首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferric enterobactin is a catecholate siderophore that binds with high affinity (Kd approximately 10-10 M) to the Escherichia coli outer membrane protein FepA. We studied the involvement of aromatic amino acids in its uptake by determining the binding affinities, kinetics and transport properties of site-directed mutants. We replaced seven aromatic residues (Y260, Y272, Y285, Y289, W297, Y309 and F329) in the central part of FepA primary structure with alanine, individually and in double combinations, and determined the ability of the mutant proteins to interact with ferric enterobactin and the protein toxins colicins B and D. All the constructs showed normal expression and localization. Among single mutants, Y260A and F329A were most detrimental, reducing the affinity between FepA and ferric enterobactin 100- and 10-fold respectively. Double substitutions involving Y260, Y272 and F329 impaired (100- to 2500-fold) adsorption of the iron chelate more strongly. For Y260A and Y272A, the drop in adsorption affinity caused commensurate decreases in transport efficiency, suggesting that the target residues primarily act in ligand binding. F329A, like R316A, showed greater impairment of transport than binding, intimating mechanistic involvement during ligand internalization. Furthermore, immunochemical studies localized F329 in the FepA ligand binding site. The mutagenesis results suggested the existence of dual ligand binding sites in the FepA vestibule, and measurements of the rate of ferric enterobactin adsorption to fluoresceinated FepA mutant proteins confirmed this conclusion. The initial, outermost site contains aromatic residues and probably functions through hydrophobic interactions, whereas the secondary site exists deeper in the vestibule, contains both charged and aromatic residues and probably acts through hydrophobic and electrostatic bonds.  相似文献   

2.
Spectroscopic analyses of fluorophore-labeled Escherichia coli FepA described dynamic actions of its surface loops during binding and transport of ferric enterobactin (FeEnt). When FeEnt bound to fluoresceinated FepA, in living cells or outer membrane fragments, quenching of fluorophore emissions reflected conformational motion of the external vestibular loops. We reacted Cys sulfhydryls in seven surface loops (L2, L3, L4, L5, L7 L8, and L11) with fluorophore maleimides. The target residues had different accessibilities, and the labeled loops themselves showed variable extents of quenching and rates of motion during ligand binding. The vestibular loops closed around FeEnt in about a second, in the order L3 > L11 > L7 > L2 > L5 > L8 > L4. This sequence suggested that the loops bind the metal complex like the fingers of two hands closing on an object, by individually adsorbing to the iron chelate. Fluorescence from L3 followed a biphasic exponential decay as FeEnt bound, but fluorescence from all the other loops followed single exponential decay processes. After binding, the restoration of fluorescence intensity (from any of the labeled loops) mirrored cellular uptake that depleted FeEnt from solution. Fluorescence microscopic images also showed FeEnt transport, and demonstrated that ferric siderophore uptake uniformly occurs throughout outer membrane, including at the poles of the cells, despite the fact that TonB, its inner membrane transport partner, was not detectable at the poles.  相似文献   

3.
We characterized the uptake of ferric enterobactin (FeEnt), the native Escherichia coli ferric siderophore, through its cognate outer membrane receptor protein, FepA, using a site-directed fluorescence methodology. The experiments first defined locations in FepA that were accessible to covalent modification with fluorescein maleimide (FM) in vivo; among 10 sites that we tested by substituting single Cys residues, FM labeled W101C, S271C, F329C, and S397C, and all these exist within surface-exposed loops of the outer membrane protein. FeEnt normally adsorbed to the fluoresceinated S271C and S397C mutant FepA proteins in vivo, which we observed as quenching of fluorescence intensity, but the ferric siderophore did not bind to the FM-modified derivatives of W101C or F329C. These in vivo fluorescence determinations showed, for the first time, consistency with radioisotopic measurements of the affinity of the FeEnt-FepA interaction; K(d) was 0.2 nm by both methods. Analysis of the FepA mutants with AlexaFluor(680), a fluorescein derivative with red-shifted absorption and emission spectra that do not overlap the absorbance spectrum of FeEnt, refuted the possibility that the fluorescence quenching resulted from resonance energy transfer. These and other data instead indicated that the quenching originated from changes in the environment of the fluor as a result of loop conformational changes during ligand binding and transport. We used the fluorescence system to monitor FeEnt uptake by live bacteria and determined its dependence on ligand concentration, temperature, pH, and carbon sources and its susceptibility to inhibition by the metabolic poisons. Unlike cyanocobalamin transport through the outer membrane, FeEnt uptake was sensitive to inhibitors of electron transport and phosphorylation, in addition to its sensitivity to proton motive force depletion.  相似文献   

4.
We studied the reactivity of 35 genetically engineered Cys sulphydryl groups at different locations in Escherichia coli FepA. Modification of surface loop residues by fluorescein maleimide (FM) was strongly temperature-dependent in vivo , whereas reactivity at other sites was much less affected. Control reactions with bovine serum albumin showed that the temperature dependence of loop residue reactivity was unusually high, indicating that conformational changes in multiple loops (L2, L3, L4, L5, L7, L8, L10) transform the receptor to a more accessible form at 37°C. At 0°C colicin B binding impaired or blocked labelling at 8 of 10 surface loop sites, presumably by steric hindrance. Overall, colicin B adsorption decreased the reactivity of more than half of the 35 sites, in both the N- and C- domains of FepA. However, colicin B penetration into the cell at 37°C did not augment the chemical modification of any residues in FepA. The FM modification patterns were similarly unaffected by the tonB locus. FepA was expressed at lower levels in a tonB host strain, but when we accounted for this decrease its FM labelling was comparable whether TonB was present or absent. Thus we did not detect TonB-dependent structural changes in FepA, either alone or when it interacted with colicin B at 37°C. The only changes in chemical modification were reductions from steric hindrance when the bacteriocin bound to the receptor protein. The absence of increases in the reactivity of N-domain residues argues against the idea that the colicin B polypeptide traverses the FepA channel.  相似文献   

5.
H8 is derived from a collection of Salmonella enterica serotype Enteritidis bacteriophage. Its morphology and genomic structure closely resemble those of bacteriophage T5 in the family Siphoviridae. H8 infected S. enterica serotypes Enteritidis and Typhimurium and Escherichia coli by initial adsorption to the outer membrane protein FepA. Ferric enterobactin inhibited H8 binding to E. coli FepA (50% inhibition concentration, 98 nM), and other ferric catecholate receptors (Fiu, Cir, and IroN) did not participate in phage adsorption. H8 infection was TonB dependent, but exbB mutations in Salmonella or E. coli did not prevent infection; only exbB tolQ or exbB tolR double mutants were resistant to H8. Experiments with deletion and substitution mutants showed that the receptor-phage interaction first involves residues distributed over the protein's outer surface and then narrows to the same charged (R316) or aromatic (Y260) residues that participate in the binding and transport of ferric enterobactin and colicins B and D. These data rationalize the multifunctionality of FepA: toxic ligands like bacteriocins and phage penetrate the outer membrane by parasitizing residues in FepA that are adapted to the transport of the natural ligand, ferric enterobactin. DNA sequence determinations revealed the complete H8 genome of 104.4 kb. A total of 120 of its 143 predicted open reading frames (ORFS) were homologous to ORFS in T5, at a level of 84% identity and 89% similarity. As in T5, the H8 structural genes clustered on the chromosome according to their function in the phage life cycle. The T5 genome contains a large section of DNA that can be deleted and that is absent in H8: compared to T5, H8 contains a 9,000-bp deletion in the early region of its chromosome, and nine potentially unique gene products. Sequence analyses of the tail proteins of phages in the same family showed that relative to pb5 (Oad) of T5 and Hrs of BF23, the FepA-binding protein (Rbp) of H8 contains unique acidic and aromatic residues. These side chains may promote binding to basic and aromatic residues in FepA that normally function in the adsorption of ferric enterobactin. Furthermore, a predicted H8 tail protein showed extensive identity and similarity to pb2 of T5, suggesting that it also functions in pore formation through the cell envelope. The variable region of this protein contains a potential TonB box, intimating that it participates in the TonB-dependent stage of the phage infection process.  相似文献   

6.
The siderophore ferric enterobactin enters Escherichia coli through the outer membrane (OM) porin FepA, which contains an aqueous transmembrane channel that is normally occluded by other parts of the protein. After binding the siderophore at a site within the surface loops, FepA undergoes conformational changes that promote ligand internalization. We assessed the participation of different loops in ligand recognition and uptake by creating and analysing a series of deletions. We genetically engineered 26 mutations that removed 9-75 amino acids from nine loops and two buried regions of the OM protein. The mutations had various effects on the uptake reaction, which we discerned by comparing the substrate concentrations of half-maximal binding (Kd) and uptake (Km): every loop deletion affected siderophore transport kinetics, decreasing or eliminating binding affinity and transport efficiency. We classified the mutations in three groups on the basis of their slight, strong or complete inhibition of the rate of ferric enterobactin transport across the OM. Finally, characterization of the FepA mutants revealed that prior experiments underestimated the affinity of FepA for ferric enterobactin: the interaction between the protein and the ferric siderophore is so avid (Kd < 0.2 nM) that FepA tolerated the large reductions in affinity that some loop deletions caused without loss of uptake functionality. That is, like other porins, many of the loops of FepA are superficially dispensable: ferric enterobactin transport occurred without them, at levels that allowed bacterial growth.  相似文献   

7.
R67 dihydrofolate reductase (R67 DHFR) catalyzes the transfer of a hydride ion from NADPH to dihydrofolate, generating tetrahydrofolate. The homotetrameric enzyme provides a unique environment for catalysis as both ligands bind within a single active site pore possessing 222 symmetry. Mutation of one active site residue results in concurrent mutation of three additional symmetry-related residues, causing large effects on binding of both ligands as well as catalysis. For example, mutation of symmetry-related tyrosine 69 residues to phenylalanine (Y69F), results in large increases in Km values for both ligands and a 2-fold rise in the kcat value for the reaction (Strader, M. B., Smiley, R. D., Stinnett, L. G., VerBerkmoes, N. C., and Howell, E. E. (2001) Biochemistry 40, 11344-11352). To understand the interactions between specific Tyr-69 residues and each ligand, asymmetric Y69F mutants were generated that contain one to four Y69F mutations. A general trend observed from isothermal titration calorimetry and steady-state kinetic studies of these asymmetric mutants is that increasing the number of Y69F mutations results in an increase in the Kd and Km values. In addition, a comparison of steady-state kinetic values suggests that two Tyr-69 residues in one half of the active site pore are necessary for NADPH to exhibit a wild-type Km value. A tyrosine 69 to leucine mutant was also generated to approach the type(s) of interaction(s) occurring between Tyr-69 residues and the ligands. These studies suggest that the hydroxyl group of Tyr-69 is important for interactions with NADPH, whereas both the hydroxyl group and hydrophobic ring atoms of the Tyr-69 residues are necessary for proper interactions with dihydrofolate.  相似文献   

8.
In order to evaluate the potential contribution of conserved aromatic residues to the hydrophobic active site of 3-hydroxy-3-methylglutaryl-CoA synthase, site-directed mutagenesis was employed to produce Y130L, Y163L, F204L, Y225L, Y346L, and Y376L proteins. Each mutant protein was expressed at levels comparable with wild-type enzyme and was isolated in highly purified form. Initial kinetic characterization indicated that F204L exhibits a substantial (>300-fold) decrease in catalytic rate (kcat). Upon modification with the mechanism-based inhibitor, 3-chloropropionyl-CoA, or in formation of a stable binary complex with acetoacetyl-CoA, F204L exhibits binding stoichiometries comparable with wild-type enzyme, suggesting substantial retention of active site integrity. Y130L and Y376L exhibit inflated values (80- and 40-fold, respectively) for the Km for acetyl-CoA in the acetyl-CoA hydrolysis partial reaction; these mutants also exhibit an order of magnitude decrease in kcat. Formation of the acetyl-S-enzyme reaction intermediate by Y130L, F204L, and Y376L proceeds slowly in comparison with wild-type enzyme. However, solvent exchange into the thioester carbonyl oxygen of these acetyl-S-enzyme intermediates is not slow in comparison with previous observations for D159A and D203A mutants, which also exhibit slow acetyl-S-enzyme formation. The magnitude of the differential isotope shift upon exchange of H218O into [13C]acetyl-S-enzyme suggests a polarization of the thioester carbonyl and a reduction in bond order. Such an effect may substantially contribute to the upfield 13C NMR shift observed for [13C]acetyl-S-enzyme. The influence on acetyl-S-enzyme formation, as well as observed kcat (F204L) and Km (Y130L; Y376L) effects, implicate these invariant residues as part of the catalytic site. Substitution of phenylalanine (Y130F, Y376F) instead of leucine at residues 130 and 376 diminishes the effects on catalytic rate and substrate affinity observed for Y130L and Y376L, underscoring the influence of aromatic side chains near the active site.  相似文献   

9.
When Gram-negative bacteria acquire iron, the metal crosses both the outer membrane (OM) and the inner membrane, but existing radioisotopic uptake assays only measure its passage through the latter bilayer, as the accumulation of the radionuclide in the cytoplasm. We devised a methodology that exclusively observes OM transport and used it to study the uptake of ferric enterobactin (FeEnt) by Escherichia coli FepA. This technique, called postuptake binding, revealed previously unknown aspects of TonB-dependent transport reactions. The experiments showed, for the first time, that despite the discrepancy in cell envelope concentrations of FepA and TonB (∼35:1), all FepA proteins were active and equivalent in FeEnt uptake, with a maximum turnover number of ∼5/min. FepA-mediated transport of FeEnt progressed through three distinct phases with successively decreasing rates, and from its temperature dependence, the activation energy of the OM stage was 33–35 kcal/mol. The accumulation of FeEnt in the periplasm required the binding protein and inner membrane permease components of its overall transport system; postuptake binding assays on strains devoid of FepB, FepD, or FepG did not show uptake of FeEnt through the OM. However, fluorescence labeling data implied that FepA was active in the ΔfepB strain, suggesting that FeEnt entered the periplasm but then leaked out. Further experiments confirmed this futile cycle; cells without FepB transported FeEnt across the OM, but it immediately escaped through TolC.  相似文献   

10.
Undecaprenyl diphosphate synthase catalyzes the sequential condensation of eight molecules of isopentenyl diphosphate (IPP) in the cis-configuration into farnesyl diphosphate (FPP) to produce undecaprenyl diphosphate (UPP), which is indispensable for the biosynthesis of the bacterial cell wall. This cis-type prenyltransferase exhibits a quite different mode of binding of homoallylic substrate IPP from that of trans-type prenyltransferase [Kharel Y. et al. (2001) J. Biol. Chem. 276, 28459-28464]. In order to know the IPP binding mode in more detail, we selected six highly conserved residues in Regions III, IV, and V among nine conserved aromatic residues in Micrococcus luteus B-P 26 UPP synthase for substitution by site-directed mutagenesis. The mutant enzymes were expressed and purified to homogeneity, and then their effects on substrate binding and the catalytic function were examined. All of the mutant enzymes showed moderately similar far-UV CD spectra to that of the wild-type, indicating that none of the replacement of conserved aromatic residues affected the secondary structure of the enzyme. Kinetic analysis showed that the replacement of Tyr-71 with Ser in Region III, Tyr-148 with Phe in Region IV, and Trp-210 with Ala in Region V brought about 10-1,600-fold decreases in the kcat/Km values compared to that of the wild-type but the Km values for both substrates IPP and FPP resulted in only moderate changes. Substitution of Phe-207 with Ser in Region V resulted in a 13-fold increase in the Km value for IPP and a 1,000-2,000-fold lower kcat/Km value than those of the wild-type, although the Km values for FPP showed about no significant changes. In addition, the W224A mutant as to Region V showed 6-fold and 14-fold increased Km values for IPP and FPP, respectively, and 100-250-fold decreased kcat/Km values as compared to those of the wild-type. These results suggested that these conserved aromatic residues play important roles in the binding with both substrates, IPP and FPP, as well as the catalytic function of undecaprenyl diphosphate synthase.  相似文献   

11.
In the x-ray structure of the human dihydrofolate reductase, phenylalanine 31 and phenylalanine 34 have been shown to be involved in hydrophobic interactions with bound substrates and inhibitors. Using oligonucleotide-directed mutagenesis and a bacterial expression system producing the wild-type and mutant human dihydrofolate reductases at levels of 10% of the bacterial protein, we have constructed, expressed, and purified a serine 31 (S31) mutant and a serine 34 (S34) mutant. Fluorescence titration experiments indicated that S31 bound the substrate H2folate 10-fold tighter and the coenzyme NADPH 2-fold tighter than the wild-type human dihydrofolate reductase. The serine 31 mutation had little effect on the steady-state kinetic properties of the enzyme but produced a 100-fold increase in the dissociation constant (Kd) for the inhibitor methotrexate. The serine 34 mutant had much greater alterations in its properties than S31; specifically, S34 had a 3-fold reduction in the Km for NADPH, a 24-fold increase in the Km for H2folate, a 3-fold reduction in the overall reaction rate kcat, and an 80,000-fold increase in the Kd for methotrexate. In addition, the pH dependence of the steady-state kinetic parameters of S34 were different from that of the wild-type enzyme. These results suggest that phenylalanine 31 and phenylalanine 34 make very different contributions to ligand binding and catalysis in the human dihydrofolate reductase.  相似文献   

12.
We have used the electron spin resonance (ESR) site-directed spin-labeling (SDSL) technique to examine the guanidine hydrochloride (Gdn-HCl) induced denaturation of several sites along a transmembrane beta-strand located in the ferric enterobactin receptor, FepA. In addition, we have continued the characterization of the beta-strand previously identified by our group (Klug CS et al., 1997, Biochemistry 36:13027-13033) to extend from the periplasm to the extracellular surface loop in FepA, an integral membrane protein containing a beta-barrel motif comprised of a series of antiparallel beta-strands that is responsible for transport of the iron chelate, ferric enterobactin (FeEnt), across the outer membrane of Escherichia coli and many related enteric bacteria. We have previously shown that a large surface loop in FepA containing the FeEnt binding site denatures independently of the beta-barrel domain (Klug CS et al., 1995, Biochemistry 34:14230-14236). The SDSL approach allows examination of the unfolding at individual residues independent of the global unfolding of the protein. This work shows that sites along the beta-strand that are exposed to the aqueous lumen of the channel denature more rapidly and with higher cooperativity than the surface loop, while sites on the hydrophobic side of the beta-strand undergo a limited degree of noncooperative unfolding and do not fully denature even at high (e.g., 4 M) Gdn-HCl concentrations. We conclude that, in a transmembrane beta-strand, the local environment of a given residue plays a significant role in the loss of structure at each site.  相似文献   

13.
Penzes P  Napoli JL 《Biochemistry》1999,38(7):2088-2093
Microsomal enzymes that catalyze the first step in the biosynthesis of retinoic acid from retinal, retinol dehydrogenases (RDHs), access retinol bound to cellular retinol-binding protein (CRBP). This study tested the hypothesis that the RDHs interact with the region in CRBP designated as the "helical cap" by evaluating single site-directed mutations, namely, L29A, I32E, L35A, L35E, L35R, L36A, F57A, R58A, and R58E. UV analysis showed mutants had similar conformations of retinol in their binding pockets. Nevertheless, the mutants bound retinol with affinities 2-5-fold lower than wild type, except for L35 mutants, which had affinities similar to wild type. All mutants' holoforms had more relaxed conformations about their helical caps, judged by sensitivity to partial protease digestion. Mutants showed no significant differences in Km values, but two (L36A, R58A) had increased Vm values and L35 mutants had decreased Vm values. Overall, the data indicate that the residues tested contribute in varying degrees to CRBP rigidity, retinol binding, and RDH recognition/access to bound retinol. The extent of contributions can be distinguished for several residues. For example, L35 mutants had lower kcat values than wild-type CRBP; thus, L35 seems important for RDH access to retinol. F57, on the other hand, a suspected key residue in controlling retinol entrance/exit, does not make a singular contribution to retinol binding. These results suggest a role for the helical cap region as a locus for RDH interaction and as a portal for ligand access to CRBP, and show that the affinity (Kd) of CRBP for retinol alone does not determine the efficiency of holo-CRBP as substrate. These are the first experimental data of enzyme recognition by a specific exterior residue of CRBP (L35).  相似文献   

14.
Previous studies have shown that the reduced nicotinamide adenine dinucleotide phosphate (NADPH)- binding domain of rat liver microsomal steroid 5alpha-reductase isozyme-1 (r5alphaR-1) is in a highly conserved region of the polypeptide sequence (residues 160-190). In this study, we investigated, by site-directed mutagenesis, the role of hydroxylated and aromatic amino acids within the NADPH-binding domain. The r5alphaR-1 cDNA was cloned into a pCMV vector, and the double strand site-directed mutagenesis method was used to create mutants Y179F, Y179S, Y189F, Y189S, S164A, S164T, and Y187F, which were subsequently expressed in COS-1 cells. Kinetic studies of the expressed enzymes showed that the mutation Y179F resulted in an approximately 40-fold increase in the Km for NADPH versus wild-type, with only a 2-fold increase in the Km for testosterone. The mutants Y189F and S164A showed smaller increases (4 and 6-fold) in Kms for NADPH and no significant change in the Km for testosterone, whereas Y189S had kinetic properties similar to the wild-type r5alphaR-1. Mutants Y179S and S164T both resulted in inactive enzymes, whereas F187Y showed an approximately 5-fold decrease in Km for NADPH and a significant increase (approximately 18-fold) in the Km for testosterone. The results suggest that the -OH functionality of Y179 is involved in cofactor binding, but is not essential for the activity of the enzyme, whereas the -OH functionalities of Y189 and S164 play lesser roles in cofactor binding to r5alphaR-1 and may not be required for enzyme activity. On the other hand, the residue F187 may be important for the binding of both NADPH and testosterone.  相似文献   

15.
Wang X  Kemp RG 《Biochemistry》1999,38(14):4313-4318
The apparent affinity of phosphofructo-1-kinase (PFK) of Escherichia coli for ATP is at least 10 times higher than for other nucleotides. Mutagenesis was directed toward five residues that may interact with ATP: Y41, F76, R77, R82, and R111. Alanine at position 41 or 76 increased the apparent Km by 49- and 62-fold, respectively. Position 41 requires the presence of a large hydrophobic residue and is not restricted to aromatic rings. Tryptophan and, to a lesser extent, phenylalanine could substitute at position 76. None of the mutants at 41 or 76 showed a change in the preference for alternative purines, although F76W used CTP 3 times better than the wild type enzyme. Mutations of R77 suggested that the interaction was hydrophobic with no influence on nucleotide preference. Mutation of R82 to alanine or glutamic acid increased the apparent Km for ATP by more than 20-fold and lowered the kcat/Km with ATP more than 30-fold. However, these mutants had a higher kcat/Km than wild type for both GTP and CTP, reflecting a loss of substrate preference. A loss in preference is seen as well with R111A where the kcat/Km for ATP decreases by only 68%, but the kcat/Km with GTP increases more than 10-fold. Activities with ITP, CTP, and UTP are also higher than with the wild type enzyme. Arginine residues at positions 82 and 111 are important dictators of nucleoside triphosphate preference.  相似文献   

16.
Evidence of ball-and-chain transport of ferric enterobactin through FepA   总被引:1,自引:0,他引:1  
The Escherichia coli iron transporter, FepA, has a globular N terminus that resides within a transmembrane beta-barrel formed by its C terminus. We engineered 25 cysteine substitution mutations at different locations in FepA and modified their sulfhydryl side chains with fluorescein maleimide in live cells. The reactivity of the Cys residues changed, sometimes dramatically, during the transport of ferric enterobactin, the natural ligand of FepA. Patterns of Cys susceptibility reflected energy- and TonB-dependent motion in the receptor protein. During transport, a residue on the normally buried surface of the N-domain was labeled by fluorescein maleimide in the periplasm, providing evidence that the transport process involves expulsion of the globular domain from the beta-barrel. Porin deficiency much reduced the fluoresceination of this site, confirming the periplasmic labeling route. These data support the previously proposed, but never demonstrated, ball-and-chain theory of membrane transport. Functional complementation between a separately expressed N terminus and C-terminal beta-barrel domain confirmed the feasibility of this mechanism.  相似文献   

17.
Previous modeling efforts have suggested that coumarin ligand binding to CYP2C9 is dictated by electrostatic and pi-stacking interactions with complementary amino acids of the protein. In this study, analysis of a combined CoMFA-homology model for the enzyme identified F110 and F114 as potential hydrophobic, aromatic active-site residues which could pi-stack with the nonmetabolized C-9 phenyl ring of the warfarin enantiomers. To test this hypothesis, we introduced mutations at key residues located in the putative loop region between the B' and C helices of CYP2C9. The F110L, F110Y, V113L, and F114L mutants, but not the F114Y mutant, expressed readily, and the purified proteins were each active in the metabolism of lauric acid. The V113L mutant metabolized neither (R)- nor (S)-warfarin, and the F114L mutant alone displayed altered metabolite profiles for the warfarin enantiomers. Therefore, the effect of the F110L and F114L mutants on the interaction of CYP2C9 with several of its substrates as well as the potent inhibitor sulfaphenazole was chosen for examination in further detail. For each substrate examined, the F110L mutant exhibited modest changes in its kinetic parameters and product profiles. However, the F114L mutant altered the metabolite ratios for the warfarin enantiomers such that significant metabolism occurred for the first time on the putative C-9 phenyl anchor, at the 4'-position of (R)- and (S)-warfarin. In addition, the Vmax for (S)-warfarin 7-hydroxylation decreased 4-fold and the Km was increased 13-fold by the F114L mutation, whereas kinetic parameters for lauric acid metabolism, a substrate which cannot interact with the enzyme by a pi-stacking mechanism, were not markedly affected by this mutation. Finally, the F114L mutant effected a greater than 100-fold increase in the Ki for inhibition of CYP2C9 activity by sulfaphenazole. These data support a role for B'-C helix loop residues F114 and V113 in the hydrophobic binding of warfarin to CYP2C9, and are consistent with pi-stacking to F114 for certain aromatic ligands.  相似文献   

18.
Interleukin-8 (IL-8), a member of the chemokine superfamily, exists as both monomers and dimers, and mediates its function by binding to neutrophil CXCR1 and CXCR2 receptors that belong to the G protein-coupled receptor class. It is now well established that the monomer functions as a high-affinity ligand, but the binding affinity of the dimer remains controversial. The approximately 1000-fold difference between monomer-dimer equilibrium constant (microM) and receptor binding constant (nM) of IL-8 does not allow receptor-binding affinity measurements of the native IL-8 dimer. In this study, we overcame this roadblock by creating a "trapped" nondissociating dimer that contains a disulfide bond across the dimer interface at the 2-fold symmetry point. The NMR studies show that the structure of this trapped dimer is indistinguishable from the native dimer. The trapped dimer, compared to a trapped monomer, bound CXCR1 with approximately 70-fold and CXCR2 with approximately 20-fold lower affinities. Receptor binding involves two interactions, between the IL-8 N-loop and receptor N-domain residues, and between IL-8 N-terminal and receptor extracellular loop residues. In contrast to a trapped monomer that bound an isolated CXCR1 N-domain peptide with microM affinity, the trapped dimer failed to show any binding, indicating that dimerization predominantly perturbs the binding of only the N-loop residues. These results demonstrate that only the monomer is a high-affinity ligand for both receptors, and also provide a structural basis for the lower binding affinity of the dimer.  相似文献   

19.
Peptide ligands bind the CRF(1) receptor by a two-domain mechanism: the ligand's carboxyl-terminal portion binds the receptor's extracellular N-terminal domain (N-domain) and the ligand's amino-terminal portion binds the receptor's juxtamembrane domain (J-domain). Little quantitative information is available regarding this mechanism. Specifically, the microaffinity of the two interactions and their contribution to overall ligand affinity are largely undetermined. Here we measured ligand interaction with N- and J-domains expressed independently, the former (residues 1-118) fused to the activin IIB receptor's membrane-spanning alpha-helix (CRF(1)-N) and the latter comprising residues 110-415 (CRF(1)-J). We also investigated the effect of nonpeptide antagonist and G-protein on ligand affinity for N- and J-domains. Peptide agonist affinity for CRF(1)-N was only 1.1-3.5-fold lower than affinity for the whole receptor (CRF(1)-R), suggesting the N-domain predominantly contributes to peptide agonist affinity. Agonist interaction with CRF(1)-J (potency for stimulating cAMP accumulation) was 12000-1500000-fold weaker than with CRF(1)-R, indicating very weak direct agonist interaction with the J-domain. Nonpeptide antagonist affinity for CRF(1)-J and CRF(1)-R was indistinguishable, indicating the compounds bind predominantly the J-domain. Agonist activation of CRF(1)-J was fully blocked by nonpeptide antagonist, suggesting antagonism results from inhibition of agonist-J-domain interaction. G-protein coupling with CRF(1)-R (forming RG) increased peptide agonist affinity 92-1300-fold, likely resulting from enhanced agonist interaction with the J-domain rather than the N-domain. Nonpeptide antagonists, which bind the J-domain, blocked peptide agonist binding to RG, and binding of peptide antagonists, predominantly to the N-domain, was unaffected by R-G coupling. These findings extend the two-domain model quantitatively and are consistent with a simple equilibrium model of the two-domain mechanism: (1) The N-domain binds peptide agonist with moderate-to-high microaffinity, substantially increasing the local concentration of agonist and so allowing weak agonist-J-domain interaction. (2) Agonist-J-domain interaction is allosterically enhanced by receptor-G-protein interaction and inhibited by nonpeptide antagonist.  相似文献   

20.
1) Using a combination of site-directed mutagenesis and fluorescence spectroscopy we have studied the location and function of residue beta Y331 in the catalytic site of Escherichia coli F1-ATPase. The fluorescent analog lin-benzo-ADP was used as a catalytic-site probe, and was found to bind to three sites in normal F1, with Kd1 = 0.20 microM and Kd2,3 = 5.5 microM. lin-Benzo-ATP was a good substrate for hydrolysis. 2) The mutants investigated were beta Y331F, L, A and E. kcat/KM for ATP hydrolysis in purified F1 was reduced according to the series Y greater than or equal to F greater than L greater than A greater than E, with E being severely impaired; concomitant decreases in binding affinity for lin-benzo-ADP were seen. 3) Fluorescence properties of lin-benzo-ADP bound to F1 differed widely, depending on the residue present at position beta 331. Red shifts of excitation and emission spectra occurred with F and L residues, but not with Y, A, or E. There was strong quenching of fluorescence with wild-type (Y), partial quenching with A, and no quenching with F, L, or E. 4) We conclude that (a) the environment around the bound adenine moiety in the catalytic site is nonpolar, (b) residue beta 331 is part of the adenine-binding subdomain and when tyrosine is the residue, the phenolic hydroxyl makes direct interaction with the fluorophore, (c) an aromatic residue is not absolutely required at position beta 331 for catalytic function, but an increase in polarity leads to functional impairment, and (d) in terms of fluorescence response of bound lin-benzo-ADP all three catalytic sites behaved the same. 5) F1 from mutant beta Y297F bound lin-benzo-ADP with the same fluorescence and binding characteristics as normal F1, and catalytic properties were similar to normal. Therefore, there was no reason to conclude that residue beta Y297 is involved in binding the adenine moiety of ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号