首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 909 毫秒
1.
Human inducible nitric oxide synthase (iNOS) is most readily observed in macrophages from patients with inflammatory diseases like atherosclerosis. The aim of the present study was to find out the combined effect of male sex hormone; testosterone and apocynin (NADPH oxidase inhibitor) on cytokine-induced iNOS production. THP-1 cells were differentiated into macrophages by phorbol myristate acetate (PMA). Expression of iNOS was induced by the addition of cytokine mixture? Testosterone was added at different concentrations (10(-6)-10(-12) M) with apocynin (1 mM). Testosterone (10(-8), 10(-10) M) inhibited NOx production in cytokine-added THP-1 cells which was further confirmed by quantikine assay of iNOS protein and RT-PCR analysis. Testosterone treatment decreased 40% of superoxide anion production. Testosterone showed inhibition of NADPH oxidase, especially expression of p67phox and p47phox (cytosol subunits). Addition of testosterone with apocynin further decreased the expression of p67phox and p47phox subunits of NADPH oxidase. The findings of the present study suggest that, testosterone; the male androgen plays an important role in the prevention of atherogenesis. Even though apocynin does not have any role on NO production, addition of apocynin together with testosterone is effective in suppressing iNOS activity.  相似文献   

2.
Overproduction of nitric oxide (NO) in the liver has been implicated as an important event in endotoxin shock and in other models of hepatic inflammation and injury. The present study was undertaken to evaluate the effect of ONO-1714, a potent and specific inhibitor of inducible NO synthase (iNOS), on acetaminophen-induced hepatotoxicity in the rats. Oral administration of ONO-1714 dose-dependently inhibited NOx (NO2- and NO3-) accumulation in rat plasma after lipopolysaccharide (LPS) treatment. Intraperitoneal acetaminophen at 1 g/kg caused damage to the centrilobular regions of the liver and increase in serum alanine and aspartate transaminase (ALT and AST, respectively) levels accompanied by elevated plasma NOx levels after 24 h. Oral administration of ONO-1714 at 10 and 100 microg/kg dose-dependently reduced the acetaminophen-induced hepatic tissue damage and the increases in serum ALT and AST levels. ONO-1714 also blocked the increase in plasma NOx concentrations. These findings demonstrate that oral ONO-1714, an iNOS inhibitor, protects against acetaminophen-evoked hepatic inflammation/injury, strongly suggesting that NO produced by iNOS plays a key role in the pathogenesis of this drug-induced hepatotoxicity.  相似文献   

3.
Recent data suggest that diabetes is a risk factor for pulmonary hypertension. The aim of the present study was to analyze whether diabetes induces endothelial dysfunction in pulmonary arteries and the mechanisms involved. Male Sprague-Dawley rats were randomly divided into a control (saline) and a diabetic group (70 mg/kg(-1) streptozotocin). After 6 wk, intrapulmonary arteries were mounted for isometric tension recording, and endothelial function was tested by the relaxant response to acetylcholine. Protein expression and localization were measured by Western blot and immunohistochemistry and superoxide production by dihydroethidium staining. Pulmonary arteries from diabetic rats showed impaired relaxant response to acetylcholine and reduced vasoconstrictor response to the nitric oxide (NO) synthase inhibitor L-NAME, whereas the response to nitroprusside and the expression of endothelial NO synthase remained unchanged. Endothelial dysfunction was reversed by addition of superoxide dismutase or the NADPH oxidase inhibitor apocynin. An increase in superoxide production and increased expression of the NADPH oxidase regulatory subunit p47(phox) were also found in pulmonary arteries from diabetic rats. In conclusion, the pulmonary circulation is a target for diabetes-induced endothelial dysfunction via enhanced NADPH oxidase-derived superoxide production.  相似文献   

4.
As well as superoxide generated from neutrophils, nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) in macrophages plays an important role in inflammation. We previously showed that 6-formylpterin, a xanthine oxidase inhibitor, has a superoxide scavenging activity. In the present study, to elucidate other pharmacological activities of 6-formylpterin, we investigated the effects of 6-formylpterin on production of nitric oxide (NO) in the murine macrophage cell line RAW 264.7 stimulated by lipopolysaccharide (LPS) and interferon-gamma (INF-gamma). 6-Formylpterin suppressed the expression of iNOS, and it also inhibited the catalytic activity of iNOS, which collectively resulted in the inhibition of NO production in the stimulated macrophages. However, 6-formylpterin did not scavenge the released NO from an NO donor, S-nitroso-N-acetylpenicillamine (SNAP). These results indicate that 6-formylpterin inhibits pathological NO generation from macrophages during inflammation, but that it does not disturb the physiological action of NO released from other sources.  相似文献   

5.
We recently reported that in vitro Cognac polyphenolic compounds (CPC) induce NO-dependent vasorelaxant effects and stimulate cardiac function. In the present study, we aim to investigate the effect of CPC on both nitric oxide (NO) and superoxide anions (O(2)(-)) production in cultured human endothelial cells. In addition, its effect on the bradykinin (BK)-induced NO production was also tested. The role and sources of O(2)(-) in the concomitant effect of BK plus CPC were pharmacologically determined. NO and O(2)(-) signals were measured using electron paramagnetic resonance technique using specific spin trappings. Both, CPC and BK induced an increase in NO production in human endothelial cells. The combination of both further enhanced NO release. The capacity of CPC plus BK to increase NO signal was blunted by the NO synthase inhibitor, N(G)-nitro-L-arginine methyl ester, and was enhanced in the presence either of superoxide dismutase or catalase. Moreover, CPC plus BK response was greater after inhibition of either NADPH oxidase by apocynin or xanthine oxidase by allopurinol but it was not affected by rotenone. CPC did not affect O(2)(-) level either alone or after its increase upon lipopolysaccharide treatment. Finally, the capacity of BK alone to increase NO was enhanced either by apocynin or allopurinol. Altogether, these data demonstrate that CPC is able to directly increase NO production without affecting O(2)(-) and enhances the BK-induced NO production in human endothelial cells. The data highlight the ability of BK to stimulate not only NADPH oxidase- but also xanthine oxidase-inhibitor sensitive mechanisms that reduce its efficiency in increasing NO either alone or in the presence of CPC. These results bring pharmacological evidence for vascular protection by CPC via its potentiating effect of BK response in terms of endothelial NO release.  相似文献   

6.
NADPH oxidase is a major source of superoxide anions in the pulmonary arteries (PA). We previously reported that intratracheal SOD improves oxygenation and restores endothelial nitric oxide (NO) synthase (eNOS) function in lambs with persistent pulmonary hypertension of the newborn (PPHN). In this study, we determined the effects of the NADPH oxidase inhibitor apocynin on oxygenation, reactive oxygen species (ROS) levels, and NO signaling in PPHN lambs. PPHN was induced in lambs by antenatal ligation of the ductus arteriosus 9 days prior to delivery. Lambs were treated with vehicle or apocynin (3 mg/kg intratracheally) at birth and then ventilated with 100% O(2) for 24 h. A significant improvement in oxygenation was observed in apocynin-treated lambs after 24 h of ventilation. Contractility of isolated fifth-generation PA to norepinephrine was attenuated in apocynin-treated lambs. PA constrictions to NO synthase (NOS) inhibition with N-nitro-l-arginine were blunted in PPHN lambs; apocynin restored contractility to N-nitro-l-arginine, suggesting increased NOS activity. Intratracheal apocynin also enhanced PA relaxations to the eNOS activator A-23187 and to the NO donor S-nitrosyl-N-acetyl-penicillamine. Apocynin decreased the interaction between NADPH oxidase subunits p22(phox) and p47(phox) and decreased the expression of Nox2 and p22(phox) in ventilated PPHN lungs. These findings were associated with decreased superoxide and 3-nitrotyrosine levels in the PA of apocynin-treated PPHN lambs. eNOS protein expression, endothelial NO levels, and tetrahydrobiopterin-to-dihydrobiopterin ratios were significantly increased in PA from apocynin-treated lambs, although cGMP levels did not significantly increase and phosphodiesterase-5 activity did not significantly decrease. NADPH oxidase inhibition with apocynin may improve oxygenation, in part, by attenuating ROS-mediated vasoconstriction and by increasing NOS activity.  相似文献   

7.
The NADPH-diaphorase (NADPH-d) histochemical technique is commonly used to localize the nitric oxide (NO) produced by the enzyme nitric oxide synthase (NOS) in neural tissue. The expression of inducible nitric oxide synthase (iNOS) is induced in the late stage of cerebral ischemia, and NO produced by iNOS contributes to the delay in recovery from brain neuronal damage. The present study was performed to investigate whether the increase in nitric oxide production via inducible nitric oxide synthase was suppressed by the administration of aminoguanidine, a selective iNOS inhibitor, as it follows a decrease of NADPH-diaphorase activity (a marker for NOS) after four-vessel occlusion used as an ischemic model. The administration of aminoguanidine (100 mg/kg i.p., twice per day up to 3 days immediately after the ischemic insult) reduced the number of NADPH-diaphorase positive cells to control levels. Our results indicated that aminoguanidine suppressed NADPH-diaphorase activity, and also decreased the number of NADPH-diaphorase positive cells in the CA1 region of the hippocampus following ischemic brain injury.  相似文献   

8.
We have shown that immunostimulated astrocytes produce excess nitric oxide (NO) and eventually peroxynitrite (ONOO(-)) that was closely associated with the glucose deprivation-potentiated death of astrocytes. The present study shows that activated p38 MAPK regulates ONOO(-) generation from lipopolysaccharide (LPS) plus interferon-gamma (IFN-gamma)-stimulated astrocytes. LPS+IFN-gamma-induced p38 MAPK activation and ONOO(-) generation were attenuated by SB203580 or SKF-86002, specific inhibitors of p38 MAPK. ONOO(-) generation was blocked by NADPH oxidase inhibitor, diphenyleneiodonium chloride, and nitric oxide synthase (NOS) inhibitor, N omega-nitro-L-arginine methyl ester, suggesting both enzymes are involved in ONOO(-) generation. Inhibition of p38 MAPK suppressed LPS+IFN-gamma-induced NO production through down-regulating inducible form of NOS expression. It also suppressed LPS+IFN-gamma-induced NADPH oxidase activation and eventually, the inducible form of superoxide production. Transfection with dominant negative vector of p38 alpha reduced LPS+IFN-gamma-induced ONOO(-) generation through blocking both iNOS-derived NO production and NADPH oxidase-derived O2(-) production. Our results suggest that activated p38 MAPK may serve as a potential signaling molecule in ONOO(-) generation through dual regulatory mechanisms, involving iNOS induction and NADPH oxidase activation.  相似文献   

9.
10.
Maneb (MB) and paraquat (PQ) provoke oxidative stress-mediated cell damage. Role of xanthine oxidase (XO) in oxidative stress and its association with nitric oxide (NO)/NO synthase (NOS) have been widely reported. While inducible NOS (iNOS) is implicated in MB+PQ-induced toxicity in rat polymorphonuclear leukocytes (PMNs), role of XO and its alliance with iNOS have not yet been established. The study investigated the role of XO in MB+PQ-induced oxidative stress in rat PMNs and its regulation by iNOS and inflammatory cytokines. MB+PQ-augmented reactive oxygen species (ROS), superoxide, nitro-tyrosine, lipid peroxidation (LPO), and nitrite levels along with the catalytic activity of iNOS, superoxide dismutase (SOD), and XO. XO inhibitor, allopurinol (AP), alleviated MB+PQ-induced changes except nitrite content and iNOS activity. Conversely, an iNOS inhibitor, aminoguanidine, mitigated MB+PQ-induced LPO, nitrite, iNOS, and nitro-tyrosine levels; however, no change was observed in ROS, SOD, and XO. Nuclear factor-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), tumor necrosis factor-alpha (TNF-α) inhibitor, pentoxyfylline, and an anti-inflammatory agent, dexamethasone, attenuated MB+PQ-induced increase in XO, superoxide, and ROS with parallel reduction in the expression of interferon-gamma (IFN-γ), TNF-α, and interleukin-1β (IL-1β) in rat PMNs. Exogenous IFN-γ, TNF-α, and IL-1β enhanced superoxide, ROS, and XO in the PMNs of control and MB+PQ-treated rats; however, IFN- γ was found to be the most potent inducer. Moreover, AP ameliorated cytokine-induced free radical generation and restored XO activity towards normalcy. The results thus demonstrate that XO mediates oxidative stress in MB+PQ-treated rat PMNs via iNOS-independent but cytokine (predominantly IFN-γ)-dependent mechanism.  相似文献   

11.
Apocynin is a naturally occurring methoxy-substituted catechol, experimentally used as an inhibitor of NADPH oxidase. Since it acts as a potent inhibitor in studies with neutrophils and macrophages, no inhibitory effect can often be found in non-phagocyte cells. In our experiments, apocynin even stimulated reactive oxygen species (ROS) production by vascular fibroblasts. Even when added to macrophages, apocynin initially caused an increase in ROS production. The inhibition of ROS formation followed, suggesting that in the presence of leukocyte myeloperoxidase and hydrogen peroxide, apocynin is converted to another compound. Apocynin pre-activated with H2O2 and horseradish peroxidase (HRP) inhibited ROS production immediately. In non-phagocytes, apocynin stimulated ROS production and no inhibition was observed even after 60 min. Apocynin treated with H2O2 and HRP, however, decreased ROS production in the same manner as in macrophages. The stimulatory effect on ROS production can be abolished by tiron and superoxide dismutase (SOD), suggesting that superoxide was the produced species. The effect of apocynin was inhibited by diphenylene iodinium (DPI), a non-scavenging NADPH oxidase inhibitor. It can be summarized that apocynin stimulates cell superoxide production. In the presence of peroxidase and hydrogen peroxide, however, it is converted into another compound that acts as an inhibitor of superoxide production. It strongly suggests that under conditions in vivo, apocynin can have opposite effects on phagocytes and non-phagocyte cells. It acts as an inhibitor of phagocyte NADPH oxidase but also as a ROS production stimulator in non-phagocyte cells.  相似文献   

12.
Nitric oxide (NO) plays a role in regulating the mucosal integrity of the stomach. However, its part in the mucosal defense of the inflamed stomach remains unclear. In the present study, we examined the effects of various NO synthase (NOS) inhibitors on gastric ulcerogenic and acid secretory responses following daily exposure of the stomach to iodoacetamide and investigated the role of each NOS isozyme in gastric protection from subchronic mucosal irritation. Gastric mucosal irritation was induced in rats by addition of 0.1% iodoacetamide to drinking water, and the gastric mucosa was examined on the 6th day. L-NAME (a nonselective NOS inhibitor: 20 mg/kg) or aminoguanidine (a selective iNOS inhibitor: 20 mg/kg) was given s.c. twice 24 h and 3 h before the termination of iodoacetamide treatment. Giving iodoacetamide in drinking water for 5 days produced minimal damage in the stomach with an increase in myeloperoxidase (MPO) activity and lipid peroxidation. Iodoacetamide treatment up-regulated the expression of iNOS mRNA and NO production in the stomach, without affecting nNOS expression. Both L-NAME and aminoguanidine markedly aggravated gastric lesions induced by iodoacetamide treatment, with a further enhancement in MPO activity and lipid peroxidation. Basal acid secretion as determined in pylorous-ligated stomachs was decreased following iodoacetamide treatment, but the response was significantly restored by both L-NAME and aminoguanidine. These results suggest that endogenous NO derived from both cNOS and iNOS is involved in mucosal defense of the inflamed stomach, partly by decreasing acid secretion, and contributes to maintaining mucosal integrity under such conditions.  相似文献   

13.
The role of nitric oxide (NO) in the etiology of ulcerative colitis is controversial with reports of the improvement and aggravation of colonic lesions by inducible NO synthase (iNOS) inhibitors. In the present study, we compared the effect of the selective iNOS inhibitor aminoguanidine and the nonselective NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) on a dextran sulfate sodium (DSS)-induced model of colitis in rats. Experimental colitis was induced by a 3% DSS-solution added to drinking water for 7 days. Aminoguanidine (5 approximately 20 mg/kg) and L-NAME (10 mg/kg) were administered p.o. twice daily for the first 3 days, the last 3 days or all 6 days of DSS treatment. Body weight and severity of colitis (diarrhea, bloody feces) were observed over a period of 7 days. DSS treatment resulted in severe colonic lesions, accompanied by diarrhea, bloody feces, decrease of body weight and colon shortening. All of the parameters investigated improved significantly with aminoguanidine treatment at 20 mg/kg for 6 days or the last 3 days of DSS-treatment, but L-NAME did not significantly affect the colitis during these periods. When L-NAME or aminoguanidine was given in the first 3 days of DSS treatment, the colonic lesions were slightly aggravated by L-NAME but not affected by aminoguanidine. The expression of iNOS mRNA was observed from the 3(rd) day of DSS treatment. These results suggested that endogenous NO exerts a biphasic influence on DSS-induced colitis, depending on the NOS isoenzyme; a beneficial effect of NO derived from constitutive NOS and a detrimental effect of NO produced by iNOS in the development of colitis.  相似文献   

14.
Both NADPH oxidase-derived reactive oxygen species (ROS) and asymmetric dimethylarginine (ADMA) are increased in hypertension. Apocynin, an NADPH oxidase inhibitor, could inhibit ROS, thus we tested whether apocynin can block NADPH oxidase and prevent increases of ADMA and blood pressure (BP) in spontaneously hypertensive rats (SHRs). SHRs and Wistar Kyoto (WKY) rats, aged 4 weeks, were assigned to four groups: untreated SHRs and WKY rats, SHRs and WKY rats that received 2.5 mM apocynin for 8 weeks. BP was significantly higher in SHRs compared to WKY rats, which was attenuated by apocynin. Apocynin prevented p47phox translocation in SHR kidneys, but not the increase of superoxide and H(2)O(2). Additionally, apocynin did not protect SHRs against increased ADMA. Apocynin blocks NADPH oxidase to attenuate hypertension, but has little effect on the ADMA/nitric oxide (NO) pathway in young SHRs. The reduction of ROS and the preservation of NO simultaneously might be a better approach to restoring ROS-NO balance to prevent hypertension.  相似文献   

15.
Aminoguanidine inhibits the development of retinopathy in diabetic animals, but the mechanism remains unclear. Inasmuch as aminoguanidine is a relatively selective inhibitor of the inducible isoform of nitric oxide synthase (iNOS), we have investigated the effects of hyperglycemia on the retinal nitric oxide (NO) pathway in the presence and absence of aminoguanidine. In vivo studies utilized retinas from experimentally diabetic rats treated or without aminoguanidine for 2 months, and in vitro studies used bovine retinal endothelial cells and a transformed retinal glial cell line (rMC-1) incubated in 5 mm and 25 mm glucose with and without aminoguanidine (100 microg/mL). NO was detected as nitrite and nitrate, and nitrotyrosine and iNOS were detected using immunochemical methods. Retinal homogenates from diabetic animals had greater than normal levels of NO and iNOS (p < 0.05), and nitrotyrosine was greater than normal, especially in one band immunoprecipitated from retinal homogenates. Oral aminoguanidine significantly inhibited all of these increases. Nitrotyrosine was detected immunohistochemically only in the retinal vasculature of non-diabetic and diabetic animals. Retinal endothelial and rMC-1 cells cultured in high glucose increased NO and NT, and aminoguanidine inhibited both increases in rMC-1 cells, but only NT in endothelial cells. Hyperglycemia increases NO production in retinal cells, and aminoguanidine can inhibit this abnormality. Inhibition of diabetic retinopathy by aminoguanidine might be mediated in part by inhibition of sequelae of NO production.  相似文献   

16.
We investigated the pathogenic role of nitric oxide (NO) in indomethacin-induced intestinal ulceration in rats. Nonfasting animals responded to a single administration of indomethacin (10 mg/kg, s.c.), resulting in multiple hemorrhagic lesions in the small intestine, mostly the jejunum and ileum. The damage was first observed 6 hr after indomethacin, the severity increasing progressively with time up to 24 hr later, accompanied with the gene expression of inducible NO synthase (iNOS) and the increase of nitrite and nitrate (NOx) contents in the mucosa. The ocurrence of damage was significantly prevented when iNOS induction was inhibited by dexamethasone given either once 0.5 hr before or twice 0.5 hr before and 6 hr after indomethacin. Likewise, aminoguanidine (a relatively selective iNOS inhibitor) reduced the severity of damage, irrespective whether given twice or as a single injection 6 hr after indomethacin. By contrast, the non-selective NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) exhibited a biphasic effect, depending on the time of administration; the pre-administration worsened the damage, while the later administration reduced the severity of these lesions, yet both responses occureed in a L-arginine-sensitive manner. Pre-administration of L-NAME, but not aminoguanidine, significantly decreased NOx production in the intestinal mucosa of normal rats, while the increase of NOx production following indomethacin was significantly suppressed by the later administration of aminoguanidine as well as L-NAME. These results suggest that NO exerts a dual action in the pathogenesis of indomethacin-induced intestinal ulceration; NO generated by cNOS is protective against indomethacin, by maintaining the integrity of intestinal mucosa, while NO derived by iNOS plays a key pathogenic role in the ulcerogenic process.  相似文献   

17.
18.
A nonselective inhibitor of cyclooxygenase (COX; high-dose aspirin) and a relatively selective inhibitor of inducible nitric oxide synthase (iNOS; aminoguanidine) have been found to inhibit development of diabetic retinopathy in animals, raising a possibility that NOS and COX play important roles in the development of retinopathy. In this study, the effects of hyperglycemia on retinal nitric oxide (NO) production and the COX-2 pathway, and the interrelationship of the NOS and COX-2 pathways in retina and retinal cells, were investigated using a general inhibitor of NOS [N(G)-nitro-l-arginine methyl ester (l-NAME)], specific inhibitors of iNOS [l-N(6)-(1-iminoethyl)lysine (l-NIL)] and COX-2 (NS-398), and aspirin and aminoguanidine. In vitro studies used a transformed retinal Müller (glial) cell line (rMC-1) and primary bovine retinal endothelial cells (BREC) incubated in 5 and 25 mM glucose with and without these inhibitors, and in vivo studies utilized retinas from experimentally diabetic rats (2 mo) treated or without aminoguanidine or aspirin. Retinal rMC-1 cells cultured in high glucose increased production of NO and prostaglandin E(2) (PGE(2)) and expression of iNOS and COX-2. Inhibition of NO production with l-NAME or l-NIL inhibited all of these abnormalities, as did aminoguanidine and aspirin. In contrast, inhibition of COX-2 with NS-398 blocked PGE(2) production but had no effect on NO or iNOS. In BREC, elevated glucose increased NO and PGE(2) significantly, whereas expression of iNOS and COX-2 was unchanged. Viability of rMC-1 cells or BREC in 25 mM glucose was significantly less than at 5 mM glucose, and this cell death was inhibited by l-NAME or NS-398 in both cell types and also by l-NIL in rMC-1 cells. Retinal homogenates from diabetic animals produced significantly greater than normal amounts of NO and PGE(2) and of iNOS and COX-2. Oral aminoguanidine and aspirin significantly inhibited all of these increases. The in vitro results suggest that the hyperglycemia-induced increase in NO in retinal Müller cells and endothelial cells increases production of cytotoxic prostaglandins via COX-2. iNOS seems to account for the increased production of NO in Müller cells but not in endothelial cells. We postulate that NOS and COX-2 act together to contribute to retinal cell death in diabetes and to the development of diabetic retinopathy and that inhibition of retinopathy by aminoguanidine or aspirin is due at least in part to inhibition of this NO/COX-2 axis.  相似文献   

19.
Increased oxidative/nitrosative stress, resulting from generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) appears to play an important role in the inflammatory responses to atherosclerosis. By using MitoTracker Orange CM-H(2)TMRos, CM-H(2)DCFDA (DCF-DA), Dihydrorhodamine 123 (DHR123), DAF-FM, Dihydroethidium (DHE) and JC-1 alone or in all combinations of red and green probes, the present study was designed to monitor the ROS and RNS generation in acute exposure of single monocyte U937-derived macrophage to oxidized low density lipoprotein (Ox-LDL). Acute Ox-LDL (100 microg/ml) treatment increased time-dependently production of intracellular nitric oxide (NO), superoxide (O2*-), hydrogen peroxide (H(2)O(2)) and peroxynitrite (ONOO(-)), and decreased mitochondrial membrane potential (Deltapsi) in single cell. Pretreatment of aminoguanidine (an inhibitor of inducible nitric oxide synthase (iNOS), 10 microM) and vitamin C (an antioxidant agent, 100 microM) for 2h, reduced significantly the Ox-LDL-induced increase of NO and O2*-, and vitamin C completely inhibited increase of intracellular NO and O2*-. In contrast to aminoguanidine, Vitamin C pretreatment significantly prevented Ox-LDL-induced overproduction of NO and O2*- (P<0.01), indicating that antioxidant may be more effective in therapeutic application than iNOS inhibitor in dysfunction of ROS/RNS. By demonstrating a complex imbalance of ROS/RNS via fluorescent probes in acute exposure of single cell to Ox-LDL, oxidative/nitrosative stress might be more detected in the early atherosclerotic lesions.  相似文献   

20.
Retinitis pigmentosa (RP) is a group of diseases in which many different mutations cause rod photoreceptor cells to die and then gradually cone photoreceptors die due to progressive oxidative damage. In this study, we have shown that peroxynitrite-induced nitrosative damage also occurs. In the rd1 mouse model of RP, there was increased staining for S-nitrosocysteine and nitrotyrosine protein adducts that are generated by peroxynitrite. Peroxynitrite is generated from nitric oxide (NO) and superoxide radicals. After degeneration of rods, injection of hydroethidine resulted in strong fluorescence in the retina of rd1 mice, indicating high levels of superoxide radicals, and this was reduced, as was nitrotyrosine staining, by apocynin, suggesting that overaction of NADP(H) oxidase is at least partially responsible. Treatment of rd1 mice with a mixture of nitric oxide synthase (NOS) inhibitors markedly reduced S-nitrosocysteine and nitrotyrosine staining and significantly increased cone survival, indicating that NO-derived peroxynitrite contributes to cone cell death. Treatment with 7-nitroindazole, a relatively specific inhibitor of neuronal NOS, also significantly reduced cone cell death, but aminoguanidine, a relatively specific inhibitor of inducible NOS, did not. These data suggest that NO generated by neuronal NOS exacerbates oxidative damage to cones in RP and that combined therapy to reduce NO and oxidative stress should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号