首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
All sexually fertile strains in the Gibberella fujikuroi species complex are heterothallic, with individual mating types conferred by the broadly conserved ascomycete idiomorphs MAT-1 and MAT-2. We sequenced both alleles from all eight mating populations, developed a multiplex PCR technique to distinguish these idiomorphs, and tested it with representative strains from all eight biological species and 22 additional species or phylogenetic lineages from this species complex. In most cases, either an ~800-bp fragment from MAT-2 or an ~200-bp fragment from MAT-1 is amplified. The amplified fragments cosegregate with mating type, as defined by sexual cross-fertility, in a cross of Fusarium moniliforme (Fusarium verticillioides). Neither of the primer pairs amplify fragments from Fusarium species such as Fusarium graminearum, Fusarium pseudograminearum, and Fusarium culmorum, which have, or are expected to have, Gibberella sexual stages but are thought to be relatively distant from the species in the G. fujikuroi species complex. Our results suggest that MAT allele sequences are useful indicators of phylogenetic relatedness in these and other Fusarium species.  相似文献   

2.
Mating type in the Gibberella fujikuroi species complex is controlled by a single locus with two alleles and is usually identified following sexual crosses with standard, female-fertile tester isolates. The mating type alleles have been arbitrarily designated "+" and "-" within each biological species, and the nomenclature is tied to the standard tester strains. We developed a pair of PCR primers that can be used to amplify a unique fragment of one of the mating type alleles (MAT-2) from at least seven of the biological species in this species complex. Based on the amplification pattern, we propose a replacement for the existing, arbitrary +/- terminology that is presently in use. The new terminology is based on DNA sequence similarities between the mating type allele fragments from the biological species of the G. fujikuroi species complex and the corresponding fragments from other filamentous ascomycetes.  相似文献   

3.
Scauflaire J  Gourgue M  Munaut F 《Mycologia》2011,103(3):586-597
A large number of Fusarium isolates closely related to F. subglutinans were collected from maize in Belgium. We used a robust polyphasic approach to describe a new biological species, Fusarium temperatum, within the Gibberella fujikuroi species complex. F. temperatum can be distinguished from F. subglutinans and from other Fusarium species within the Gibberella fujikuroi species complex with AFLP fingerprint profile, differences in the translation elongation factor 1-α and β-tubulin DNA sequence and interspecies mating compatibility analyses. Intraspecies mating compatibility suggests that sexual reproduction might be common for field isolates of F. temperatum, and reliable female fertile mating population tester strains were proposed for this heterothallic species.  相似文献   

4.
5.
The Gibberella fujikuroi species complex (Fusarium section Liseola and allied taxa) is composed of an increasingly large number of morphological, biological and phylogenetic species. Most of the known species in this group have been isolated from agricultural ecosystems or have been described from a small number of isolates. We sampled Fusarium communities from native prairie grasses in Kansas and recovered a large number of isolates that superficially resemble F. anthophilum. We used a combination of morphological, biological and molecular characters to describe a new species, Gibberella konza (Gibberella fujikuroi mating population I [MP-I]), from native prairie grasses in Kansas. Although female fertility for field isolates of this species appears to be low, G. konza is heterothallic, and we developed reliably female fertile mating population tester strains for this species. The F. konzum anamorph is differentiated from F. anthophilum and from other Fusarium species in section Liseola by mating compatibility, morphology, AFLP fingerprint profile and differences in β-tubulin DNA sequence.  相似文献   

6.
Infection of cereal grains with Fusarium species can cause contamination with mycotoxins that affect human and animal health. To determine the potential for mycotoxin contamination, we isolated Fusarium species from samples of rice seeds that were collected in 1997 on farms in the foothills of the Nepal Himalaya. The predominant Fusarium species in surface-disinfested seeds with husks were species of the Gibberella fujikuroi complex, including G. fujikuroi mating population A (anamorph, Fusarium verticillioides), G. fujikuroi mating population C (anamorph, Fusarium fujikuroi), and G. fujikuroi mating population D (anamorph, Fusarium proliferatum). The widespread occurrence of mating population D suggests that its role in the complex symptoms of bakanae disease of rice may be significant. Other common species were Gibberella zeae (anamorph, Fusarium graminearum) and Fusarium semitectum, with Fusarium acuminatum, Fusarium anguioides, Fusarium avenaceum, Fusarium chlamydosporum, Fusarium equiseti, and Fusarium oxysporum occasionally present. Strains of mating population C produced beauvericin, moniliformin, and gibberellic acid, but little or no fumonisin, whereas strains of mating population D produced beauvericin, fumonisin, and, usually, moniliformin, but no gibberellic acid. Some strains of G. zeae produced the 8-ketotrichothecene nivalenol, whereas others produced deoxynivalenol. Despite the occurrence of fumonisin-producing strains of mating population D, and of 8-ketotrichothecene-producing strains of G. zeae, Nepalese rice showed no detectable contamination with these mycotoxins. Effective traditional practices for grain drying and storage may prevent contamination of Nepalese rice with Fusarium mycotoxins.  相似文献   

7.
Fusarium verticillioides (Gibberella fujikuroi mating population A) is a producer of fumonisins and one of the main contaminants of corn grains. In Brazil, some studies analyzing strains isolated from corn have demonstrated high levels of fumonisins, whereas the levels for strains isolated from sorghum have been found to be low. In the present study, we investigated the genetic diversity of 22 F. verticillioides strains isolated from corn and 21 strains isolated from sorghum cultivated in the State of S?o Paulo, Brazil. Differences in the genetic profile were observed between the strains isolated from the two substrates using single primer amplification reaction by polymerase chain reaction (SPAR-PCR). Fumonisins levels were higher in strains isolated from corn than in those isolated from sorghum. The MAT-1 and MAT-2 alleles were identified by PCR, and the isolates were subsequently crossed with Fusarium thapsinum (G. fujikuroi mating population F) reference strains because this species is morphologically similar to F. verticillioides and produces low levels of fumonisins. The SPAR haplotypes of some strains isolated from sorghum were similar to the F. thapsinum reference strain haplotypes, but there was no fertile mating between the strains isolated from the two substrates and the F. thapsinum references strains. The MAT-1:MAT-2 proportion was 5:17 and 14:7 for isolates from corn and sorghum, respectively.  相似文献   

8.
Mating type (MAT)-specific fragments of the two idiomorphs ofGibberella fujikuroi (anamorph,Fusarium moniliforme) were obtained by PCR amplification using primers to conserved regions ofMAT homologs from other fungal species and used to assign mating type by molecular criteria rather than the arbitrary historical designation. Mating type—strains of mating populations A-E and a mating type+strain of mating population F carry an α-box motif and should therefore be designatedMAT-1. Mating type+strains of mating populations A-E and a mating type—strain of mating population F carry an HMG-box motif and should be designatedMAT-2. Thus, assessment of mating type ofG. fujikurol strains can be easily achieved usingMAT-specific primers.  相似文献   

9.
Strains of Fusarium species belonging to section Liseola cause stalk and ear rot of maize and produce important mycotoxins, such as fumonisins. We isolated two species, Fusarium verticillioides (Gibberella fujikuroi mating population A) and Fusarium proliferatum (G. fujikuroi mating population D) from maize cultivated under no-till conditions at five locations in the Córdoba province of Argentina. We determined the effective population number for mating population A (N(e)) and found that the N(e) for mating type was 89% of the count (total population) and that the N(e) for male or hermaphrodite status was 36%. Thus, the number of strains that can function as the female parent limits N(e), and sexual reproduction needs to occur only once every 54 to 220 asexual generations to maintain this level of sexual fertility. Our results indicate that the fungal populations isolated from no-till maize are similar to those recovered from maize managed with conventional tillage. We placed 36 strains from mating population A into 28 vegetative compatibility groups (VCGs). Of the 13 strains belonging to five multimember VCGs, only 2 isolates belonging to one VCG were clones based on amplified fragment length polymorphism (AFLP) fingerprints. Members of the other four multimember VCGs had an average similarity index of 0.89, and members of one VCG were no more closely related to other members of the same VCG than they were to other members of the population as a whole. This finding suggests that the common assumption that strains in the same VCG are either clonal or very closely related needs to be examined in more detail. The variability observed with AFLPs and VCGs suggests that sexual reproduction may occur more frequently than estimated by N(e).  相似文献   

10.
Genetic analysis of Gibberella circinata, the causative agent of pitch canker disease of pines, historically has been thwarted by a low frequency of mating success in the laboratory. We describe two findings that should facilitate genetic analysis of this fungus and related species. First, we determined that previously described degenerate primers could be used to amplify a portion of the MAT-2 mating type gene from G. circinata. This led to the cloning and sequencing of a fragment of the MAT-2 gene, which in turn made it possible to distinguish between G. circinata isolates of opposite mating types. Second, we discovered that of the 18 G. circinata field isolates in our collection, the 1 female fertile isolate expressed its fertility at 15 and 20 degrees C but not at 25 degrees C, the temperature used for crossing many Gibberella species. It is evident, therefore, that when sexual reproduction in other closely related species is initially being investigated, the crosses should be established at a variety of temperatures. Once we learned that female fertility in this G. circinata isolate was expressed at 20 degrees C, a high frequency of mating success was achieved.  相似文献   

11.
Mating type (MAT) genes were cloned from three members of the Gibberella/Fusarium complex that differ in reproductive mode: heterothallic G. fujikuroi, homothallic G. zeae, and asexual F. oxysporum. The G. fujikuroi MAT locus organization is typical of other heterothallic pyrenomycetes characterized to date; i.e., there are three genes at MAT1-1 and one at MAT1-2. G. zeae has homologues of all four genes encoded by the two G. fujikuroi MAT idiomorphs, tightly linked on the same chromosome, interspersed with sequences unique to G. zeae. Field isolates of F. oxysporum, although asexual, have either the MAT1-1 or the MAT1-2 genes found in sexual species and these genes are highly similar to those of heterothallic G. fujikuroi. RT-PCR analysis proved that the F. oxysporum MAT genes are expressed and that all putative introns found in each of the four MAT genes in G. fujikuroi and F. oxysporum are removed. Apparent failure of F. oxysporum to reproduce sexually could not be attributed to mutations in the MAT genes themselves.  相似文献   

12.
The genus Septoria contains more than 1000 species of plant pathogenic fungi, most of which have no known sexual stage. Species of Septoria without a known sexual stage could be recent derivatives of sexual species that have lost the ability to mate. To test this hypothesis, the mating-type region of S. passerinii, a species with no known sexual stage, was cloned, sequenced, and compared to that of its close relative S. tritici (sexual stage: Mycosphaerella graminicola). Both of the S. passerinii mating-type idiomorphs were approximately 3 kb in size and contained a single reading frame interrupted by one (MAT-2) or two (MAT-1) putative introns. The putative products of MAT-1 and MAT-2 are characterized by alpha-box and high-mobility-group sequences, respectively, similar to those in the mating-type genes of M. graminicolaand other fungi. The mating-type genes of S. passerinii and M. graminicolaare evolving rapidly, approximately ten times faster than the internal transcribed spacer region of the ribosomal DNA, and are not closely related to those from Cochliobolusor other loculoascomycetes in the order Pleosporales. Therefore, the class Loculoascomycetes may be polyphyletic. Furthermore, differences between the phylogenetic trees may indicate separate evolutionary histories for the MAT-1 and MAT-2 idiomorphs. A three-primer multiplex-PCR technique was developed that allowed rapid identification of the mating types of isolates of S. passerinii. Both mating types were present in approximately equal frequencies and often on the same leaf in fields in Minnesota and North Dakota. Analyses with isozyme and random amplified polymorphic DNA markers revealed that each isolate had a unique genotype. The common occurrence of both mating types on the same leaf and the high levels of genotypic diversity indicate that S. passerinii is almost certainly not an asexual derivative of a sexual fungus. Instead, sexual reproduction probably plays an integral role in the life cycle of S. passerinii and may be much more important than previously believed in this (and possibly other) "asexual" species of Septoria.  相似文献   

13.
Fusarium subglutinans f. sp. pini (= F. circinatum) is a pathogen of pine and is one of eight mating populations (i.e., biological species) in the Gibberella fujikuroi species complex. This species complex includes F. thapsinum, F. moniliforme (= F. verticillioides), F. nygamai, and F. proliferatum, as well as F. subglutinans associated with sugarcane, maize, mango, and pineapple. Differentiating these forms of F. subglutinans usually requires pathogenicity tests, which are often time-consuming and inconclusive. Our objective was to develop a technique to differentiate isolates of F. subglutinans f. sp. pini from other isolates identified as F. subglutinans. We sequenced the histone H3 gene from a representative set of Fusarium isolates. The H3 gene sequence was conserved and contained two introns in all the isolates studied. From both the intron and the exon sequence data, we developed a PCR-restriction fragment length polymorphism technique that reliably distinguishes F. subglutinans f. sp. pini from the other biological species in the G. fujikuroi species complex.  相似文献   

14.
Fusarium strains in the Gibberella fujikuroi species complex cause diseases on a variety of economically important plants. One of these diseases, pitch canker of Pinus spp., is caused by strains identified as Fusarium subglutinans f. sp. pini. Fertile crosses were detected between F. subglutinans f. sp. pini strains from South Africa, California, and Florida. F. subglutinans f. sp. pini strains were not cross-fertile with the standard tester strains of six of the seven other mating populations of G. fujikuroi. Sporadic perithecia with ascospores were obtained in two crosses with the mating population B tester strains. These perithecia were homothallic, and the ascospores derived from these perithecia were vegetatively compatible with the mating population B tester strain parent. We concluded that fertile F. subglutinans f. sp. pini isolates represent a new mating population (mating population H) of G. fujikuroi and that they belong to a unique biological species in a distinct taxon.  相似文献   

15.
A multiplex PCR test for determining mating type of the pathogens Tapesia yallundae and Tapesia acuformis is described. The test involves three primers: a "common" primer annealing to DNA sequence conserved in the flanking region of both mating-type idiomorphs and two specific primers annealing to sequence in either the MAT-1 or the MAT-2 idiomorphs. Locating the specific primers in different positions relative to the common primer yielded PCR products of 812 or 418 bp from MAT-1 and MAT-2 isolates, respectively. The test was used successfully to determine the mating type of 118 isolates of T. yallundae and T. acuformis from Europe, North America, and New Zealand. Isolates of both mating types were found on all continents for both species despite the rarely observed occurrence of sexual reproduction of T. acuformis. The multiplex test design should be applicable to other ascomycete species, of use in studies of MAT distribution and facilitating sexual crossing by identifying compatible isolates.  相似文献   

16.
The Gibberella fujikuroi complex includes many plant pathogens of agricultural crops and trees, all of which have anamorphs assigned to the genus Fusarium. In this study, an interspecific hybrid cross between Gibberella circinata and Gibberella subglutinans was used to compile a genetic linkage map. A framework map was constructed using a total of 578 AFLP markers together with the mating type (MAT-1 and MAT-2) genes and the histone (H3) gene. Twelve major linkage groups were identified (n=12). Fifty percent of the markers showed significant deviation from the expected 1:1 transmission ratio in a haploid F(1) cross (P <0.05). The transmission of the markers on the linkage map was biased towards alleles of the G. subglutinans parent, with an estimated 60% of the genome of F(1) individuals contributed by this parent. This map will serve as a powerful tool to study the genetic architecture of interspecific differentiation and pathogenicity in the two parental genomes.  相似文献   

17.
Mating type in the Gibberella fujikuroi species complex is controlled by a single locus with two alleles and is usually identified following sexual crosses with standard, female-fertile tester isolates. The mating type alleles have been arbitrarily designated “+” and “−” within each biological species, and the nomenclature is tied to the standard tester strains. We developed a pair of PCR primers that can be used to amplify a unique fragment of one of the mating type alleles (MAT-2) from at least seven of the biological species in this species complex. Based on the amplification pattern, we propose a replacement for the existing, arbitrary +/− terminology that is presently in use. The new terminology is based on DNA sequence similarities between the mating type allele fragments from the biological species of the G. fujikuroi species complex and the corresponding fragments from other filamentous ascomycetes.  相似文献   

18.
Gibberella fujikuroi is a species-rich monophyletic complex of at least nine sexually fertile biological species (mating populations, MP-A to MP-I) and more than 30 anamorphs in the genus Fusarium. They produce a variety of secondary metabolites, such as fumonisins, fusaproliferin, moniliformin, beauvericin, fusaric acid, and gibberellins (GAs), a group of plant hormones. In this study, we examined for the first time all nine sexually fertile species (MPs) and additional anamorphs within and outside the G. fujikuroi species complex for the presence of GA biosynthetic genes. So far, the ability to produce GAs was described only for Fusarium fujikuroi (G. fujikuroi MP-C), which contains seven clustered genes in the genome all participating in GA biosynthesis. We show that six other MPs (MPs B, D, E, F, G, and I) and most of the anamorphs within the species complex also contain the entire gene cluster, except for F. verticillioides (MP-A), and F. circinatum (MP-H), containing only parts of it. Despite the presence of the entire gene cluster in most of the species within the G. fujikuroi species complex, expression of GA biosynthetic genes and GA production were detected only in F. fujikuroi (MP-C) and one isolate of F. konzum (MP-I). We used two new molecular marker genes, P450-4 from the GA gene cluster, and cpr, encoding the highly conserved NADPH cytochrome P450 reductase to study phylogenetic relationships within the G. fujikuroi species complex. The molecular phylogenetic studies for both genes have revealed good agreement with phylogenetic trees inferred from other genes. Furthermore, we discuss the role and evolutionary origin of the GA biosynthetic gene cluster.  相似文献   

19.
Strains of Fusarium moniliforme from maize seed collected in four fields in northeast Mexico were tested for fumonisin production in culture, for sexual compatibility, and for vegetative compatibility by using non-nitrate-utilizing mutants. The test results indicate that a diverse population of fumonisin-producing strains of F. moniliforme (Gibberella fujikuroi) mating population A predominates and that a potential exists for production of fumonisins in Mexican maize.  相似文献   

20.
Fusarium isolates that form part of the Gibberella fujikuroi species complex have been classified using either a morphological, biological, or phylogenetic species concept. Problems with the taxonomy of Fusarium species in this complex are mostly experienced when the morphological and biological species concepts are applied. The most consistent identifications are obtained with the phylogenetic species concept. Results from recent studies have presented an example of discordance between the biological and phylogenetic species concepts, where a group of F. subglutinans sensu stricto isolates, i.e., isolates belonging to mating population E of the G. fujikuroi complex, could be sub-divided into more than one phylogenetic lineage. The aim of this study was to determine whether this sub-division represented species divergence or intraspecific diversity in F. subglutinans. For this purpose, we included 29 F. subglutinans isolates belonging to the E-mating population that were collected from either maize or teosinte, from a wide geographic range. DNA sequence data for six nuclear regions in each of these isolates were obtained and used in phylogenetic concordance analyses. These analyses revealed the presence of two major groups representing cryptic species in F. subglutinans. These cryptic species were further sub-divided into a number of smaller groups that appear to be reproductively isolated in nature. This suggests not only that the existing F. subglutinans populations are in the process of divergence, but also that each of the resulting lineages are undergoing separation into distinct taxa. These divergences did not appear to be linked to geographic origin, host, or phenotypic characters such as morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号