首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以嗜热子囊菌(Thermobifida fusca WSH03-11)发酵生产角质酶为模型,研究微生物利用市政污泥厌氧酸化所产短链有机酸为碳源发酵生产高附加值产品的可能。发现:(1)以丁酸、丙酸和乙酸为碳源时,有机酸和氮元素浓度分别为8.0 g/L和1.5 g/L有利于角质酶的生产;而以乳酸为碳源时,最适有机酸和氮源浓度分别为3.0 g/L和1.0 g/L;(2)改变诱导物角质的浓度,以丁酸、丙酸、乙酸和乳酸为碳源,分别比优化前提高了31.0%、13.3%、43.8%和73.2%;(3)在四种有机酸中,T. fusca WSH03-11利用乙酸的速率最快,平均比消耗速率是丙酸的1.3倍,丁酸的2.0倍及乳酸的2.2倍;以丁酸为碳源时的酶活(52.4 U/mL)是乳酸的1.7倍、乙酸的2.5倍和丙酸的3.2倍;角质酶对乳酸的得率(12.70 u/mg)分别是丁酸的1.4倍、丙酸的3.0倍和乙酸的3.8倍;(4)以混合酸为碳源生产角质酶,T. fusca WSH03-11优先利用乙酸,而对丁酸的利用受到抑制。进一步研究发现,混合酸中0.5 g/L的乙酸将导致丁酸的消耗量降低66.7%。这是首次利用混合酸作碳源发酵生产角质酶的研究报道。这一研究结果进一步确证了利用市政污泥厌氧酸化所产有机酸为碳源发酵生产高附加值产品的可行性,为以廉价碳源生产角质酶奠定了良好的基础。  相似文献   

2.
嗜热子囊菌利用短链有机酸生产角质酶   总被引:1,自引:1,他引:0  
以嗜热子囊菌(Thermobifida fusca WSH03-11)发酵生产角质酶为模型,研究微生物利用市政污泥厌氧酸化所产短链有机酸为碳源发酵生产高附加值产品的可能。发现:(1)以丁酸、丙酸和乙酸为碳源时,有机酸和氮元素浓度分别为8.0 g/L和1.5 g/L有利于角质酶的生产;而以乳酸为碳源时,最适有机酸和氮源浓度分别为3.0 g/L和1.0 g/L;(2)改变诱导物角质的浓度,以丁酸、丙酸、乙酸和乳酸为碳源,分别比优化前提高了31.0%、13.3%、43.8%和73.2%;(3)在四种有机酸中,T. fusca WSH03-11利用乙酸的速率最快,平均比消耗速率是丙酸的1.3倍,丁酸的2.0倍及乳酸的2.2倍;以丁酸为碳源时的酶活(52.4 U/mL)是乳酸的1.7倍、乙酸的2.5倍和丙酸的3.2倍;角质酶对乳酸的得率(12.70 u/mg)分别是丁酸的1.4倍、丙酸的3.0倍和乙酸的3.8倍;(4)以混合酸为碳源生产角质酶,T. fusca WSH03-11优先利用乙酸,而对丁酸的利用受到抑制。进一步研究发现,混合酸中0.5 g/L的乙酸将导致丁酸的消耗量降低66.7%。这是首次利用混合酸作碳源发酵生产角质酶的研究报道。这一研究结果进一步确证了利用市政污泥厌氧酸化所产有机酸为碳源发酵生产高附加值产品的可行性,为以廉价碳源生产角质酶奠定了良好的基础。  相似文献   

3.
This article describes a new process for the production of biopolymers (polyhydroxyalkanoates, PHAs) based on the aerobic enrichment of activated sludge to obtain mixed cultures able to store PHAs at high rates and yields. Enrichment was obtained through the selective pressure established by feeding the carbon source in a periodic mode (feast and famine regime) in a sequencing batch reactor. A concentrated mixture of acetic, lactic, and propionic acids (overall concentration of 8.5 gCOD L(-1)) was fed every 2 h at 1 day(-1) overall dilution rate. Even at such high organic load (8.5 gCOD L(-1) day(-1)), the selective pressure due to periodic feeding was effective in obtaining a biomass with a storage ability much higher than activated sludges. The immediate biomass response to substrate excess (as determined thorough short-term batch tests) was characterized by a storage rate and yield of 649 mgPHA (as COD) g biomass (as COD)(-1) h(-1) and 0.45 mgPHA (as COD) mg removed substrates (as COD(-1)), respectively. When the substrate excess was present for more than 2 h (long-term batch tests), the storage rate and yield decreased, whereas growth rate and yield significantly increased due to biomass adaptation. A maximum polymer fraction in the biomass was therefore obtained at about 50% (on COD basis). As for the PHA composition, the copolymer poly(beta-hydroxybutyrate/beta-hydroxyvalerate) with 31% of hydroxyvalerate monomer was produced from the substrate mixture. Comparison of the tests with individual and mixed substrates seemed to indicate that, on removing the substrate mixture for copolymer production, propionic acid was fully utilized to produce propionylCoA, whereas the acetylCoA was fully provided by acetic and lactic acid.  相似文献   

4.
Dry mycelium of a strain of Aspergillus oryzae efficiently catalyzed the esterification between free acetic acid and primary alcohols (geraniol and ethanol) in organic solvent. The growth conditions to obtain high activity of mycelium-bound enzymes were firstly evaluated. A medium containing Tween 80 as carbon source furnished mycelium with the highest activity in the hydrolysis of alpha-naphthyl esters (alpha-N-acetate, butyrate, caprylate). Dry mycelium was employed to select suited conditions for an efficient acetylation of ethanol and geraniol in heptane. Maximum productions were obtained using 30 g l(-)(1) of lyophilized cells: 12.4 g l(-)(1) of geranyl acetate were produced at 80 degrees C starting from 75 mM geraniol and acetic acid (84% molar conversion) and 4.1 g l(-)(1) of ethyl acetate at 50 degrees C from 50 mM ethanol and acetic acid (94% molar conversion) after 24 h. The stability of the mycelium-bound carboxylesterases are notable since only 10-30% loss of activity was observed after 14 days at temperatures between 30 and 50 degrees C.  相似文献   

5.
The factors affecting the production of a Thermomonospora fusca endoglucanase by a recombinant Streptomyces lividans strain were studied in a fermentor with glucose addition controlled by a pH-stat. The recombinant plasmid was stable for 35 generations with constant endoglucanase productivity. Glucose and peptone were used as the carbon and nitrogen sources. Addition of Tween-80 increased endoglucanase production twofold. A significant decrease in endoglucanase production was observed at low aeration. During fed-batch cultivation, pulse feeding (6 g/L) of a glucose-ammonium sulfate solution was optimal for endoglucanase production. With higher concentrations of glucose (15 g/L), a significant amount of organic acid, including acetic acid, was produced, which inhibited cell growth and endoglucanase production. Under optimum conditions, 1.7 U/mL of endoglucanase were produced. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

6.
A microbial oxidation process for the production of p-hydroxybenzoate (HBA) from toluene is reported. The oxidation reaction was studied in fed-batch fermentations using a recombinant Pseudomonas putida grown on glutamate as the sole carbon and energy source with salicylate and IPTG induction of tmoABCDE, and pchCF and phbz pathway genes, respectively. An average volumetric HBA productivity of 13.4 mg HBA x L(-1) x h(-1) was obtained under rapid growth conditions (glutamate excess), giving an HBA titer of 132 mg x L(-1) after 9.8 h of fermentation. This corresponded to an average specific HBA productivity of 7.2 microg HBA (mg total protein)(-1) x h(-1). In contrast, maximum HBA titers of 35 mg HBA x L(-1) were achieved in 27 h in comparative studies employing glutumate limited fed-batch cultures. A specific productivity of 4.1 microg HBA (mg total protein)(-1) x h(-1) and volumetric productivity of 1.3 mg HBA x L(-1) x h(-1) were calculated for the growth-rate restricted cultures. The differences in HBA production between the two cultures could be correlated to the levels of specific toluene-4-monooxygenase (T4MO) polypeptides. T4MO catalyzes the rate-limiting step in the pathway. Using experimental data, the half-life value of TmoA was calculated to be approximately 28 h. Assuming linear, monomolecular decay of TmoA, a specific degradation constant of 0.025 x h(-1) was calculated, which placed the stability of recombinant TmoA in the range of relatively stable proteins, even in the absence of co-expression of tmoF, the terminal oxidoreductase subunit of T4MO.  相似文献   

7.
The heterotrophic marine microalga Crypthecodinium cohnii produces docosahexaenoic acid (DHA), a polyunsaturated fatty acid with food and pharmaceutical applications. So far, DHA production has been studied with glucose and acetic acid as carbon sources. This study investigates the potential of ethanol as an alternative carbon source for DHA production by C. cohnii. In shake-flask cultures, the alga was able to grow on ethanol. The specific growth rate was optimal with 5 g l(-1) ethanol and growth did not occur at 0 g l(-1) and above 15 g l(-1). By contrast, in fed-batch cultivations with a controlled feed of pure ethanol, cumulative ethanol addition could be much higher than 15 g l(-1), thus enabling a high final cell density and DHA production. In a representative fed-batch cultivation of C. cohnii with pure ethanol as feed, 83 g dry biomass l(-1), 35 g total lipid l(-1) and 11.7 g DHA l(-1) were produced in 220 h. The overall volumetric productivity of DHA was 53 mg l(-1 )h(-1), which is the highest value reported so far for this alga.  相似文献   

8.
Based on an integrated approach of genetic engineering, fermentation process development, and downstream processing, a fermentative chymotrypsinogen B production process using recombinant Pichia pastoris is presented. Making use of the P. pastoris AOX1-promotor, the demand for methanol as the single carbon source as well as an inducer of protein secretion enforced the use of an optimized feeding strategy by help of on-line analysis and an advanced controller algorithm. By using an experimental system of six parallel sparged column bioreactors, proteolytic product degradation could be minimized while also optimizing starting conditions for the following downstream processing. This optimization of process conditions resulted in the production of authentic chymotrypsinogen at a final concentration level of 480 mg.L(-)(1) in the whole broth and a biomass concentration of 150 g.L(-)(1) cell dry weight, thus comprising a space-time yield of 5.2 mg.L(-)(1).h(-)(1). Alternatively to the high cell density fermentation approach, a continuous fermentation process was developed to study the effects of reduced cell density toward oxygen demand, cooling energy, and biomass separation. This development led to a process with a highly increased space-time yield of 25 mg.L(-)(1).h(-)(1) while reducing the cell dry weight concentration from 150 g.L(-)(1) in fed-batch to 65 g.L(-)(1) in continuous cultivation.  相似文献   

9.
Kang R  Wang J  Shi D  Cong W  Cai Z  Ouyang F 《Biotechnology letters》2004,26(18):1429-1432
Glucose at 3 g l(-1) markedly accelerated growth of Synechococcus sp. PCC 7002. The net photosynthesis rate was 263 micromol O2 (mg Chl a h)(-1) for mixotrophic culture and 146 micromol O2 (mg Chl a h)(-1) for photoautotrophic culture. Additing 1 g NaHCO3 l(-1) to the glucose-supplemented culture enhanced the photosynthetic rate by 18%, and the total carbon consumption rate was raised to 2.5 mg l(-1) (mg chl a h)(-1) from a previously negative value. An interaction between organic and inorganic carbon metabolism was established.  相似文献   

10.
产多聚唾液酸的菌种筛选及产酸条件   总被引:7,自引:1,他引:7  
通过对40株大肠杆菌进行产多聚唾液酸的筛选,得到一株高产多聚唾液酸菌株C-8,对该菌的一系列培养条件进行了研究。最佳培养基为:山梨醇2.5%,硫酸铵0.5%,磷酸氢二钾90mmol/L,胰蛋白陈1.5%,硫酸镁0.04%,pH7.8。在37℃,250r/min摇床培养65h,可使菌体在每毫升培养液中产多聚唾液酸1200μg。  相似文献   

11.
Intracellular adenosine-5'-triphosphate (ATP) levels were measured in a metabolically engineered Zymomonas mobilis over the course of batch fermentations of glucose and xylose mixtures. Fermentations were conducted over a range of pH (5-6) in the presence of varying initial amounts of acetic acid (0-8 g/L) using a 10% (w/v) total sugar concentration (glucose only, xylose only, or 5% glucose/5% xylose mixture). Over the design space investigated, ethanol process yields varied between 56.6% and 92.3% +/- 1.3% of theoretical, depending upon the test conditions. The large variation in process yields reflects the strong effect pH plays in modulating the inhibitory effect of acetic acid on fermentation performance. A corresponding effect was observed on maximum cellular specific growth rates, with the rates varying between a low of 0.15 h(-1) observed at pH 5 in the presence of 8 g/L acetic acid to a high of 0.32 +/- 0.02 h(-1) obtained at pH 5 or 6 when no acetic acid was initially present. While substantial differences were observed in intracellular specific ATP concentration profiles depending upon fermentation conditions, maximum intracellular ATP accumulation levels varied within a relatively narrow range (1.5-3.8 mg ATP/g dry cell mass). Xylose fermentations produced and accumulated ATP at much slower rates than mixed sugar fermentations (5% glucose, 5% xylose), and the ATP production and accumulation rates in the mixed sugar fermentations were slightly slower than in glucose fermentations. Results demonstrate that higher levels of acetic acid delay the onset and influence the extent of intracellular ATP accumulation. ATP production and accumulation rates were most sensitive to acetic acid at lower values of pH.  相似文献   

12.
The influence of the oxygen supply on the growth, acetic acid and ethanol production by Brettanomyces bruxellensis in a glucose medium was investigated with different air flow rates in the range 0-300 l h(-1 ) x (0-0.5 vvm). This study shows that growth of this yeast is stimulated by moderate aeration. The optimal oxygen supply for cellular synthesis was an oxygen transfer rate (OTR) of 43 mg O(2) l(-1) x h(-1). In this case, there was an air flow rate of 60 l h(-1) (0.1 vvm). Above this value, the maximum biomass concentration decreased. Ethanol and acetic acid production was also dependent on the level of aeration: the higher the oxygen supply, the greater the acetic acid production and the lower the ethanol production. At the highest aeration rates, we observed a strong inhibition of the ethanol yield. Over 180 l h(-1) x (0.3 vvm, OTR =105 mg O(2) l(-1) x h(-1)), glucose consumption was inhibited and a high concentration of acetic acid (6.0 g x l(-1)) was produced. The ratio of "ethanol + acetic acid" produced per mole of consumed glucose using carbon balance calculations was analyzed. It was shown that this ratio remained constant in all cases. This makes it possible to establish a stoichiometric equation between oxygen supply and metabolite production.  相似文献   

13.
Cheese-processing wastewater was biologically treated to produce short-chain organic acids in laboratory scale continuously stirred tank reactors. A constant inoculum system was used to mimimize the experimental error due to the use of inconsistent inoculum. The inoculum system was operated with dilute cheese-processing wastewater with 5000 mg soluble chemical oxygen demand/L at pH 6.5 and 35 degrees C at 0.5 days hydraulic retention time. Response surface methodology was successfully applied to determine the optimum physiological conditions where the maximum rates of acetic and butyric acid production occurred. These were pH 7.01 at 36.2 degrees C and pH 7.26 at 36.2 degrees C, respectively. The lack of overall predictability for butyric acid production meant that the response surface was much more complicated than that of acetic acid; therefore, a small change in pH or temperature could cause large variations in the response of butyric acid production. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54:451-460, 1997.  相似文献   

14.
The optimum conditions for biological hydrogen production from food waste by Clostridium beijerinckii KCTC 1875 were investigated. The optimum initial pH and fermentation temperature were 7.0 and 40°C, respectively. When the pH of fermentation was controlled to 5.5, a maximum amount of hydrogen could be obtained. Under these conditions, about 2,737 mL of hydrogen was produced from 50 g COD/L of food waste for 24 h, and the hydrogen content in the biogas was 38%. Hydrogen production rate and yield were about 108 mL/L·h and 128 mL/g CODdegraded, respectively. High concentrations of acetic (< 5,000 mg/L) or butyric acid (< 3,000 mg/L) significantly inhibited hydrogen production.  相似文献   

15.
During the production of grape wine, the formation of thick leathery pellicle/bacterial cellulose (BC) at the airliquid interface was due to the bacterium, which was isolated and identified as Gluconacetobacter hansenii UAC09. Cultural conditions for bacterial cellulose production from G. hansenii UAC09 were optimized by central composite rotatable experimental design. To economize the BC production, coffee cherry husk (CCH) extract and corn steep liquor (CSL) were used as less expensive sources of carbon and nitrogen, respectively. CCH and CSL are byproducts from the coffee processing and starch processing industry, respectively. The interactions between pH (4.5- 8.5), CSL (2-10%), alcohol (0.5-2%), acetic acid (0.5- 2%), and water dilution rate to CCH ratio (1:1 to 1:5) were studied using response surface methodology. The optimum conditions for maximum BC production were pH (6.64), CSL (10%), alcohol (0.5%), acetic acid (1.13%), and water to CCH ratio (1:1). After 2 weeks of fermentation, the amount of BC produced was 6.24 g/l. This yield was comparable to the predicted value of 6.09 g/l. This is the first report on the optimization of the fermentation medium by RSM using CCH extract as the carbon source for BC production by G. hansenii UAC09.  相似文献   

16.
The effects of initial glucose concentration and calcium lactate concentration on the lactic acid production by the parent strain, Lactobacillus lactis BME5-18, were studied. The results of the experiments indicated that glucose and lactate repressed the cell growth and the lactic acid production by Lactobacillus lactis BME5-18. A L(+)-lactic acid overproducing strain, Lactobacillus lactis BME5-18M, was screened by mutagenizing the parent strain with ultraviolet (UV) light irradiation and selecting the high glucose and lactate calcium concentration repression resistant mutant. Starting with a concentration of 100g L(-1) glucose, the mutant produced 98.6 g L(-1) lactic acid after 60 h in flasks, 73.9% higher than that of the parent strain. The L(+)-lactic acid purity was 98.1% by weight based on the amount of total lactic acid. The culture of the parent strain could not be analyzed well by conventional metabolic flux analysis techniques, since some pyruvate were accumulated intracellularly. Therefore, a revised flux analysis method was proposed by introducing intracellular pyruvate pool. Further studies demonstrate that there is a high level of NADH oxidase activity (12.11 mmol mg(-1) min(-1)) in the parent strain. The molecular mechanisms of the strain improvement were proposed, i.e., the high level of NADH oxidase activity was eliminated and the uptake rate of glucose was increased from 82.1 C-mmol (g DW h)(-1) to 98.9 C-mmol (g DW h)(-1) by mutagenizing the parent strain with UV, and therefore the mutant strain converts mostly pyruvate to lactic acid with a higher productivity (1.76 g L(-1) h(-1)) than the parent strain (0.95 g L(-1) h(-1)).  相似文献   

17.
Li H  Chen Y  Gu G 《Bioresource technology》2008,99(10):4400-4407
In this paper, three lab-scale sequencing batch reactors (SBR-A, B, and C) operated with anaerobic/aerobic (low dissolved oxygen, 0.15-0.45 mg L(-1)) configuration were long-term cultured, respectively with single acetic acid and propionic/acetic acid of 1/1 and 2/1 (carbon molar ratio), and the comparisons of anaerobic and aerobic transformations of phosphorus and nitrogen among them were made. With the increase of propionic/acetic acid, lower anaerobic phosphorus release and higher phosphorus release to short-chain fatty acids uptake ratio were observed, and less anaerobic and aerobic transformations of glycogen and poly-3-hydroxybutyrate as well as total polyhydroxyalkanoates occurred, but the transformations of poly-3-hydroxyvalerate and poly-3-hydroxy-2-methyvalerate increased. The phosphorus removal efficiency was respectively 81, 94 and 97% in SBR-A, B and C. Almost all ammonium was removed and no significant nitrite was accumulated at different propionic/acetic acid ratios. However, the nitrate accumulation and total nitrogen removal were observed to be affected by propionic/acetic acid ratio. The total nitrogen removal efficiency was 61, 68 and 82%, and the aerobic end nitrate concentration was 8.05, 6.40 and 3.54 mg L(-1) in three SBRs, respectively. All the above studies indicated that the sole acetic acid caused more nitrate accumulation than propionic and acetic acids mixture, and a pertinent increase of wastewater propionic/acetic acid ratio was of benefit to both nitrogen and phosphorus removal in an anaerobic/aerobic (low dissolved oxygen) biological wastewater treatment process.  相似文献   

18.
The heterotrophic marine alga Crypthecodinium cohnii is known to produce docosahexaenoic acid (DHA), a polyunsaturated fatty acid with food and pharmaceutical applications, during batch cultivation on complex media containing sea salt, yeast extract, and glucose. In the present study, fed-batch cultivation was studied as an alternative fermentation strategy for DHA production. Glucose and acetic acid were compared as carbon sources. For both substrates, the feed rate was adapted to the maximum specific consumption rate of C. cohnii. In glucose-grown cultures, this was done by maintaining a significant glucose concentration (between 5 and 20 g/L) throughout fermentation. In acetic acid-grown cultures, the medium feed was automatically controlled via the culture pH. A feed consisting of acetic acid (50% w/w) resulted in a higher overall volumetric productivity of DHA (r(DHA)) than a feed consisting of 50% (w/v) glucose (38 and 14 mg/L/h, respectively). The r(DHA) was further increased to 48 mg/L/h using a feed consisting of pure acetic acid. The latter fermentation strategy resulted in final concentrations of 109 g/L dry biomass, 61 g/L lipid, and 19 g/L DHA. These are the highest biomass, lipid, and DHA concentrations reported to date for a heterotrophic alga. Vigorous mixing was required to sustain aerobic conditions during high-cell-density cultivation. This was complicated by culture viscosity, which resulted from the production of viscous extracellular polysaccharides. These may present a problem for large-scale industrial production of DHA. Addition of a commercial polysaccharide-hydrolase preparation could decrease the viscosity of the culture and the required stirring.  相似文献   

19.
The effects of oxygen transfer on serine alkaline protease (SAP) production by Bacillus licheniformis on a defined medium with Cc = 9.0 kg m−3 citric acid as sole carbon source were investigated in 3.5 dm3 batch bioreactor systems. The concentrations of the product (SAP) and by-products, i.e., neutral protease, amylase, amino acids, and organic acids were determined in addition to SAP activities. At Qo/V = 1 vvm air flow rate, the effect of agitation rate on DO concentration, pH, product, and by-product concentrations and SAP activity were investigated at N = 150, 500, and 750 min−1; these are named as low-(LOT), medium-(MOT), and high oxygen transfer (HOT) conditions. LOT conditions favor biomass concentration; however, substrate consumption was highest at HOT conditions. MOT was optimum for maximum SAP activity which was 441 U cm−3 at t = 37 h. The total amino acid concentration was maximum in LOT and minimum in MOT conditions; lysine had the highest concentration under all oxygen transfer conditions. Among organic acids, acetic acid had the highest concentration and its concentration increased with oxygen transfer rate. The oxygen transfer coefficient increases with the agitation rate and the oxygen consumption rate increased almost linearly with the biomass concentration.  相似文献   

20.
Efforts in optimizing reducing agents, cysteine-HCl.H2O and sodium sulfide in order to attain satisfactory responses during acetic acid fermentation have been carried out in this study. Cysteine-HCl.H2O each with five concentrations (0.00-0.50 g/L) was optimized one at a time and followed by sodium sulfide component (0.00-0.50 g/L). Response surface methodology (RSM) was used to determine the optimum concentrations of cysteine-HCl.H2O and sodium sulfide. The statistical analysis showed that the amount of cells produced and efficiency in CO conversion were not affected by sodium sulfide concentration. However, sodium sulfide is required as it does influence the acetic acid production. The optimum reducing agents for acetic acid fermentation was at 0.30 g/L cysteine-HCl.H2O and sodium sulfide respectively and when operated for 60 h cultivation time resulted in 1.28 g/L acetic acid production and 100% CO conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号