首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vertical biomass allocation patterns of roots grown under standardised conditions were determined for species representing the major New Zealand indigenous grass genera Chionochloa and Festuca. Ten ramets, each of 2–3 tillers from garden collections of each species were grown in irrigated vertical sand columns in a glasshouse, and harvested after 168 days. Chionochloa teretifolia, Chionochloa macra, and Chionochloa crassiusucula, characteristic of alpine environments failed to produce new roots and died. However, most of the Chionochloa taxa (Chionochloa beddiei, Chionochloa pallens, Chionochloa rigida ssp. rigida, Chionochloa rubra ssp. cuprea, Chionochloa vireta), developed extensive new roots that reached the base of the one metre sand column. Roots of Chionochloa cheesemanii and Chionochloa conspicua reached 80–90 cm depth. Two Festuca taxa (Festuca actae, Festuca luciarum) had roots to 1 m depth, and roots of Festuca coxii, Festuca matthewsii ssp. latifundii, Festuca matthewsii ssp. matthewsii, Festuca multinodis, and Festuca novae-zelandiae grew to 70–90 cm depth. The edaphic specialists (Festuca deflexa, Chionochloa spiralis, Chionochloa defracta) were all shallow rooting.Species of Festuca maintained at least 40% of the root mass in the upper 10 cm of the column and most of the Chionochloa taxa had less than 40% of root mass in the upper zone. Genotype level variation in root mass less than 10 cm deep was greater in Chionochloa than in Festuca, and least in the edaphic specialist grasses.  相似文献   

2.
The effect of Acid Orange 7, Acid Red 18 and Reactive Black 5 on the growth and decolorization properties of Schizophyllum commune was studied with respect to the initial pH varying from 1 to 6 and initial dye concentration (10-100 mg/L). The optimum pH value was found to be 2 for both growth and color removal of these azo dyes. Increasing the concentration of azo dyes inhibited the growth of S. commune. It was observed that S. commune was capable of removing Acid Orange 7, Acid Red 18 and Reactive Black 5 with a maximum specific uptake capacity of 44.23, 127.53 and 180.17 (mg/g) respectively for an initial concentration of 100 mg/L of the dye. Higher decolorization was observed at lower concentrations for all the dyes. Finally it was found that the percentage decolorization was more in the case of Reactive Black 5 dye compared to the other two dyes used in the present investigation.  相似文献   

3.
The production of ligninolytic enzymes by the fungus Schizophyllum sp. F17 using a cost-effective medium comprised of agro-industrial residues in solid-state fermentation (SSF) was optimized. The maximum activities of the enzymes manganese peroxidase (MnP), laccase (Lac), and lignin peroxidases (LiP) were 1,200, 586, and 109 U/L, respectively, on day 5 of SSF. In vitro decolorization of three structurally different azo dyes by the extracellular enzymes was monitored to determine its decolorization capability. The results indicated that crude MnP, but not LiP and Lac, played a crucial role in the decolorization of azo dyes. After optimization of the dye decolorization system with crude MnP, the decolorization rates of Orange IV and Orange G, at an initial dye concentration of 50 mg/L, were enhanced to 76 and 57%, respectively, after 20 min of reaction at pH 4 and 35°C. However, only 8% decolorization of Congo red was observed. This enzymatic reaction system revealed a rapid decolorization of azo dyes with a low MnP activity of 24 U/L. Thus, this study could be the basis for the production and application of MnP on a larger scale using a low-cost substrate.  相似文献   

4.
A novel bacterial consortium (TJ-1), which could decolorize Acid Orange 7 (AO7) and manyother azo dyes, was developed. In TJ-1 three bacterial strains were identified as Aeromonas caviae, Proteus mirabilis and Rhodococcus globerulus by 16S rRNA gene sequence analysis. AO7 decolorization was significantly higher with the use of consortium as compared to the use of individual strains, indicating complementary interactions among these strains. AO7 decolorization was observed under microaerophilic condition in the presence of organic carbon source. Either yeast extract (YE) alone or a combination of YE and glucose resulted in much higher decolorization of AO7 as compared to glucose alone, peptone or starch. Kinetic studies with different initial AO7 concentrations showed that more than 90% decolorization could be achieved even at 200mg/l within 16h. Fed-batch studies showed that AO7 decolorization required 10h during the first cycle and 5h in the second and third cycles, showing that bacterial cells could be used for multiple cycles. The consortium also decolorized fifteen other azo dyes individually as well as a simulated wastewater containing a mixture of all the sixteen azo dyes, thus, conferring the possibility of application of TJ-1 for the treatment of industrial wastewaters.  相似文献   

5.
Guo J  Zhou J  Wang D  Yang J  Li Z 《Biodegradation》2008,19(1):93-98
The accelerating effect of quinones has been studied in the bio-decolorization processes, but there are no literatures about the incorporation bio-treatment technology of the bromoamine acid (BA) wastewater and azo dyes wastewaters under high-salt conditions (NaCl, 15%, w/w). Here we described the BA wastewater as a redox mediator in the bio-decolorization of azo dye wastewaters. Decolorization of azo dyes was carried out experimentally using the salt-tolerant bacteria under the BA wastewater and high-salt conditions. The BA wastewater used as a redox mediator was able to increase the decolorization rate of wastewater containing azo dyes. The effects of various operating conditions such as dissolved oxygen, temperature, and pH on microbial decolorization were investigated experimentally. At the same time, BA was tested to assess the effects on the change of the Oxidation–Reduction Potential (ORP) values during the decolorization processes. The experiments explored a great improvement of the redox mediator application and the new bio-treatment concept.  相似文献   

6.
Sphingomonas sp strain 1CX was isolated from a wastewater treatment plant and is capable of aerobically degrading a suite of azo dyes, using them as a sole source of carbon and nitrogen. All azo dyes known to be decolorized by strain 1CX (Orange II, Acid Orange 8, Acid Orange 10, Acid Red 4, and Acid Red 88) have in their structure either 1-amino-2-naphthol or 2-amino-1-naphthol. In addition, an analysis of the structures of the dyes degraded suggests that there are certain positions and types of substituents on the azo dye which determine if degradation will occur. Growth and dye decolorization occurs only aerobically and does not occur under fermentative or denitrification conditions. The mechanism by which 1CX decolorizes azo dyes appears to be through reductive cleavage of the azo bond. In the case of Orange II, the initial degradation products were sulfanilic acid and 1-amino-2-naphthol. Sulfanilic acid, however, was not used by 1CX as a growth substrate. The addition of glucose or inorganic nitrogen inhibited growth and decoloration of azo dyes by 1CX. Attempts to grow the organism on chemically defined media containing several different amino acids and sugars as sources of nitrogen and carbon were not successful. Phylogenetic analysis of Sphingomonas sp strain 1CX shows it to be related to, but distinct from, other azo dye-decolorizing Sphingomonas spp strains isolated previously from the same wastewater treatment facility. Received 19 May 1999/ Accepted in revised form 11 August 1999  相似文献   

7.
解井坤  朱超  花莉 《微生物学通报》2014,41(12):2432-2441
【目的】获得降解混合偶氮染料的高效降解菌,应用于印染行业偶氮染料废水的生物处理和资源化。【方法】以某污水处理厂的脱水污泥作为分离源,经偶氮染料废水驯化后,分离筛选出9株偶氮染料脱色株(命名为T-1-T-9),通过形态观察、生理特征及基于16S rRNA基因序列的分子生物学鉴定,初步认定分离株分属于芽孢杆菌属(Bacillus)、微小杆菌属(Exiguobacterium)、寡单胞菌属(Stenotrophomonas)和副球菌属(Paracoccus)。【结果】所得分离株纯培养均可不同程度地脱色单一偶氮染料和混合偶氮染料,其中T-8对甲基橙和金橙I的脱色速率最大,40 h的脱色率分别为85.9%和86.2%,T-8菌株干粉也可在无外源碳源的条件下完全脱色金橙I。分离株混合培养脱色混合偶氮染料的效率明显高于纯培养,可达90.1%。【结论】脱水污泥作为脱色偶氮染料功能菌群的新来源具有良好的应用价值。  相似文献   

8.
从浙江某污水处理厂的活性污泥中筛选出若干株在高pH条件下对偶氮染料酸性大红GR有脱色能力的菌株,经脱色验证得到一株具有高效脱色活性的菌株Z1,经鉴定为巴斯德葡萄球菌(Staphylococcus pasteuri),并对此菌株的脱色特性进行了初步研究。结果表明,在厌氧条件下,Z1在pH7~12,40h对50mg/L的酸性大红GR脱色率均可达90%以上。该菌株对染料有较强的耐受力,在酸性大红GR浓度为300mg/L时,48h的脱色率仍可达93%。此外,该菌株能够对多种偶氮染料脱色,具有较好的脱色广谱性,有望应用于处理工业废水中的偶氮染料。  相似文献   

9.
Presence of huge amount of salts in the wastewater of textile dyeing industry is one of the major limiting factors in the development of an effective biotreatment system for the removal of azo dyes from textile effluents. Bacterial spp. capable of thriving under high salt conditions could be employed for the treatment of saline dye-contaminated textile wastewaters. The present study was aimed at isolating the most efficient bacterial strains capable of decolorizing azo dyes under high saline conditions. Fifty-eight bacterial strains were isolated from seawater, seawater sediment, and saline soil, using mineral salt medium enriched with 100?mg?l?1 Reactive Black-5 azo dye and 50?g NaCl l?1 salt concentration. Bacterial strains KS23 (Psychrobacter alimentarius) and KS26 (Staphylococcus equorum) isolated from seawater sediment were able to decolorize three reactive dyes including Reactive Black 5, Reactive Golden Ovifix, and Reactive Blue BRS very efficiently in liquid medium over a wide range of salt concentration (0–100?g NaCl l?1). Time required for complete decolorization of 100?mg dye l?1 varied with the type of dye and salt concentration. In general, there was an inverse linear relationship between the velocity of the decolorization reaction (V) and salt concentration. This study suggested that bacteria isolated from saline conditions such as seawater sediment could be used in designing a bioreactor for the treatment of textile effluent containing high concentration of salts.  相似文献   

10.
Twenty-two azo dyes were used to study the influence of substituents on azo dye biodegradability and to explore the possibility of enhancing the biodegradabilities of azo dyes without affecting their properties as dyes by changing their chemical structures. Streptomyces spp. and Phanerochaete chrysosporium were used in the study. None of the actinomycetes (Streptomyces rochei A10, Streptomyces chromofuscus A11, Streptomyces diastaticus A12, S. diastaticus A13, and S. rochei A14) degraded the commercially available Acid Yellow 9. Decolorization of monosulfonated mono azo dye derivatives of azobenzene by the Streptomyces spp. was observed with five azo dyes having the common structural pattern of a hydroxy group in the para position relative to the azo linkage and at least one methoxy and/or one alkyl group in an ortho position relative to the hydroxy group. The fungus P. chrysosporium attacked Acid Yellow 9 to some extent and extensively decolorized several azo dyes. A different pattern was seen for three mono azo dye derivatives of naphthol. Streptomyces spp. decolorized Orange I but not Acid Orange 12 or Orange II. P. chrysosporium, though able to transform these three azo dyes, decolorized Acid Orange 12 and Orange II more effectively than Orange I. A correlation was observed between the rate of decolorization of dyes by Streptomyces spp. and the rate of oxidative decolorization of dyes by a commercial preparation of horseradish peroxidase type II, extracellular peroxidase preparations of S. chromofuscus A11, or Mn(II) peroxidase from P. chrysosporium. Ligninase of P. chrysosporium showed a dye specificity different from that of the other oxidative enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Twenty-two azo dyes were used to study the influence of substituents on azo dye biodegradability and to explore the possibility of enhancing the biodegradabilities of azo dyes without affecting their properties as dyes by changing their chemical structures. Streptomyces spp. and Phanerochaete chrysosporium were used in the study. None of the actinomycetes (Streptomyces rochei A10, Streptomyces chromofuscus A11, Streptomyces diastaticus A12, S. diastaticus A13, and S. rochei A14) degraded the commercially available Acid Yellow 9. Decolorization of monosulfonated mono azo dye derivatives of azobenzene by the Streptomyces spp. was observed with five azo dyes having the common structural pattern of a hydroxy group in the para position relative to the azo linkage and at least one methoxy and/or one alkyl group in an ortho position relative to the hydroxy group. The fungus P. chrysosporium attacked Acid Yellow 9 to some extent and extensively decolorized several azo dyes. A different pattern was seen for three mono azo dye derivatives of naphthol. Streptomyces spp. decolorized Orange I but not Acid Orange 12 or Orange II. P. chrysosporium, though able to transform these three azo dyes, decolorized Acid Orange 12 and Orange II more effectively than Orange I. A correlation was observed between the rate of decolorization of dyes by Streptomyces spp. and the rate of oxidative decolorization of dyes by a commercial preparation of horseradish peroxidase type II, extracellular peroxidase preparations of S. chromofuscus A11, or Mn(II) peroxidase from P. chrysosporium. Ligninase of P. chrysosporium showed a dye specificity different from that of the other oxidative enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Dye wastewater normally is discharged at high temperature, but thermophilic bacteria capable of decolorizing azo dyes have rarely been isolated. Here we report a newly isolated moderately thermophilic bacterium, Novibacillus thermophilus SG-1, which had a remarkable ability to decolorize the azo dye Orange I by utilizing a large variety of organic substrates as electron donors. When Orange I served as the sole electron acceptor, almost complete decolorization occurred at 50ºC and pH 8.0 with acetate as the electron donor after anaerobic incubation of strain SG-1 for 24 h. The decolorization process followed the pseudofirst- order kinetics. The complete reduction of 0.3 mM Orange I was accompanied by a stoichiometric consumption of 0.17 mM acetate over time. The measured molar ratio (1.76) of Orange I reduced to acetate oxidized was close to the theory value of 2.0, suggesting that most of the electrons released by acetate had been transported to Orange I. Simultaneously energy generated from the electron transfer process was used to support cell anaerobic growth, which meant that azoreduction by strain SG-1 is an azorespiration process. To our knowledge, this is the first report of a thermophilic bacterium capable of azorespiration, which increases the limited number of bacteria for treating hightemperature azo dye wastewater.  相似文献   

13.
Wastewater effluents from the textile and other dye-stuff industries contain significant amounts of synthetic dyes that require treatment to prevent groundwater contamination. In research aimed at biotechnology for treatment of azo dyes, this study examined 288 strains of azo-dye degrading bacteria to identify efficient strains and determine incubation times required for decolorization. Initial enrichment cultures were carried out using a mixture of four structurally different dyes (Acid Red 88, Reactive Black 5, Direct Red 81, and Disperse Orange 3) as the sole source of C and N to isolate the bacteria from soil, activated sludge, and natural asphalt. Six strains were selected for further study based on their prolific growth and ability to rapidly decolorize the dyes individually or in mixtures. Treatment times required by the most efficient strain, AS96 (Shewanella putrefaciens) were as short as 4 h for complete decolorization of 100 mg l−1 of AR-88 and DR-81 dyes under static conditions, and 6 and 8 h, respectively, for complete decolorization of RB-5 and DO-3. To our knowledge, these bacterial strains are the most efficient azo-dye degrading bacteria that have been described and may have practical application for biological treatment of dye-polluted wastewater streams.  相似文献   

14.
以黄萎病菌粗毒素接种不同茄子品种的结果表明:接种后抗病品种比感病品种的过氧化物酶(POD)、超氧化物歧化酶(SOD)活性高,而多酚氧化酶(PPO)和苯丙氨酸解氨酶(PAL)活性则相对稳定;前者叶的净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr)和细胞间CO2浓度(Ci)的变化幅度比后者小,但72 h后二者的叶片Pn、Gs、Tr都明显呈下降趋势.  相似文献   

15.
Anthraquinone-2-sulfonate was immobilized on ceramsites (AQS-ceramsites) using a novel adsorption/covalence coupling method and their effects on the anaerobic bio-decolorization rates of azo dyes by salt-tolerant AQS-reducing (STAR) community were investigated. The results showed that AQS-ceramsites mediated specific bio-decolorization rates of four azo dyes Acid Yellow 36, Reactive Red 2, Acid Red 27 and Acid Orange 7 increase 2.3–6.4 fold than those lacking ceramsites in the presence of 50 g/L NaCl. Moreover, repeated experiments with AQS-ceramsites showed that the decolorization efficiencies of azo dyes could remain over 98% of their original value. These results indicated that AQS-ceramsites functioning as redox mediators exhibited good catalytic activity and stability under saline conditions. The dynamics of the STAR community structure revealed by PCR-DGGE also showed that the presence of AQS-ceramsites made STAR bacteria keeping predominant in the catalytic system. Therefore, it can be concluded that this novel solid redox mediator is potentially useful for the treatment of saline dye wastewater.  相似文献   

16.
Dye decolorization capacity of two white-rot fungi, Irpex lacteus and Phanerochaete chrysosporium, was compared in N-limited liquid cultures. The agitated cultures showed lower ability to decolorize azo dyes Reactive Orange 16 and Naphthol Blue Black than static cultures. Similar effect was also observed with other structurally different synthetic dyes. The effect of surfactants on the decolorization process is discussed. A significant increase in the Reactive Orange 16 decolorization by the agitated I. lacteus cultures was observed after adding 0.1% Tween 80, following a higher Mn-dependent peroxidase production. The in vitro dye decolorization using the purified enzyme proved its decolorization ability.  相似文献   

17.
Summary Kodam et al. reported a 100% decolorization of the sulfonated azo dyes Reactive Red 2, Reactive Red 141, Reactive Orange 4, Reactive Orange 7 and Reactive Violet 5 by an unidentified bacterium, KMK 48. High effectiveness was attained within 36 h of incubation at room temperature and neutral pH. Optimum decolorization took place strictly under aerobic conditions, which is contrary to other well-documented reports. Thus, this microorganism seems to be potentially effective for bioremediation of textile-dyeing industry effluents.  相似文献   

18.
Microbial decolorization and degradation of synthetic dyes: a review   总被引:3,自引:0,他引:3  
The synthesis of dyes and pigments used in textiles and other industries generate the hazardous wastes. A dye is used to impart color to materials of which it becomes an integral part. The waste generated during the process and operation of the dyes commonly found to contain the inorganic and organic contaminant leading to the hazard to ecosystem and biodiversity causing impact on the environment. The amount of azo dyes concentration present in wastewater varied from lower to higher concentration that lead to color dye effluent causing toxicity to biological ecosystem. The physico-chemical treatment does not remove the color and dye compound concentration. The decolorization of the dye takes place either by adsorption on the microbial biomass or biodegradation by the cells. Bioremediation takes place by anaerobic and/or aerobic process. The anaerobic process converts dye in toxic amino compounds which on further treatment with aerobic reaction convert the intermediate into CO2 biomass and inorganics. In the present review the decolorization and degradation of azo dyes by fungi, algae, yeast and bacteria have been cited along with the anaerobic to aerobic treatment processes. The factors affecting decolorization and biodegradation of azo dye compounds such as pH, temperature, dye concentration, effects of CO2 and Nitrogen, agitation, effect of dye structure, electron donor and enzymes involved in microbial decolorization of azo dyes have been discussed. This paper will have the application for the decolorization and degradation of azo dye compound into environmental friendly compounds.  相似文献   

19.
The biological decolorization of the textile azo dye Reactive Red 2 was investigated using a mixed, mesophilic methanogenic culture, which was developed with mixed liquor obtained from a mesophilic, municipal anaerobic digester and enriched by feeding a mixture of dextrin/peptone as well as media containing salts, trace metals and vitamins. Batch decolorization assays were conducted with the unacclimated methanogenic culture and dye decolorization kinetics were determined as a function of initial dye, biomass, and carbon source concentrations. Dye decolorization was inhibited at initial dye concentrations higher than 100 mg l-1 and decolorization kinetics were described based on the Haldane model. The effect of long-term culture exposure to the reactive dye on decolorization kinetics, culture acclimation, as well as possible dye mineralization was tested using two reactors fed weekly for two years with an initial dye concentration of 300 mg l-1 and a mixture of dextrin/peptone. The maximum dye decolorization rate after a 2-year acclimation at an initial dye concentration of 300 mg l-1 was more than 10-fold higher as compared to that obtained with the unacclimated culture. Aniline and the o-aminohydroxynaphthalene derivative resulting from the reductive azo bond cleavage of the dye were detected, but further transformation(s) leading to dye mineralization were not observed. Reactive Red 2 did not serve as the carbon and energy source for the mixed culture, and dye decolorization was sustained by the continuous addition of dextrin and peptone. Thus, biological decolorization of reactive azo dyes is feasible under conditions of low redox potential created and maintained in overall methanogenic systems, but supply of a biodegradable carbon source is necessary.  相似文献   

20.
Synthetic decolorization of dyes through solid cassava residue substrate fermentation with Trametes sp. SYBC-L4 via in vivo and in vitro processes was investigated in this study. Effects of pH and mediator (1-hydroxybenzotriazole, HBT) concentration on dyes decolorization were evaluated. In vitro, decolorization ratios of dyes differed considerably in pH and increased with the increasing of HBT concentration. Crude laccase (50 U/L) derived from Trametes sp. SYBC-L4 decolorized 67.91 ± 1.25 % Congo red (100 mg/L), 94.58 ± 1.05 % aniline blue (100 mg/L) and 99.02 ± 0.54 % indigo carmine (100 mg/L) with 2.5 mM HBT at pH 4.5 in 36 h of incubation. In vivo, decolorization ratios of dyes were not enhanced by usage of the mediator. After 10 days of fermentation, decolorization ratio of Congo red (1,000 mg/kg), aniline blue (1,000 mg/kg) and indigo carmine (1,000 mg/kg) was 57.82 ± 0.84, 92.53 ± 1.12 and 97.26 ± 1.92 % without the usage of mediator at pH 4.5, respectively. Moreover, there was no obvious difference between the in vivo decolorization of aniline blue and indigo carmine in the pH range of 3.0–9.0. Results showed that Trametes sp. SYBC-L4 had great potential to be used for dyes decolorization via in vivo and in vitro processes. Moreover, in terms of pH range and mediator, in vivo decolorization with Trametes sp. SYBC-L4 was more advantageous since laccase mediator was needless and the applicable range of pH was broader.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号