首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Villus enterocyte nutrient absorption occurs via precisely orchestrated interactions among multiple transporters. For example, transport by the apical Na(+)-glucose cotransporter, SGLT1, triggers translocation of NHE3, Na(+)-H(+) antiporter isoform 3, to the plasma membrane. This translocation requires activation of p38 mitogen-activated protein kinase (MAPK), Akt2, and ezrin. Akt2 directly phosphorylates ezrin, but the precise role of p38 MAPK in this process remains to be defined. Sequence analysis suggested that p38 MAPK could not directly phosphorylate Akt2. We hypothesized that MAPKAPK-2 might link p38 MAPK and Akt2 activation. MAPKAPK-2 was phosphorylated after initiation of Na(+)-glucose cotransport with kinetics that paralleled activation of p38 MAPK, Akt2, and ezrin. MAPKAPK-2, Akt2, and ezrin phosphorylation were all attenuated by p38 MAPK inhibition but were unaffected by dominant negative ezrin expression. Akt2 inhibition blocked ezrin but not p38 MAPK or MAPKAPK-2 phosphorylation, suggesting that MAPKAPK-2 could be an intermediate in p38 MAPK-dependent Akt2 activation. Consistent with this, MAP-KAPK-2 could phosphorylate an Akt2-derived peptide in vitro. siRNA-mediated MAPKAPK-2 knockdown inhibited phosphorylation of Akt2 and ezrin but not p38 MAPK. MAPKAPK-2 knockdown also blocked NHE3 translocation. Thus, MAP-KAPK-2 controls Akt2 phosphorylation. In so doing, MAP-KAPK-2 links p38 MAPK to Akt2, ezrin, and NHE3 activation after SGLT1-mediated transport.  相似文献   

2.
Hyperosmotic shrinkage induces multiple cellular responses, including activation of volume-regulatory ion transport, cytoskeletal reorganization, and cell death. Here we investigated the possible roles of ezrin/radixin/moesin (ERM) proteins in these events. Osmotic shrinkage of Ehrlich Lettre ascites cells elicited the formation of long microvillus-like protrusions, rapid translocation of endogenous ERM proteins and green fluorescent protein-tagged ezrin to the cortical region including these protrusions, and Thr(567/564/558) (ezrin/radixin/moesin) phosphorylation of cortical ERM proteins. Reduced cell volume appeared to be the critical parameter in hypertonicity-induced ERM protein activation, whereas alterations in extracellular ionic strength or intracellular pH were not involved. A shrinkage-induced increase in the level of membrane-associated phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] appeared to play an important role in ERM protein activation, which was prevented after PtdIns(4,5)P(2) depletion by expression of the synaptojanin-2 phosphatase domain. While expression of constitutively active RhoA increased basal ERM phosphorylation, the Rho-Rho kinase pathway did not appear to be involved in shrinkage-induced ERM protein phosphorylation, which was also unaffected by the inhibition or absence of Na(+)/H(+) exchanger isoform (NHE1). Ezrin knockdown by small interfering RNA increased shrinkage-induced NHE1 activity, reduced basal and shrinkage-induced Rho activity, and attenuated the shrinkage-induced formation of microvillus-like protrusions. Hyperosmolarity-induced cell death was unaltered by ezrin knockdown or after phosphatidylinositol 3-kinase (PI3K) inhibition. In conclusion, ERM proteins are activated by osmotic shrinkage in a PtdIns(4,5)P(2)-dependent, NHE1-independent manner. This in turn mitigates the shrinkage-induced activation of NHE1, augments Rho activity, and may also contribute to F-actin rearrangement. In contrast, no evidence was found for the involvement of an NHE1-ezrin-PI3K-PKB pathway in counteracting shrinkage-induced cell death.  相似文献   

3.
Cytoplasmic pH (pHi) was evaluated duringNa+-glucose cotransport in Caco-2 intestinal epithelialcell monolayers. The pHi increased by 0.069 ± 0.002 within 150 s after initiation of Na+-glucosecotransport. This increase occurred in parallel with glucose uptake andrequired expression of the intestinal Na+-glucosecotransporter SGLT1. S-3226, a preferential inhibitor ofNa+/H+ exchanger (NHE) isoform 3 (NHE3),prevented cytoplasmic alkalinization after initiation ofNa+-glucose cotransport with an ED50 of 0.35 µM, consistent with inhibition of NHE3, but not NHE1 or NHE2. Incontrast, HOE-694, a poor NHE3 inhibitor, failed to significantlyinhibit pHi increases at <500 µM.Na+-glucose cotransport was also associated with activationof p38 mitogen-activated protein (MAP) kinase, and the p38 MAP kinase inhibitors PD-169316 and SB-202190 prevented pHi increasesby 100 ± 0.1 and 86 ± 0.1%, respectively. Conversely,activation of p38 MAP kinase with anisomycin induced NHE3-dependentcytoplasmic alkalinization in the absence of Na+-glucosecotransport. These data show that NHE3-dependent cytoplasmic alkalinization occurs after initiation of SGLT1-mediatedNa+-glucose cotransport and that the mechanism of this NHE3activation requires p38 MAP kinase activity. This coordinatedregulation of glucose (SGLT1) and Na+ (NHE3) absorptiveprocesses may represent a functional activation of absorptiveenterocytes by luminal nutrients.

  相似文献   

4.
Apoptosis results in cell shrinkage and intracellular acidification, processes opposed by the ubiquitously expressed NHE1 Na(+)/H(+) exchanger. In addition to mediating Na(+)/H(+) transport, NHE1 interacts with ezrin/radixin/moesin (ERM), which tethers NHE1 to cortical actin cytoskeleton to regulate cell shape, adhesion, motility, and resistance to apoptosis. We hypothesize that apoptotic stress activates NHE1-dependent Na(+)/H(+) exchange, and NHE1-ERM interaction is required for cell survival signaling. Apoptotic stimuli induced NHE1-regulated Na(+)/H(+) transport, as demonstrated by ethyl-N-isopropyl-amiloride-inhibitable, intracellular alkalinization. Ectopic NHE1, but not NHE3, expression rescued NHE1-null cells from apoptosis induced by staurosporine or N-ethylmaleimide-stimulated KCl efflux. When cells were subjected to apoptotic stress, NHE1 and phosphorylated ERM physically associated within the cytoskeleton-enriched fraction, resulting in activation of the pro-survival kinase, Akt. NHE1-associated Akt activity and cell survival were inhibited in cells expressing ERM binding-deficient NHE1, dominant negative ezrin constructs, or ezrin mutants with defective binding to phosphoinositide 3-kinase, an upstream regulator of Akt. We conclude that NHE1 promotes cell survival by dual mechanisms: by defending cell volume and pH(i) through Na(+)/H(+) exchange and by functioning as a scaffold for recruitment of a signalplex that includes ERM, phosphoinositide 3-kinase, and Akt.  相似文献   

5.
The function and regulation of Na(+)/H(+) exchanger isoform 1 (NHE1) following cerebral ischemia are not well understood. In this study, we demonstrate that extracellular signal-related kinases (ERK1/2) play a role in stimulation of neuronal NHE1 following in vitro ischemia. NHE1 activity was significantly increased during 10-60 min reoxygenation (REOX) after 2-h oxygen and glucose deprivation (OGD). OGD/REOX not only increased the V(max) for NHE1 but also shifted the K(m) toward decreased [H(+)](i). These changes in NHE1 kinetics were absent when MAPK/ERK kinase (MEK) was inhibited by the MEK inhibitor U0126. There were no changes in the levels of phosphorylated ERK1/2 (p-ERK1/2) after 2 h OGD. The p-ERK1/2 level was significantly increased during 10-60 min REOX, which was accompanied by nuclear translocation. U0126 abolished REOX-induced elevation and translocation of p-ERK1/2. We further examined the ERK/90-kDa ribosomal S6 kinase (p90(RSK)) signaling pathways. At 10 min REOX, phosphorylated NHE1 was increased with a concurrent elevation of phosphorylation of p90(RSK), a known NHE1 kinase. Inhibition of MEK activity with U0126 abolished phosphorylation of both NHE1 and p90(RSK). Moreover, neuroprotection was observed with U0126 or genetic ablation or pharmacological inhibition of NHE1 following OGD/REOX. Taken together, these results suggest that activation of ERK1/2-p90(RSK) pathways following in vitro ischemia phosphorylates NHE1 and increases its activity, which subsequently contributes to neuronal damage.  相似文献   

6.
Initiation of intestinal Na+-glucose cotransport results intransient cell swelling and sustained increases in tight junction permeability. Since Na+/H+ exchange has beenimplicated in volume regulation after physiological cell swelling, wehypothesized that Na+/H+ exchange might also berequired for Na+-glucose cotransport-dependent tightjunction regulation. In Caco-2 monolayers with activeNa+-glucose cotransport, inhibition ofNa+/H+ exchange with 200 µM5-(N,N-dimethyl)- amiloride induced 36 ± 2% increases in transepithelial resistance (TER). Evaluation using multiple Na+/H+ exchange inhibitors showed thatinhibition of the Na+/H+ exchanger 3 (NHE3)isoform was most closely related to TER increases. TER increases due toNHE3 inhibition were related to cytoplasmic acidification becausecytoplasmic alkalinization with 5 mM NH4Cl prevented bothcytoplasmic acidification and TER increases. However, NHE3 inhibitiondid not affect TER when Na+-glucose cotransport wasinhibited. Myosin II regulatory light chain (MLC) phosphorylationdecreased up to 43 ± 5% after inhibition ofNa+/H+ exchange, similar to previous studiesthat associate decreased MLC phosphorylation with increased TER afterinhibition of Na+-glucose cotransport. However, NHE3inhibitors did not diminish Na+-glucose cotransport. Thesedata demonstrate that inhibition of NHE3 results in decreased MLCphosphorylation and increased TER and suggest that NHE3 may participatein the signaling pathway of Na+-glucosecotransport-dependent tight junction regulation.

  相似文献   

7.
Insulin stimulates Na(+),K(+)-ATPase activity and induces translocation of Na(+),K(+)-ATPase molecules to the plasma membrane in skeletal muscle. We determined the molecular mechanism by which insulin regulates Na(+),K(+)-ATPase in differentiated primary human skeletal muscle cells (HSMCs). Insulin action on Na(+),K(+)-ATPase was dependent on ERK1/2 in HSMCs. Sequence analysis of Na(+),K(+)-ATPase alpha-subunits revealed several potential ERK phosphorylation sites. Insulin increased ouabain-sensitive (86)Rb(+) uptake and [(3)H]ouabain binding in intact cells. Insulin also increased phosphorylation and plasma membrane content of the Na(+),K(+)-ATPase alpha(1)- and alpha(2)-subunits. Insulin-stimulated Na(+),K(+)-ATPase activation, phosphorylation, and translocation of alpha-subunits to the plasma membrane were abolished by 20 microm PD98059, which is an inhibitor of MEK1/2, an upstream kinase of ERK1/2. Furthermore, inhibitors of phosphatidylinositol 3-kinase (100 nm wortmannin) and protein kinase C (10 microm GF109203X) had similar effects. Notably, insulin-stimulated ERK1/2 phosphorylation was abolished by wortmannin and GF109203X in HSMCs. Insulin also stimulated phosphorylation of alpha(1)- and alpha(2)-subunits on Thr-Pro amino acid motifs, which form specific ERK substrates. Furthermore, recombinant ERK1 and -2 kinases were able to phosphorylate alpha-subunit of purified human Na(+),K(+)-ATPase in vitro. In conclusion, insulin stimulates Na(+),K(+)-ATPase activity and translocation to plasma membrane in HSMCs via phosphorylation of the alpha-subunits by ERK1/2 mitogen-activated protein kinase.  相似文献   

8.
The epithelial brush border (BB) Na(+)/H(+) exchanger 3 (NHE3) accounts for most renal and intestinal Na(+) absorption. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibits NHE3 activity under basal conditions in intact intestine, acting in the BB, but the mechanism is unclear. We now demonstrate that in both PS120 fibroblasts and polarized Caco-2BBe cells expressing NHE3, CaMKII inhibits basal NHE3 activity, because the CaMKII-specific inhibitors KN-93 and KN-62 stimulate NHE3 activity. This inhibition requires NHERF2. CaMKIIγ associates with NHE3 between aa 586 and 605 in the NHE3 C terminus in a Ca(2+)-dependent manner, with less association when Ca(2+) is increased. CaMKII inhibits NHE3 by an effect on its turnover number, not changing surface expression. Back phosphorylation demonstrated that NHE3 is phosphorylated by CaMKII under basal conditions. This overall phosphorylation of NHE3 is not affected by the presence of NHERF2. Amino acids downstream of NHE3 aa 690 are required for CaMKII to inhibit basal NHE3 activity, and mutations of the three putative CaMKII phosphorylation sites downstream of aa 690 each prevented KN-93 stimulation of NHE3 activity. These studies demonstrate that CaMKIIγ is a novel NHE3-binding protein, and this association is reduced by elevated Ca(2+). CaMKII inhibits basal NHE3 activity associated with phosphorylation of NHE3 by effects requiring aa downstream of NHE3 aa 690 and of the CaMKII-binding site on NHE3. CaMKII binding to and phosphorylation of the NHE3 C terminus are parts of the physiologic regulation of NHE3 that occurs in fibroblasts as well as in the BB of an intestinal Na(+)-absorptive cell.  相似文献   

9.
Na(+)/H(+) exchanger 3 (NHE3) is the epithelial-brush border isoform responsible for most intestinal and renal Na(+) absorption. Its activity is both up- and down-regulated under normal physiological conditions, and it is inhibited in most diarrheal diseases. NHE3 is phosphorylated under basal conditions and Ser/Thr phosphatase inhibitors stimulate basal exchange activity; however, the kinases involved are unknown. To identify kinases that regulate NHE3 under basal conditions, NHE3 was immunoprecipitated; LC-MS/MS of trypsinized NHE3 identified a novel phosphorylation site at S(719) of the C terminus, which was predicted to be a casein kinase 2 (CK2) phosphorylation site. This was confirmed by an in vitro kinase assay. The NHE3-S719A mutant but not NHE3-S719D had reduced NHE3 activity due to less plasma membrane NHE3. This was due to reduced exocytosis plus decreased plasma membrane delivery of newly synthesized NHE3. Also, NHE3 activity was inhibited by the CK2 inhibitor 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole DMAT when wild-type NHE3 was expressed in fibroblasts and Caco-2 cells, but the NHE3-S(719) mutant was fully resistant to DMAT. CK2 bound to the NHE3 C-terminal domain, between amino acids 590 and 667, a site different from the site it phosphorylates. CK2 binds to the NHE3 C terminus and stimulates basal NHE3 activity by phosphorylating a separate single site on the NHE3 C terminus (S(719)), which affects NHE3 trafficking.  相似文献   

10.
In the medullary thick ascending limb, inhibiting the basolateral NHE1 Na(+)/H(+) exchanger with nerve growth factor (NGF) induces actin cytoskeleton remodeling that secondarily inhibits apical NHE3 and transepithelial HCO(3)(-) absorption. The inhibition by NGF is mediated 50% through activation of extracellular signal-regulated kinase (ERK). Here we examined the signaling pathway responsible for the remainder of the NGF-induced inhibition. Inhibition of HCO(3)(-) absorption was reduced 45% by the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin or LY294002 and 50% by rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR), a downstream effector of PI3K. The combination of a PI3K inhibitor plus rapamycin did not cause a further reduction in the inhibition by NGF. In contrast, the combination of a PI3K inhibitor plus the MEK/ERK inhibitor U0126 completely eliminated inhibition by NGF. Rapamycin decreased NGF-induced inhibition of basolateral NHE1 by 45%. NGF induced a 2-fold increase in phosphorylation of Akt, a PI3K target linked to mTOR activation, and a 2.2-fold increase in the activity of p70 S6 kinase, a downstream effector of mTOR. p70 S6 kinase activation was blocked by wortmannin and rapamycin, consistent with PI3K, mTOR, and p70 S6 kinase in a linear pathway. Rapamycin-sensitive inhibition of NHE1 by NGF was associated with an increased level of phosphorylated mTOR in the basolateral membrane domain. These findings indicate that NGF inhibits HCO(3)(-) absorption in the medullary thick ascending limb through the parallel activation of PI3K-mTOR and ERK signaling pathways, which converge to inhibit NHE1. The results identify a role for mTOR in the regulation of Na(+)/H(+) exchange activity and implicate NHE1 as a possible downstream effector contributing to mTOR's effects on cell growth, proliferation, survival, and tumorigenesis.  相似文献   

11.
Hypertonicity is a stressful stimulus leading to cell shrinkage and apoptotic cell death. Apoptosis can be prevented if cells are able to activate the mechanism of RVI (regulatory volume increase). This study in mIMCD3 cells presents evidence of a permissive role of the EGFR (epidermal growth factor receptor) on RVI, achieved for the most part through the two main EGFR-triggered signalling chains, the MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) and the PI3K (phosphoinositide 3-kinase)/Akt (also known as protein kinase B) pathways. Hyperosmotic solutions (450 mosM) made by addition of NaCl, increased EGFR phosphorylation, which is prevented by GM6001 and AG1478, blockers respectively, of MMPs (matrix metalloproteinases) and EGFR. Inhibition of EGFR, ERK (PD98059) or PI3K/Akt (wortmannin) phosphorylation reduced RVI by 60, 48 and 58% respectively. The NHE (Na(+)/H(+) exchanger) seems to be the essential mediator of this effect since (i) NHE is the main contributor to RVI, (ii) EGFR, ERK and PI3K/Akt blockers added together with the NHE blocker zoniporide reduce RVI by non-additive effects and (iii) All the blockers significantly lowered the NHE rate in cells challenged by an NH(4)Cl pulse. Besides reducing RVI, the inhibition of MMP, EGFR and PI3K/Akt had a strong pro-apoptotic effect increasing cell death by 2-3.7-fold. This effect was significantly lower when RVI inhibition did not involve the EGFR-PI3K/Akt pathway. These results provide evidence that Akt and its permissive effect on RVI have a predominant influence on cell survival under hypertonic conditions in IMCD3 cells. This role of Akt operates under the influence of EGFR activation, promoted by MMP.  相似文献   

12.
The sodium-hydrogen exchanger regulatory factor (NHERF) is an essential cofactor for cAMP-mediated inhibition of the Na(+)/H(+) exchanger isoform, NHE3, in renal brush border membranes. NHERF is also an ezrin-binding protein. To define the functional importance of ezrin binding for NHERF's function as a NHE3 regulator, we transfected stable PS120 cells expressing NHE3 with plasmids encoding WT and truncated mouse NHERF proteins. Co-immunoprecipitation established that in PS120 cells, NHE3 bound to full-length NHERF(1-355), the C-terminal domain, NHERF(147-355), and NHERF(1-325), which lacks the proposed ezrin-binding domain. The N-terminal domain, NHERF(1-146), failed to bind the antiporter. Ezrin was also co-immunoprecipitated with NHERF(1-355) but not with NHERF(1-325). 8Br-cAMP inhibited NHE3 activity in cells that expressed NHERF(1-355) or NHERF(147-355) but had no effect on the formation of NHE3-NHERF or NHERF-ezrin complexes. Na(+)/H(+) exchange was unaffected by 8Br-cAMP in cells that expressed NHERF(1-146) or NHERF(1-325). NHE3 phosphorylation in vivo was enhanced by 8Br-cAMP only in cells where NHERF bound to both NHE3 and ezrin. The data suggest that NHERF functions as a scaffold to link NHE3 with ezrin and that this multiprotein complex is essential for cAMP-mediated phosphorylation of NHE3 and the inhibition of Na(+)/H(+) exchange.  相似文献   

13.
Na(+) absorption is a vital process present in all living organisms. We have reported previously that lysophosphatidic acid (LPA) acutely stimulates Na(+) and fluid absorption in human intestinal epithelial cells and mouse intestine by stimulation of Na(+)/H(+) exchanger 3 (NHE3) via LPA(5) receptor. In the current study, we investigated the mechanism of NHE3 activation by LPA(5) in Caco-2bbe cells. LPA(5)-dependent activation of NHE3 was blocked by mitogen-activated protein kinase kinase (MEK) inhibitor PD98059 and U0126, but not by phosphatidylinositol 3-kinase inhibitor LY294002 or phospholipase C-β inhibitor U73122. We found that LPA(5) transactivated the epidermal growth factor receptor (EGFR) and that inhibition of EGFR blocked LPA(5)-dependent activation of NHE3, suggesting an obligatory role of EGFR in the NHE3 regulation. Confocal immunofluorescence and surface biotinylation analyses showed that LPA(5) was located mostly in the apical membrane. EGFR, on the other hand, showed higher expression in the basolateral membrane. However, inhibition of apical EGFR, but not basolateral EGFR, abrogated LPA-induced regulation of MEK and NHE3, indicating that LPA(5) selectively activates apical EGFR. Furthermore, transactivation of EGFR independently activated the MEK-ERK pathway and proline-rich tyrosine kinase 2 (Pyk2). Similarly to MEK inhibition, knockdown of Pyk2 blocked activation of NHE3 by LPA. Furthermore, we showed that RhoA and Rho-associated kinase (ROCK) are involved in activation of Pyk2. Interestingly, LPA(5) did not directly activate RhoA but was required for transactivation of EGFR. Together, these results unveil a pivotal role of apical EGFR in NHE3 regulation by LPA and show that the RhoA-ROCK-Pyk2 and MEK-ERK pathways converge onto NHE3.  相似文献   

14.
Oxidative stress can induce apoptosis through activation of MstI, subsequent phosphorylation of FOXO and nuclear translocation. MstI is a common component of apoptosis initiated by various stresses. MstI kinase activation requires autophosphorylation and proteolytic degradation by caspases. The role of Akt in regulating MstI activity has not been previously examined. Here, we show that MstI is a physiological substrate of Akt. Akt phosphorylation of MstI diminishes its apoptotic cleavage by caspases and prevents its kinase activity on FOXO3. MstI directly binds to Akt, which is regulated Akt kinase activity. Akt phosphorylates MstI on the Thr(387) residue and protects MstI from apoptotic cleavage in vitro and in apoptotic cells. Interestingly, Akt phosphorylation of MstI strongly inhibits its kinase activity on FOXO3. The phosphorylation mimetic mutant MST1 T387E blocks H2O2-triggered FOXO3 nuclear translocation and apoptosis. Thus, our findings support that Akt blocks MstI-triggered FOXO3 nuclear translocation by phosphorylating MstI, promoting cell survival.  相似文献   

15.
Activation of Na(+)-nutrient cotransport leads to increased tight junction permeability in intestinal absorptive (villus) enterocytes. This regulation requires myosin II regulatory light chain (MLC) phosphorylation mediated by MLC kinase (MLCK). We examined the spatiotemporal segregation of MLCK isoform function and expression along the crypt-villus axis and found that long MLCK, which is expressed as two alternatively spliced isoforms, accounts for 97 +/- 4% of MLC kinase activity in interphase intestinal epithelial cells. Expression of the MLCK1 isoform is limited to well differentiated enterocytes, both in vitro and in vivo, and this expression correlates closely with development of Na(+)-nutrient cotransport-dependent tight junction regulation. Consistent with this role, MLCK1 is localized to the perijunctional actomyosin ring. Furthermore, specific knockdown of MLCK1 using siRNA reduced tight junction permeability in monolayers with active Na(+)-glucose cotransport, confirming a functional role for MLCK1. These results demonstrate unique physiologically relevant patterns of expression and subcellular localization for long MLCK isoforms and show that MLCK1 is the isoform responsible for tight junction regulation in absorptive enterocytes.  相似文献   

16.
Our previous studies on cardiac myocytes showed that positive inotropic concentrations of the digitalis drug ouabain activated signaling pathways linked to Na(+)-K(+)-ATPase through Src and epidermal growth factor receptor (EGFR) and led to myocyte hypertrophy. In view of the known involvement of phosphatidylinositol 3-kinase (PI3K)-Akt pathways in cardiac hypertrophy, the aim of the present study was to determine whether these pathways are also linked to cardiac Na(+)-K(+)-ATPase and, if so, to assess their role in ouabain-induced myocyte growth. In a dose- and time-dependent manner, ouabain activated Akt and phosphorylation of its substrates mammalian target of rapamycin and glycogen synthase kinase in neonatal rat cardiac myocytes. Akt activation by ouabain was sensitive to PI3K inhibitors and was also noted in adult myocytes and isolated hearts. Ouabain caused a transient increase of phosphatidylinositol 3,4,5-trisphosphate content of neonatal myocytes, activated class IA, but not class IB, PI3K, and increased coimmunoprecipitation of the alpha-subunit of Na(+)-K(+)-ATPase with the p85 subunit of class IA PI3K. Ouabain-induced activation of ERK1/2 was prevented by Src, EGFR, and MEK inhibitors, but not by PI3K inhibitors. Activation of Akt by ouabain, however, was sensitive to inhibitors of PI3K and Src, but not to inhibitors of EGFR and MEK. Similarly, ouabain-induced myocyte hypertrophy was prevented by PI3K and Src inhibitors, but not by an EGFR inhibitor. These findings 1) establish the linkage of the class IA PI3K-Akt pathway to Na(+)-K(+)-ATPase and the essential role of this linkage to ouabain-induced myocyte hypertrophy and 2) suggest cross talk between these PI3K-Akt pathways and the signaling cascades previously identified to be associated with cardiac Na(+)-K(+)-ATPase.  相似文献   

17.
Na(+)/H(+) exchanger 3 (NHE3) kinase A regulatory protein (E3KARP) has been implicated in cAMP- and Ca(2+)-dependent inhibition of NHE3. In the current study, a new role of E3KARP is demonstrated in the stimulation of NHE3 activity. Lysophosphatidic acid (LPA) is a mediator of the restitution phase of inflammation but has not been studied for effects on sodium absorption. LPA has no effect on NHE3 activity in opossum kidney (OK) proximal tubule cells, which lack expression of endogenous E3KARP. However, in OK cells exogenously expressing E3KARP, LPA stimulated NHE3 activity. Consistent with the stimulatory effect on NHE3 activity, LPA treatment increased the surface NHE3 amount, which occurred by accelerating exocytic trafficking (endocytic recycling) to the apical plasma membrane. These LPA effects only occurred in OK cells transfected with E3KARP. The LPA-induced increases of NHE3 activity, surface NHE3 amounts, and exocytosis were completely inhibited by pretreatment with the PI 3-kinase inhibitor, LY294002. LPA stimulation of the phosphorylation of Akt was used as an assay for PI 3-kinase activity. LY294002 completely prevented the LPA-induced increase in Akt phosphorylation, which is consistent with the inhibitory effect of LY294002 on the LPA stimulation of NHE3 activity. The LPA-induced phosphorylation of Akt was the same in OK cells with and without E3KARP. These results show that LPA stimulates NHE3 in the apical surface of OK cells by a mechanism that is dependent on both E3KARP and PI 3-kinase. This is the first demonstration that rapid stimulation of NHE3 activity is dependent on an apical membrane PDZ domain protein.  相似文献   

18.
G protein-coupled receptor kinase 2 (GRK2) phosphorylates and desensitizes activated G protein-coupled receptors (GPCRs). Here, we identify ezrin as a novel non-GPCR substrate of GRK2. GRK2 phosphorylates glutathione S-transferase (GST)-ezrin, but not an ezrin fusion protein lacking threonine 567 (T567), in vitro. These results suggest that T567, the regulatory phosphorylation site responsible for maintaining ezrin in its active conformation, represents the principle site of GRK2-mediated phosphorylation. Two lines of evidence indicate that GRK2-mediated ezrin-radixinmoesin (ERM) phosphorylation serves to link GPCR activation to cytoskeletal reorganization. First, in Hep2 cells muscarinic M1 receptor (M1MR) activation causes membrane ruffling. This ruffling response is ERM dependent and is accompanied by ERM phosphorylation. Inhibition of GRK2, but not rho kinase or protein kinase C, prevents ERM phosphorylation and membrane ruffling. Second, agonist-induced internalization of the beta2-adrenergic receptor (beta2AR) and M1MR is accompanied by ERM phosphorylation and localization of phosphorylated ERM to receptor-containing endocytic vesicles. The colocalization of internalized beta2AR and phosphorylated ERM is not dependent on Na+/H+ exchanger regulatory factor binding to the beta2AR. Inhibition of ezrin function impedes beta2AR internalization, further linking GPCR activation, GRK activity, and ezrin function. Overall, our results suggest that GRK2 serves not only to attenuate but also to transduce GPCR-mediated signals.  相似文献   

19.
To determine the molecular mechanism underlying hyperglycemia-induced insulin resistance in skeletal muscles, postreceptor insulin-signaling events were assessed in skeletal muscles of neonatally streptozotocin-treated diabetic rats. In isolated soleus muscle of the diabetic rats, insulin-stimulated 2-deoxyglucose uptake, glucose oxidation, and lactate release were all significantly decreased compared with normal rats. Similarly, insulin-induced phosphorylation and activation of Akt/protein kinase B (PKB) and GLUT-4 translocation were severely impaired. However, the upstream signal, including phosphorylation of the insulin receptor (IR) and insulin receptor substrate (IRS)-1 and -2 and activity of phosphatidylinositol (PI) 3-kinase associated with IRS-1/2, was enhanced. The amelioration of hyperglycemia by T-1095, a Na(+)-glucose transporter inhibitor, normalized the reduced insulin sensitivity in the soleus muscle and the impaired insulin-stimulated Akt/PKB phosphorylation and activity. In addition, the enhanced PI 3-kinase activation and phosphorylation of IR and IRS-1 and -2 were reduced to normal levels. These results suggest that sustained hyperglycemia impairs the insulin-signaling steps between PI 3-kinase and Akt/PKB, and that impaired Akt/PKB activity underlies hyperglycemia-induced insulin resistance in skeletal muscle.  相似文献   

20.
Ohta E  Kawakami F  Kubo M  Obata F 《FEBS letters》2011,585(14):2165-2170
LRRK2 is the causal molecule for autosomal-dominant familial Parkinson's disease, although its true function, including its physiological substrates, remains unknown. Here, using in vitro kinase assay with recombinant proteins, we demonstrated for the first time that LRRK2 directly phosphorylates Akt1, a central molecule involved in signal transduction for cell survival and prevention of apoptosis. Ser473, one of two amino acids essential for Akt1 activation, was the target site for LRRK2. A knockdown experiment using intact cells also demonstrated LRRK2-mediated phosphorylation of Akt1 (Ser473), suggesting that Akt1 is a convincing candidate for the physiological substrate of LRRK2. The disease-associated mutations, R1441C, G2019S, and I2020T, exhibited reduced interaction with, and phosphorylation of, Akt1, suggesting one possible mechanism for the neurodegeneration caused by LRRK2 mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号