首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetic field transport in a spatially inhomogeneous plasma is studied theoretically in the electron MHD approximation. A model problem with a given periodic plasma density profile is considered in plane geometry. In this case, the magnetic field is transported diffusively and the effective diffusion coefficient is determined by the geometric and time parameters of the perturbed density, as well as by the magnetization parameter. It is found that, under certain relationships between the parameters of the problem, there is a kind of resonant effect—a decrease in the plasma conductivity. The problem under consideration does not refer solely to plasma physics: the results obtained here can also be used to describe transport processes in other branches of physics.  相似文献   

2.
Large-scale plasma oscillations (so-called MHD oscillations) observed at the T-10 tokamak are investigated. The central electron cyclotron heating was used to enhance oscillations at the m/n = 1/1 mode with the goal of determining the internal characteristics of the process. The spatially resolved electron cyclotron emission diagnostics allowed analyzing the propagation characteristics of plasma perturbations. The experiments have revealed that excitation of oscillations in a particular mode occur simultaneously in the entire area located within the corresponding rational magnetic surface. The propagation of plasma perturbations along the torus is found to be inhomogeneous. The electron cyclotron emission diagnostics allowed finding eigen (resonance) frequencies of plasma oscillations from the parameters of their inhomogeneous propagation in the plasma core and comparing them with spectra of oscillations of the magnetic field induced by the plasma current in the edge plasma, which were recorded by magnetic probes. It is established that the frequencies of eigenmodes are independent of the electron temperature, plasma density, and auxiliary heating power. Even spatial harmonics of the principal magnetic surface are observed under strong excitation of oscillations. The rational magnetic surfaces that determine oscillation harmonics retain their position during the entire steady-state phase of the total plasma current in spite of the strong sharpening of the temperature profile due to central heating.  相似文献   

3.
The evolution of initial perturbations in a spatially inhomogeneous cold electron plasma in the absence of an external magnetic field is considered. The excitation of both continuous-spectrum bulk plasma waves and surface plasma waves with a discrete frequency spectrum is investigated. Analytic solutions are obtained in the long-wavelength limit, and the excitation of waves of arbitrary length is analyzed numerically. The local, integral, and spatial spectra are calculated, as well as the field structures and dispersion properties of waves in waveguides filled nonuniformly with a plasma. It is shown that, in a plasma with a smooth boundary, there also exist surface waves with a discrete spectrum (although with somewhat different properties as compared to those in a plasma with a sharp boundary), which are excited together with continuous-spectrum bulk waves during the evolution of the initial perturbation.  相似文献   

4.
Oscillations of a plasma column in a longitudinal magnetic field are considered. It is found that eigenmodes with frequencies close to the ion cyclotron frequency can be excited in columns the radii of which are smaller than the characteristic wavelength of magnetosonic oscillations predicted by the theory of homogeneous plasma. The eigenmodes have the form of waves running around the column axis in the direction of electron gyration in the magnetic field. Magnetosonic oscillations can be excited as a side effect when using helical antennas for ion cyclotron resonance heating of plasma. These oscillations should enhance electron heating in the plasma core, as well as both electron and ion heating at the periphery of the plasma column. The spectrum of eigenmodes of inhomogeneous plasma columns includes oscillations of different nature. Comparative analysis of their properties performed in the present paper is useful for understanding the full picture of the physical processes occurring during ion cyclotron resonance heating and clarifying the characteristic features of the magnetosonic oscillations under study.  相似文献   

5.
The energy that can be released in plasma due to the onset of instability (the excess plasma energy) is estimated. Three potentially unstable plasma states are considered, namely, plasma with an anisotropic Maxwellian velocity distribution of plasma particles, plasma with a two-beam velocity distribution, and an inhomogeneous plasma in a magnetic field with a local Maxwellian velocity distribution. The excess energy can serve as a measure of the degree to which plasma is nonequilibrium. In particular, this quantity can be used to compare plasmas in different nonequilibrium states.  相似文献   

6.
The propagation of MHD plasma waves in a sheared magnetic field is investigated. The problem is solved using a simplified model: a cold plasma is inhomogeneous in one direction, and the magnetic field lines are straight. The waves are assumed to travel in the plane perpendicular to the radial coordinate (i.e., the coordinate along which the plasma and magnetic field are inhomogeneous). It is shown that the character of the singularity at the resonance surface is the same as that in a homogeneous magnetic field. It is found that the shear gives rise to the transverse dispersion of Alfvén waves, i.e., the dependence of the radial component of the wave vector on the wave frequency. In the presence of shear, Alfvén waves are found to propagate across magnetic surfaces. In this case, the transparent region is bounded by two turning points, at one of which, the radial component of the wave vector approaches infinity and, at the other one, it vanishes. At the turning point for magnetosonic waves, the electric and magnetic fields are finite; however, the radial component of the wave vector approaches infinity, rather than vanishes as in the case with a homogeneous field.  相似文献   

7.
An exactly solvable model is used as a basis to study the reflectionless passage of a transverse electromagnetic wave through an inhomogeneous plasma containing large-amplitude, small-scale (subwave-length) structures (in particular, opaque regions) that cannot be correctly described by approximate methods. It is shown that, during the reflectionless passage of an electromagnetic wave, strong wave field splashes can occur in certain plasma sublayers. The nonuniform spatial plasma density profile is characterized by a number of free parameters describing the modulation depth of the dielectric function, the characteristic sizes of the structures and their number, the thickness of the inhomogeneous plasma region, and so on. Such plasma density structures are shown to be very diverse when, e.g., a wave that is incident from vacuum propagates without reflection through a plasma layer (wave barrier transillumination). With the cubic nonlinearity taken into account, a one-dimensional problem of the nonlinear transillumination of an inhomogeneous plasma can be solved exactly.  相似文献   

8.
9.
The nonlinear resonance doubling of radio wave frequencies in inhomogeneous plasma is studied as applied to the ionosphere under the conditions of the phase synchronism between an extraordinary pump wave and its second harmonic. The synchronism is not related to plasma resonances, but is determined by the magnetic field and plasma electron density in the transparency region. The generation efficiency of the second harmonic of a transversely propagating wave is calculated for a wide frequency band lying higher than the lower hybrid resonance frequency. It is shown that this effect is physically analogous to the generation of the second harmonic of laser radiation in a nonlinear crystal. The generation efficiency of the second harmonic is determined for inhomogeneous ionospheric plasma in which the synchronism condition is satisfied in a limited frequency range. It is shown that this effect can be used for remote nonlinear diagnostics of the upper ionospheric plasma, in which the characteristic size of the synchronism region can reach several kilometers. It is proposed to use a combination of satellite and ground-based ion probes in experiments on transionospheric probing. Even if the frequency of the wave emitted from the satellite is lower than the critical frequency in the ionosphere, the frequency of its second harmonic can exceed the critical frequency, so that it can be recorded by a ground-based ion probe or a specially designed receiver. The reflected second-harmonic signal can also be detected at the satellite by using a broadband radio-frequency spectrometer.  相似文献   

10.
Linear O-X conversion in the vicinity of a critical-density magnetic surface in a cold anisotropic plasma is studied using the model of a plasma inhomogeneous in two dimensions. Analytic expressions for the conversion and reflection coefficients are derived.  相似文献   

11.
The conditions under which the energy of the electron Langmuir oscillations can escape from the plasma into vacuum are determined in the simplest model of a plane slab of an inhomogeneous cold magnetized plasma in a uniform magnetic field.  相似文献   

12.
A nonisothermal model of the positive column allowing for electron energy balance is analyzed. The influence of the axial magnetic field on the characteristics of the cylindrical positive column of a low-pressure discharge is investigated in the hydrodynamic approximation. It is shown that the magnetic field affects the plasma density distribution, plasma velocity, and electron energies. The radial dependences of the plasma density, electron energy, and plasma velocity, as well as the azimuthal velocities of electrons and ions, are calculated for helium at different values of the magnetic field strength. It is established that inertia should be taken into account in the equations for the azimuthal motion of electrons and ions. The results obtained in the hydrodynamic approximation differ significantly from those obtained in the framework of the common diffusion model of the positive column in the axial magnetic field. It is shown that the distributions of the plasma density and radial plasma velocity in the greater part of the positive column tend to those obtained in the diffusion approximation at higher values of the axial magnetic field and gas density, although substantial differences remain in the near-wall region.  相似文献   

13.
The dispersion properties of ordinary surface cyclotron waves in a semiinfinite nonuniform plasma are investigated. The waves propagate across the external magnetic field directed along the plasma surface in a metal waveguide the internal surface of which is covered with a dielectric. The problem is solved analytically in the framework of a kinetic model for plasma particles under the assumption of weak spatial dispersion. The influence of the parameters of the dielectric layer separating the plasma from the metal wall, the shape of the plasma density profile, and the value of the external magnetic field on the dispersion properties of surface cyclotron waves is studied both numerically and analytically.  相似文献   

14.
The parameters of a calcium plasma source based on an electron cyclotron resonance (ECR) discharge were calculated. The analysis was performed as applied to an ion cyclotron resonance system designed for separation of calcium isotopes. The plasma electrons in the source were heated by gyrotron microwave radiation in the zone of the inhomogeneous magnetic field. It was assumed that, in such a combined trap, the energy of the extraordinary microwave propagating from the high-field side was initially transferred to a small group of resonance electrons. As a result, two electron components with different transverse temperatures—the hot resonance component and the cold nonresonance component—were created in the plasma. The longitudinal temperatures of both components were assumed to be equal. The entire discharge space was divided into a narrow ECR zone, where resonance electrons acquired transverse energy, and the region of the discharge itself, where the gas was ionized. The transverse energy of resonance electrons was calculated by solving the equations for electron motion in an inhomogeneous magnetic field. Using the law of energy conservation and the balance condition for the number of hot electrons entering the discharge zone and cooled due to ionization and elastic collisions, the density of hot electrons was estimated and the dependence of the longitudinal temperature T e of the main (cold) electron component on the energy fraction β lost for radiation was obtained.  相似文献   

15.
Theoretical study of the propagation of a packet of surface electromagnetic surface waves with a zero axial wavenumber in a circular-cross-section cylindrical metal waveguide within the frequency range that is higher than upper hybrid resonance is carried out. The waveguide is partially filled by plasma and immersed into axial magnetic field. The cross section of the plasma column is assumed to differ from circular shape. The effect of this shape on the dispersion properties of azimuthal surface modes is investigated by the method of successive approximations. The fields of the waves and their eigenfrequencies are determined up to terms of the second order in the deviation of the plasma cross section shape from the ring one. The correction to the eigenfrequency of azimuthal surface modes caused by this feature of the plasma column section is proved to increase with decreasing the external magnetic field and increasing the value of the dielectric constant of the dielectric, that separates the plasma from the metal wall of the waveguide. The spectral composition of the wave packet, in the form of which these modes propagate, is studied. The amplitudes of the satellite harmonics of these modes are found to increase with increasing the plasma density and decreasing the external magnetic field.  相似文献   

16.
The influence of a transverse magnetic field on the characteristics of the positive column of a planar low-pressure discharge is studied theoretically. The motion of magnetized electrons is described in the framework of a continuous-medium model, while the ion motion in the ambipolar electric field is described by means of a kinetic equation. Using mathematical transformations, the problem is reduced to a secondorder ordinary differential equation, from which the spatial distribution of the potential is found in an analytic form. The spatial distributions of the plasma density, mean plasma velocity, and electric potential are calculated, the ion velocity distribution function at the plasma boundary is found, and the electron energy as a function of the magnetic field is determined. It is shown that, as the magnetic field rises, the electron energy increases, the distributions of the plasma density and mean plasma velocity become asymmetric, the maximum of the plasma density is displaced in the direction of the Ampère force, and the ion flux in this direction becomes substantially larger than the counter-directed ion flux.  相似文献   

17.
A study is made of the processes that occur in an inhomogeneous nonisothermal plasma in a strong external magnetic field and whose characteristic frequencies are lower than the ion Langmuir frequency but higher than the collision frequency. An expression for the ponderomotive force of the low-frequency field is derived. The excitation of a long-wavelength low-frequency drift wave during the development of the modulational instability of a drift pump wave is investigated. The growth rates of the instability are obtained, and the conditions for its onset are determined. The possible relation of the modulational instability to the formation of structures in the plasma is discussed.  相似文献   

18.
Results are presented from experimental studies of low-pressure inductive RF discharges (including those with a capacitive component) employed in plasma technology. It is shown that both the RF power absorbed in the plasma and the electron density depend nonmonotonically on the external magnetic field. Discharge disruptions occurring at critical values of the magnetic field and the spatial redistribution and hysteresis of the plasma parameters were observed when varying the magnetic field and RF generator power. The parameters of the plasma of low-pressure (0.5–5 mTorr) inductive RF discharges were investigated, and the discharge properties related to the redistribution of the RF generator power between the plasma and the discharge external circuit were revealed. The experiments were performed with both conventional unmagnetized inductive plasma sources and plasma sources with a magnetic field.  相似文献   

19.
A diagnostic method for determining plasma density from the dispersion of surface waves guided by a discharge channel in an axial magnetic field is discussed. The diagnostic characteristics that are the easiest to record experimentally are determined by analyzing the theoretical dispersion curves, and the ways of exploiting these characteristics for plasma diagnostics are suggested. To determine the slowing-down factor of a probing wave in a plasma channel, it is proposed to use diagnostic-signal resonances that occur when the wavelength of the slowed wave becomes equal to the length of the emitting or receiving antenna. The dependence of the plasma density averaged over the cross section of the plasma column on the strength of the external magnetic field is determined for a discharge channel formed as a result of the ionization self-channeling of plasma (lower hybrid) waves and whistlers.  相似文献   

20.
The influence of rotation on the flute instability of a cylindrical gravitating plasma in a straight inhomogeneous magnetic field is studied in the framework of one-fluid magnetohydrodynamics. The dispersion relation and integral expression for the instability growth rate of eigenmodes are derived. It is shown that, in the framework of the given problem, rotation is a destabilizing factor, and the corresponding theorem is proved for the general case. For a linear radial profile of the rotation frequency, the structure of eigenmodes is calculated. The growth rate of these modes is shown to increase with increasing rotation velocity and azimuthal mode number. It is found that plasma rotation in the eigenmode localization region leads to the displacement of perturbation from the rotation region, which results in a decrease in the instability growth rate. The absence of eigenmodes (i.e., exponential instability of the system) for certain profiles of the density and rotation frequency is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号