torr (the experiments were also performed with helium and argon), a self-sustained discharge was initiated in which a fraction of plasma electrons were accelerated to energies of 0.3–0.5 MeV. After the onset of instability, the acceleration terminated; the plasma decayed; and the accelerated electrons escaped toward the chamber wall, causing the generation of X-ray emission. Estimates show that electrons can be accelerated to the above energies only in the regime of self-phased interaction with the microwave field, provided that the electrons with a relativistically increased mass penetrate into the region with a higher magnetic field. It is shown that the negative-mass instability also can contribute to electron acceleration. The dynamic friction of the fast electrons by neutral particles in the drift space between the resonance zones does not suppress electron acceleration, so the electrons pass into a runaway regime. Since the air molecules excited by relativistic runaway electrons radiate primarily in the red spectral region, this experiment can be considered as a model of high-altitude atmospheric discharges, known as “red sprites.” 相似文献
20.
Solvation-assisted pressure tuning has been employed to unravel unknown structural and kinetic aspects of the insulin aggregation and fibrillation process. Our approach, using fluorescence, Fourier transform infrared and atomic force microscopy techniques in combination with pressure and solvent perturbation, reveals new insights into the pre-aggregated regime as well as mechanistic details about two concurrent aggregation pathways and the differential stability of insulin aggregates. Pressure uniformly fosters the dissociation of native insulin oligomers, whereas the aggregation pathways at elevated temperatures are affected by pressure differently and in a cosolvent-dependent manner. Moderate pressures accelerate the amyloid pathway in the presence of EtOH (leading to essentially monomeric aggregating species) via relatively dehydrated transition states with negative activation volumes for nucleation and elongation. Alternatively, a novel, fast equilibrium pathway to distinct beta-sheet-rich oligomers with thioflavin T-binding capability is accessible to partially unfolded insulin monomers at pressures below approximately 200 bar in the absence of EtOH. These oligomers, probably off the normal fibrillation pathway, are stabilized mainly by electrostatic and hydrophobic interactions, lacking the precise packing of mature insulin fibrils, which renders them susceptible to quantitative pressure-induced dissociation. Due to a highly negative activation volume for dissociation (-70(+/-16)ml/mol), pressure dissociation is fast and technologically feasible at ambient temperatures and moderate pressures. Becoming kinetically very labile above 35 degrees C, the pressurized oligomers can re-enter the slower, ultimately irreversible, fibrillation pathway at higher temperatures. At pressures above approximately 1000 bar, the partial unfolding of insulin monomers, accompanied by a volumetric expansion, dominates the aggregation kinetics, which manifests in a progressive inhibition of the fibrillation. Unlike their precursors, the pressure-insensitivity of mature insulin fibrils demonstrates that an extensive hydrogen bonding network and optimized side-chain packing are crucial for their stability. 相似文献