首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
In the housefly's first optic neuropile, or lamina, the axons of two classes of monopolar cell interneurons, L1 and L2, exhibit a daily rhythm of size changes: swelling during the day, and shrinking by night. At least for the L2 cells this rhythm is circadian. Moreover, epithelial glial cells that enwrap each lamina cartridge, its monopolar cell axons, and their surrounding crown of input photoreceptor terminals also change size, but in the opposite direction to the changes in L1 and L2-swelling by night and shrinking by day. The rhythmic changes in glia indicate the possible involvement of these cells in the lamina's circadian system. To examine their role in regulating the rhythmic changes of L1 and L2's axon sizes we have injected three chemicals into the haemolymph of the fly's head: fluorocitrate (FL) and iodoacetate (IAA), which affect the metabolism of glial cells, and octanol (OC), which closes gap junction channels. All chemicals exerted an effect on L1 and L2, which depended on the time of injection, the drug concentration, and the postinjection times at which we examined the fly's brains. Moreover, day/night changes in the axon sizes of L1 and L2 were increased in FL- and IAA-treated flies, indicating that glial cells may normally inhibit these changes by regulating the sizes of L1 and L2's axons during the day and night. In turn, lack of a day/night rhythm in L1 and L2 after OC injections shows that the rhythm's persistence depends on communication between the lamina cells through gap junction channels.  相似文献   

2.
At the anterior rim of the first optic neuropile, or lamina, of the housefly's (Musca domestica) compound eye, the terminals of photoreceptors (R) innervate postsynaptic neurons in variable numbers to provide a continuous range of natural hypo- and hyperinnervations. Frequencies of photoreceptor synapses have been measured from quantitative electron microscopy on single sections of the lamina's unit synaptic modules, called cartridges. These are normally innervated by six photoreceptor terminals (6R cartridges). At the lamina's edge hypoinnervated cartridges (2R-5R) are found, whereas hyperinnervated cartridges (7R, 8R) are located at the equator between dorsal and ventral eye halves. In 2R cartridges each presynaptic terminal forms up to 1.5 times the normal, 6R cartridge number of synapses, thereby offsetting the reduced number of terminals and partially conserving the input upon the postsynaptic neurons. Thus the terminals have a reserve synaptogenic capacity never normally revealed. By comparison, terminals in 8R cartridges form about the same numbers of synapses as in "normal" eye regions, so that their postsynaptic neurons have a synaptic input increased by the extra number of terminals. The number of synapses formed between input terminals and target neurons is therefore not fixed but changes as a function of the total receptor terminal complement. The size of a photoreceptor terminal covaries to a certain extent with the number of its presynaptic sites; the spacing density of presynaptic sites over the terminals' surface in a 2R cartridge compared with an 8R cartridge increases far less (only 17%) than the increase in the number of sites (43%). The pair of postsynaptic cell interneurons in each 2R cartridge also shows a decrease in axonal diameter compared with those in 8R cartridges. Thus both the pre- and postsynaptic cells show size changes correlated with changes in their synaptic engagement.  相似文献   

3.
Summary Musca and related flies have three main photoreceptor subsystems. The R1–6 group has short axons that terminate in the cartridges of the first optic neuropile, the lamina. The cartridges are bypassed by the longer axons of R7 and R8, which run together to terminate at different levels in the underlying medulla neuropile. The present account describes a shallow, previously unidentified zone in the lamina within which R7/8 make glancing contact with R1–6. At the distal border of the cartridge over no more than 3–4 m depth, the tangentially directed short axon of R6 squeezes between the pair from R7 and R8, forming quite large areas of mutual contact (approximately 7 m2). Less frequently, R1 is contacted. At least some of these sites contain smaller membrane specialisations indistinguishable from the more numerous gap junctions found more proximally that interconnect the terminals of R1–6. The R7/8 junctions with R6 are of comparable size (0.15 m2) and likewise possess symmetrical membrane densities. They provide proposed pathways for direct electrical interaction to account for observed electrical input from R7/8 to the R1–6 subsystem. In two cases R7/8 was possibly postsynaptic to R1–6 at a multiple-contact synapse, but even if functional, these sites were so rare that they are unlikely to have much operational significance.  相似文献   

4.
The supraesophageal ganglion of the wolf spider Arctosa kwangreungensis is made up of a protocerebral and tritocerebral ganglion, whereas the subesophageal ganglionic mass is composed of a single pair of pedipalpal ganglia, four pairs of appendage ganglia, and a fused mass of abdominal neuromeres. In the supraesophageal ganglion, complex neuropile masses are located in the protocerebrum which include optic ganglia, the mushroom bodies, and the central body. Characteristically, the only nerves arising from the protocerebrum are the optic nerves, and the neuropiles of the principal eyes are the most thick and abundant in this wandering spider. The central body which is recognized as an important association center is isolated at the posterior of the protocerebrum and appears as a complex of highly condensed neurons. These cells give off fine parallel bundles of axons arranged in the mushroom bodies. The subesophageal nerve mass can be divided into two main tracts on the basis of direction of the neuropiles. The dorsal tracts are contributed to from the motor or interneurons of each ganglion, whereas the ventral tracts are from incoming sensory axons.  相似文献   

5.
The projections of first-order ocellar interneurons were analyzed in the hematophagous bug Triatoma infestans by cobalt filling. The axons run between the calyces of the mushroom bodies and dorsal of the central body to different regions of the brain and the subesophageal and thoracic ganglia. The interneurons can be grouped into large L cells and small S cells. The L cells have cell bodies ranging from 11.5 to 25 μm and axons ranging from 8 to 25 μm diameter (measured in the ocellar nerve); the S cells have smaller cell bodies of 9 μm or less and axon diameters less than 5 μm. The projections of ten L cells are described in detail; they project to the protocerebral posterior slope (PS), the other ocellus (O), the optic neuropile, and the subesophageal, pro-, meso-, and metathoracic ganglia, either to ipsi- (PS I, II), or contra- (PS IV, V), or bilateral areas. In this case projections occur to the same areas (PSO, PS III) or different areas at each side (PSOE; E = eye). Large-descending (LD) first-order interneurons project to the contralateral posterior slope of the protocerebrum, the deutocerebrum, and subesophageal, pro-, mesa-, and metathoracic areas (LD I-III). Cell bodies are located in the dorsal protocerebral lobes and pars intercerebralis, except the PS II neuron and three LD cells, which are located in the ipsilateral posterior protocerebrum. This is the first report about ocellar pathways in Hemiptera. Their adaptive function is discussed with reference to the bugs' behavior as Chagas disease vectors. © 1996 Wiley-Liss, Inc.  相似文献   

6.
Summary The synaptic relationships between and within receptor-cell axons (RCAs), first-order interneurones (L-fibres) and accessory fibres (acc) in the first optic ganglion (the lamina) of the worker bee were studied in serial sections with Golgi-EM and routine transmission electron microscopy. The ommatidium contains nine retinular (photoreceptor) cells all of which project as RCAs to a single optical cartridge in the lamina. Six of the RCAs end as short visual fibres (svf) in the lamina, while the remaining three, the so-called long visual fibres (lvf), pass the lamina and end in the second optic ganglion, the medulla. In addition to the RCAs and an unknown number of accessory fibres, the cartridge also contains four L-fibres (L 1–4). The spatial arrangement of the RCAs and L-fibres within a cartridge is constant throughout the depth of the lamina. Serial sections reveal a great number of chemical synapses interconnecting RCAs, L-and acc fibres. Double T-shaped presynaptic dense projections are surrounded and in close association with either spherical or flattened synaptic vesicles. The finding of gap junctions between and within identified RCAs and L-fibres suggest that these axons may be electronically coupled. A model for information processing in the lamina of the bee is suggested from observations of synaptic connectivity between and within fibres of one cartridge.  相似文献   

7.
The oligodendroglial population includes Type I and II cells related to several thin axons, Type III cells with a few processes in relation to relatively thick axons and Type IV cells related to a single thick axon. This structural diversity of oligodendrocytes is accompanied by a molecular heterogeneity. In the chicken spinal cord, oligodendrocytes have begun to contact axons at embryonic day (E)10 and compact sheaths have appeared by E12. At the latter stage, most sheath-forming oligodendrocytes contact more than one axon. At E15, however, each sheath-forming cell seems to have developed a Schwann cell-like anatomy, being related to a single axon. Based on these findings, the present study examines more thoroughly the anatomy of early developing oligodendrocytes in the chicken spinal cord. Examination of slices immunostained with antibodies against the oligodendroglial marker O4 showed that a few positive cells are present at E6, after which the occurrence increases with age. At E12 most immunostained cells have two or more processes. At E15 however, dye-injected oligodendrocytes have developed a Type IV structure. Between E12 and E15, mean sheath length increases about 4×, from 50 μm to over 200 μm, while the length of the spinal cord increases 36% only. This indicates that early oligodendrocytes in chicken white matter develop a Type IV anatomy between E12 and E15 through an elimination of sheaths.  相似文献   

8.
Summary The compound eye of the housefly, from lens to first optic neuropile (lamina ganglionaris) was examined with a scanning electron microscope. Key findings are as follows: The pseudocone cavity is enclosed by six corneal pigment cells. The nuclei of the six cells are firmly anchored to the underside of the lens and portions remain after lens delamination from the pseudocone cavity. An eccentrically-positioned, short photoreceptor cell was observed near the region where the inferior central cell initiates its rhabdom. This eminence may represent that cell's soma. The basement membrane is revealed as a two-tiered, fibrous layer with ovoid fenestrations. Each opening is sealed with a diaphragm perforated by eight retinular axons and a trachea. Conjoined distal surfaces of the satellite glial cells form a membrane-like barrier immediately underlying the basement membrane. Monopolar somata from the lamina are covered with glial cells which possibly make more intimate contact with the somata through miniscule projections. Optic cartridges with monopolar interneurons were noted. Spherical to slightly biconcave processes of these interneurons contact retinular axons. Very fine (1000 Å) filaments interweave among and contact lateral processes. Further implications are discussed as they relate to observed structures.We gratefully acknowledge research support from the Graduate School, University of Wisconsin, Project No. 140508. Mr. Jack Rozental kindly supplied an English translation of the Cajal and Sanchez (1915) treatise on the fly nervous system. Dr. N. J. Strausfeld, Max Planck Institut für biologische Kybernetik, Tübingen, graciously provided comments about the figures.  相似文献   

9.
Summary Neuronal elements, i.e. first and second order neurons, of the first optic ganglion of three waterbugs, N. glauca, C. punctata and G. lacustris, are analyzed on the basis of light and electron microscopy.Eight retinula cell axons, leaving each ommatidium, disperse to different cartridges as they enter the laminar outer plexiform layer. Such a pattern of divergence is one of the conditions for neuronal superposition; it is observed for all three species of waterbugs. The manner in which the receptors of a single bundle of ommatidia split of within the lamina, whereby information from receptors up to three or five horizontal rows away can converge upon the same cartridge, differs among the species. Six of the eight axons of retinula cells R1-6, the short visual fibers end at different levels within the bilayered lamina, whereas the central pair of retinula cells R7/8, the long visual fibers, run directly through the lamina to a corresponding unit of the medulla. Four types of monopolar cells L1–L4 are classified; their branching patterns seem to be correlated to the splitting and termination of retinula cell axons. The topographical relationship and synaptic organization between retinula cell terminals and monopolar cells in the two laminar layers are identified by examination of serial ultrathin sections of single Golgi-stained neurons.An attempt is made to correlate some anatomical findings, especially the neuronal superposition, to results from physiological investigations on the hemipteran retina.  相似文献   

10.
The Lamina ganglionaris (first optic neuropile) of the decapod crustacean Pandalus borealis has its optic cartridges (synaptic compartments) arranged in horizontal rows. Each optic cartridge contains seven receptor axon terminals and the branching axis fibres of five monopolar second order neurons. Four types of monopolar neurons are classified. Their cell bodies are arranged in two layers. The inner layer contains the cell bodies of exclusively one of these types, and each cartridge is invaded by two neurons of this neuron type (type M 1:a and M 1:b). The outer layer contains the cell bodies of the remaining three types (M 2, M3 and M4). One gives rise to a large radially branched axis fibre in the centre of the cartridge. The other two have wide branches which may make inter-cartridge contacts, one proximally and the other distally in the plexiform layer, which is clearly bistratified. The receptor axons terminate in two levels corresponding to these strata. Two sets of tangenital fibres form networks in the proximal and the mid-portion of the lamina. Both networks have fibres with primary branches in the vertical plane and secondary branches in the horizontal plane. The fibres of the networks are derived from axons that pass from the second optic neuropile, the medulla externa.  相似文献   

11.
Summary An antiserum against glutamate decarboxylase (GAD) of the rat brain was used to locate GAD activity in sections of the nervous system of the cockroach, Periplaneta americana. The sixth abdominal ganglion was chosen because electrophysiological evidence suggests the presence of GABAergic inhibitory synapses in the cereal-giant interneuron system. Groups of somata and numerous fibres and tracts were positively labelled by the GAD antiserum. A posterior group of labelled somata could be identified close to the entry of the cereal nerves. A line of somata clusters lay along a ventro-lateral furrow. Another discrete row of GAD-like cells was located dorso-laterally. Some small cells among the dorsal unpaired neurons were labelled. A small central group appeared under these cells. An abundance of GAD-like processes and transversal tracts were found within the neuropile. The different systems of GABAergic inhibitors in the ganglion are discussed; in particular we show that the fibres of cereal nerve X are not labelled. This demonstrates that the latter act on the giant fibres via interneurons. We suggest that the group that sends axons into the overlapping region between the cereal nerve and the giant fibre could be the inhibitory interneurons involved in this system.  相似文献   

12.
13.
14.
We have analyzed brain structure in Macrostomum lignano, a representative of the basal platyhelminth taxon Macrostomida. Using confocal microscopy and digital 3D modeling software on specimens labeled with general markers for neurons (tyrTub), muscles (phalloidin), and nuclei (Sytox), an atlas and digital model of the juvenile Macrostomum brain was generated. The brain forms a ganglion with a central neuropile surrounded by a cortex of neuronal cell bodies. The neuropile contains a stereotypical array of compact axon bundles, as well as branched terminal axons and dendrites. Muscle fibers penetrate the flatworm brain horizontally and vertically at invariant positions. Beside the invariant pattern of neurite bundles, these “cerebral muscles” represent a convenient system of landmarks that help define discrete compartments in the juvenile brain. Commissural axon bundles define a dorsal and ventro-medial neuropile compartment, respectively. Longitudinal axons that enter the neuropile through an invariant set of anterior and posterior nerve roots define a ventro-basal and a central medial compartment in the neuropile. Flanking these “fibrous” compartments are neuropile domains that lack thick axon bundles and are composed of short collaterals and terminal arborizations of neurites. Two populations of neurons, visualized by antibodies against FMRFamide and serotonin, respectively, were mapped relative to compartment boundaries. This study will aid in the documentation and interpretation of patterns of gene expression, as well as functional studies, in the developing Macrostomum brain.  相似文献   

15.
This review attempts a physical definition of the technical problems and achievements in applying the high-voltage electron microscope (HVEM) to biological and medical research. It is hoped that the review will summarize for biologists, funding agencies, and institutions the achievements of the HVEM, its future prospects, and the main problem areas that still need to be explored. At present it is not known whether future HVEMs will favor the fixed beam or the scanning transmission electron microscopy (STEM) mode. The STEM mode offers reduced radiation damage as a result of more efficient electron detection and ease of manipulation of the collected signals by separating the elastic and inelastic signals. Energy filtration to remove the inelastic signal provides a means to enhance the contrast and improve the resolution for thick specimens. Several prototype STEM-mode HVEMs are now under development and it is expected that, in a few years, comparisons of fixed beam and STEM modes will be possible. The review discusses several HVEM instrument features that remain poorly developed. In the area of image recording a photographic emulsion has been designed to give optimized performance at an acceleration voltage of 1 MV. However, this remains unavailable commercially. Conversion of the HVEM electron image to a usable light image by phosphors etc., involves some difficulties, making it difficult to obtain good performance from TV systems. Since the HVEM is particularly useful for three-dimensional imaging, the further development of improved goniometers for stereo viewing and image reconstruction is important. The large volume available in the objective specimen volume and the increased penetration at high acceleration voltages make the HVEM particularly suitable for the application of environmental chambers in the microscopy and electron diffraction of thick wet specimens. An improved signal-to-noise ratio improves the prospects for elemental analysis at high acceleration voltages. When carefully carried out, improved resolution can be obtained in dark-field over that obtainable at 100 kV. Dark-field provides the easiest way to obtain high contrast on weakly stained or unstained objects. Its further improvement requires the use of specially thick and shaped beam stops and apertures that are not penetrated by the 1 MV beam. Recent HVEM studies of whole cells and microorganisms are reviewed. These studies already show that the former thin-section approach led to some incorrect ideas about the shape of some organelles and their three-dimensional relationships. This new information is proving important in helping to establish the function of fibrillar and membranous components of the cell. The most important limitation in examining thick sections is the large depth of field that causes excessive overlap of in-focus structures in stereo views of thick sections. In a few cases special specific heavy metal stains have been developed to overcome this problem, but an optical solution would be more generally applicable. Attempts are now being made to unscramble overlapped detail by applying the image reconstruction techniques of tomography and holography. It is concluded that even with existing techniques, the HVEM examination of thick sections provides a very useful improvement in sampling statistics and in three-dimensional imaging of cell structures over that obtainable by examining thin sections at a lower acceleration voltage (100 kV). Randomized author sequence.  相似文献   

16.
Summary Electron microscopic studies of the carotid body of the domestic fowl (Gallus gallus domesticus) have shown Type I and Type II cells combined with axons into compact groups. The many Type I cells in the depths of the organ had a body, containing the nucleus, and an elongated, flared process. Some of the Type I cells in the superficial regions tended to be spindle-shaped. Type I cells were characterised by membrane-bound, dense-cored vesicles about 120 nm in diameter. Type II cells invested the Type I cells and had axons embedded in them as in Schwann cells.The fine structure of the carotid body in the domestic fowl resembles that of the Lovebird (Uroloncha domestica) and of various amphibia and mammals. The possibility is discussed that the Type I cells may have a chemoreceptor or a general secretory function, or even both pathway for functions together. The main role of the Type II cells seems to be to provide a of these axons leading to or from Type I cells.The authors are grateful to Mr. R. P. Gould of the Department of Anatomy, Middlesex Hospital Medical School for permission to use some of his and Dr. Hodges' original material in the illustrations. Dr. Hodges also wishes to thank the A.R.C. and the University of London Central Research Fund for financial assistance. We are also most appreciative of the photographic assistance of J. Geary.  相似文献   

17.
In the past, biological sections ranging in thickness from 0.10- to 0.50-micron have usually been examined with high-voltage (greater than 500 kV) electron microscopes (HVEM). Now investigators are increasingly using intermediate voltage (200-500 kV) electron microscopes (IVEM), which are more readily available and demand less maintenance. In a study of "typical" plastic-embedded, stained sections of mouse liver ranging from 0.10 to 1.0 micron thick, we determined the resolution obtainable at 100, 200, and 1000 kV. At all three accelerating voltages the resolution (2.7 nm) for 0.10-micron sections was limited only by the sections stain granularity. For 0.25-micron thickness the resolutions were 5.8, 3.1, and 3.1 nm at 100, 200, and 1000 kV, respectively. The maximum usable thickness at 200 kV with resolution sufficient to resolve membranes clearly was between 0.75 and 1.0 micron, depending on the magnification. Resolution at 100 kV was adequate for screening sections up to 1.0-micron thick for preparation defects prior to examination with an IVEM or HVEM.  相似文献   

18.
Summary The developmental mutant of Drosophila (ora JK84) is characterized by nonfunctional photoreceptor cells (R1–6), while the R7/R8 cells are normal. A fundamental question is: Does the near absence of photosensitive membranes inhibit development of the Rl-6 axons and their synapses at the other end of the cell? The retina and first optic neuropile (lamina ganglionaris) were examined with freeze-fracture technique and high voltage electron microscopy. R1–6 have reduced rhabdomere caps; rhabdomeric microvilli have about 50% of the normal diameter and 20% of the normal length. Affected cells exhibit prominent vacuoles which appear to communicate with some highly convoluted microvillar membranes. Almost no P-face particles (putative rhodopsin molecules) are present in the R1–6 rhabdomeres, and particle densities are lower in R7 than previously reported. Near the rhabdomere caps, microvilli of R1–6 are fairly normal, but at more proximal levels they are greatly diminished in length and changed in orientation, while at still more proximal levels they are lost. R1–6, R7, and R8 axons from each ommatidium are bundled into normal pseudocartridges beneath the basement membrane. No abnormalities are found in the lamina ganglionaris, and all synaptic associations as well as the presumed virgin synapses (of R1–6) appear normal. No glial anomalies are present, and R7/R8 axons project through the lamina in the usual fashion. These fine structural findings are correlated with known electrophysiological, biochemical, and behavioral correlates of both sets of photoreceptors (R1–6, and R7/R8).This study was supported substantially by the UW-HVEM Laboratory, in addition to a Faculty Development Award, a UMC Biomedical Research Support Grant N.I.H. RR07053 to W.S.S., and a Hatch Grant, Project 2100 to S.D.C. Freeze fracture was done at the Wisconsin Regional Primate Research Center, N.I.H. Grant RR00167. We thank Professor Hans Ris, Dr. J. Pawley, Dr. D. Neuberger, and Ms. M. Bushlow, HVEM Laboratory, Dept. of Zoology, UW. We also thank Mrs. K. Srivastava, Mr. M.B. Garment, Mr. G. Gaard, and Mr. D. Liu for technical assistance.  相似文献   

19.
Six neural elements, viz., retinular axons, a giant monopolar axon, straight descending processes (type I), lamina monopolar axons (type II), processes containing clusters of dense-core vesicles (type III), and processes coursing in various directions with varicosities (type IV), have been identified at the ultrastructural level in the lamina neuropil of the larval tiger beetle Cicindela chinensis. Retinular axons make presynaptic contact with all other types of processes. Type I and II processes possess many pre-and postsynaptic loci. Type II processes presumably constitute retinotopic afferent pathways. It remains uncertain whether type I processes are lamina monopolar axons or long retinular axons extending to the medullar neuropil. Type III processes may be efferent neurons or branches of afferent neurons contributing to local circuits. A giant monopolar axon extends many branches throughout the lamina neuropil; these branches are postsynaptic to retinular axons, and may be nonretinotopic and afferent. Type IV processes course obliquely in the neuropil, being postsynaptic to retinular axons, and presynaptic to type I processes.  相似文献   

20.
The abdominal cerci of the wood cricket, Nemobius sylvestris, are covered by a variety of hair‐like sensilla that differ in length, thickness, and articulation. Fillings from the cercal nerves with cobalt chloride and fluorescent dyes revealed the projection of sensory axons into the terminal abdominal ganglion of the ventral nerve chain. Two projection areas on each side of the terminal abdominal ganglion midline could be identified: a posterior cercal glomerulus and an anterior bristle neuropil. Axons from some cercal sensilla ascend through the connectives to reach the metathoracic ganglionic mass. As their axons pass through each segmental abdominal ganglion, they project medial arborization. Cross‐sections of the terminal abdominal ganglion and retrograde fills with cobalt chloride and fluorescent dyes from connectives revealed several small cells and seven pairs of giant ascending interneurons organized symmetrically. Giant somata are located contralateral to their axons (diameters between 20 and 45 μm). The cercal projections overlap extensively with the dendritic fields of the giant interneurons. In the terminal abdominal ganglion, we identified nine longitudinal tracts, two major tracts, and seven smaller ones. The functional implications of the neuranatomical organization of the system are discussed on a comparative basis. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号