首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In mammals, a master circadian pacemaker driving daily rhythms in behavior and physiology resides in the suprachiasmatic nucleus (SCN). The SCN contains multiple circadian oscillators that synchronize to environmental cycles and to each other in vivo. Rhythm production, an intracellular event, depends on more than eight identified genes. The period of the rhythms within the SCN also depends upon intercellular communication. Many other tissues also retain the ability to generate near 24 -h periodicities although their place in the organization of circadian timing is still unclear. This paper focuses on the tissue-, cellular- and molecular-level events that generate and entrain circadian rhythms in behavior in mammals and emphasizes the apparent differences between the SCN and peripheral oscillators.  相似文献   

3.
The importance of circadian clocks in the regulation of adult physiology in mammals is well established. In contrast, the ontogenesis of the circadian system and its role in embryonic development are still poorly understood. Although there is experimental evidence that the clock machinery is present prior to birth, data on gestational clock functionality are inconsistent. Moreover, little is known about the dependence of embryonic rhythms on maternal and environmental time cues and the role of circadian oscillations for embryonic development. The aim of this study was to test if fetal mouse tissues from early embryonic stages are capable of expressing endogenous, self-sustained circadian rhythms and their contribution to embryogenesis. Starting on embryonic day 13, we collected precursor tissues for suprachiasmatic nucleus (SCN), liver and kidney from embryos carrying the circadian reporter gene Per2::Luc and investigated rhythmicity and circadian traits of these tissues ex vivo. We found that even before the respective organs were fully developed, embryonic tissues were capable of expressing circadian rhythms. Period and amplitude of which were determined very early during development and phases of liver and kidney explants are not influenced by tissue preparation, whereas SCN explants phasing is strongly dependent on preparation time. Embryonic circadian rhythms also developed in the absence of maternal and environmental time signals. Morphological and histological comparison of offspring from matings of Clock-Δ19 mutant and wild-type mice revealed that both fetal and maternal clocks have distinct roles in embryogenesis. While genetic disruptions of maternal and embryonic clock function leads to increased fetal fat depots, abnormal ossification and organ development, Clock gene mutant newborns from mothers with a functional clock showed a larger body size compared to wild-type littermates. These data may contribute to the understanding of the ontogenesis of circadian clocks and the risk of disturbed maternal or embryonic circadian rhythms for embryonic development.  相似文献   

4.
Circadian clocks use a wide range of environmental cues, including cycles of light, temperature, food, and social interactions, to fine-tune rhythms in behavior and physiology. Although social cues have been shown to influence circadian clocks of a variety of organisms including the fruit fly Drosophila melanogaster, their mechanism of action is still unclear. Here, the authors report the results of their study aimed at investigating if daily cycles of presence and absence (PA) of conspecific male visitors are able to entrain the circadian locomotor activity rhythm of male hosts living under constant darkness (DD). The results suggest that PA cycles may not be able to entrain circadian locomotor activity rhythms of Drosophila. The outcome does not change when male hosts are presented with female visitors, suggesting that PA cycles of either sex may not be effective in bringing about stable entrainment of circadian clocks in D. melanogaster. However, in hosts whose clock phase has already been set by light/dark (LD) cycles, daily PA cycles of visitors can cause measurable change in the phase of subsequent free-running rhythms, provided that their circadian clocks are labile. Thus, the findings of this study suggest that D. melanogaster males may not be using cyclic social cues as their primary zeitgeber (time cue) for entrainment of circadian clocks, although social cues are capable of altering the phase of their circadian rhythms.  相似文献   

5.
6.
Insects display an impressive variety of daily rhythms, which are most evident in their behaviour. Circadian timekeeping systems that generate these daily rhythms of physiology and behaviour all involve three interacting elements: the timekeeper itself (i.e. the clock), inputs to the clock through which it entrains and otherwise responds to environmental cues such as light and temperature, and outputs from the clock through which it imposes daily rhythms on various physiological and behavioural parameters. In insects, as in other animals, cellular clocks are embodied in clock neurons capable of sustained autonomous circadian rhythmicity, and those clock neurons are organized into clock circuits. Drosophila flies spend their entire lives in small areas near the ground, and use their circadian brain clock to regulate daily rhythms of rest and activity, so as to organize their behaviour appropriately to the daily rhythms of their local environment. Migratory locusts and butterflies, on the other hand, spend substantial portions of their lives high up in the air migrating long distances (sometimes thousands of miles) and use their circadian brain clocks to provide time-compensation to their sun-compass navigational systems. Interestingly, however, there appear to be substantial similarities in the cellular and network mechanisms that underlie circadian outputs in all insects.  相似文献   

7.
Development involves interactions between genetic and environmental influences. Vertebrate mothers are generally the first individuals to encounter and interact with young animals. Thus, their role is primordial during ontogeny. The present study evaluated non‐genomic effects of mothers on the development of rhythms of precocial Japanese quail (Coturnix c. japonica). First, we investigated the influence of mothering on the ontogeny of endogenous rhythms of young. We compared circadian and ultradian rhythms of feeding activity of quail reared with or without adoptive mothers. More brooded than non‐brooded quail presented a circadian and/or an ultradian rhythm. Thus, the presence of the mother during the normal brooding period favors, in the long term, expression of rhythms in the young. Second, we investigated the influence of rhythmic phenotype of the mother on the development of endogenous rhythms of young by comparing quail brooded by circadian‐rhythmic adoptive mothers (R) to quail brooded by circadian‐arrhythmic adoptive mothers (A). More R‐brooded than A‐brooded quail expressed circadian rhythmicity, and circadian rhythm clarities were greater in R‐brooded than A‐brooded quail. Ultradian rhythmicity did not differ between R‐ and A‐brooded quail, nor between R and A adoptive mothers. Thus, the rhythmic phenotypes of quail mothers influence the rhythmic phenotypes of their young. Our results demonstrate that mothers of precocial birds influence epigenetically the ontogeny of endogenous rhythms of the young they raise.  相似文献   

8.
Circadian rhythms are believed to be an evolutionary adaptation to daily environmental cycles resulting from Earth's rotation about its axis. A trait evolved through a process of natural selection is considered as adaptation; therefore, rigorous demonstration of adaptation requires evidence suggesting evolution of a trait by natural selection. Like any other adaptive trait, circadian rhythms are believed to be advantageous to living beings through some perceived function. Circadian rhythms are thought to confer advantage to their owners through scheduling of biological functions at appropriate time of daily environmental cycle (extrinsic advantage), coordination of internal physiology (intrinsic advantage), and through their role in responses to seasonal changes. So far, the adaptive value of circadian rhythms has been tested in several studies and evidence indeed suggests that they confer advantage to their owners. In this review, we have discussed the background for development of the framework currently used to test the hypothesis of adaptive significance of circadian rhythms. Critical examination of evidence reveals that there are several lacunae in our understanding of circadian rhythms as adaptation. Although it is well known that demonstrating a given trait as adaptation (or setting the necessary criteria) is not a trivial task, here we recommend some of the basic criteria and suggest the nature of evidence required to comprehensively understand circadian rhythms as adaptation. Thus, we hope to create some awareness that may benefit future studies in this direction. (Author correspondence: or )  相似文献   

9.
Endogenous circadian rhythms are almost ubiquitous among organisms from cyanobacteria to mammals and regulate diverse physiological processes. It has been suggested that having an endogenous circadian system enables an organism to anticipate periodic environmental changes and adapt its physiological and developmental states accordingly, thus conferring a fitness advantage. However, it is hard to measure fitness directly and there is, to date, only limited evidence supporting the assumption that having a circadian system can increase fitness and therefore be adaptive. In this article, we report an evolutionary approach to examine the adaptive significance of a circadian system. By crossing Arabidopsis thaliana plants containing mutations that cause changes in circadian rhythms, we have created heterozygous 'Mother' (F1) plants with genetic variance for circadian rhythmicity. The segregating F2 offspring present a range of circadian rhythm periods. We have applied a selection to the F2 plants of short and long T-cycles under different competition strengths and found that the average phenotype of circadian period of the resulting F3 plants show a strong positive correlation with the T-cycle growth conditions for the competing F2 plants. Consistent with their circadian phenotypes, the frequency of long-period alleles was altered in the F3 plants. Our results show that F2 plants with endogenous rhythms that more closely match the environmental T-cycle are fitter, producing relatively more viable offspring in the F3 population. Thus, having a circadian clock that matches with the environment is adaptive in Arabidopsis.  相似文献   

10.
Microbial community circadian rhythms have a broad influence on host health and even though light-induced environmental fluctuations could regulate microbial communities, the contribution of light to the circadian rhythms of rhizosphere microbial communities has received little attention. To address this gap, we monitored diel changes in the microbial communities in rice (Oryza sativa L.) rhizosphere soil under light–dark and constant dark regimes, identifying microbes with circadian rhythms caused by light exposure and microbial circadian clocks, respectively. While rhizosphere microbial communities displayed circadian rhythms under light–dark and constant dark regimes, taxa possessing circadian rhythms under the two conditions were dissimilar. Light exposure concealed microbial circadian clocks as a regulatory driver, leading to fewer ecological niches in light versus dark communities. These findings disentangle regulation mechanisms for circadian rhythms in the rice rhizosphere microbial communities and highlight the role of light-induced regulation of rhizosphere microbial communities.Subject terms: Microbial ecology, Community ecology  相似文献   

11.
1. For more than 30 years many studies have been carried out concerning rhythms with periods approaching 24 hr (circadian rhythms). 2. The latter have been demonstrated as resulting from environmental 24 hr synchronizers (zeitgebers), but they usually persist in the absence of a 24 hr synchronization, which proves their endogenous nature. 3. Biological rhythms with periods less than 20 hr (ultradian rhythms) and particularly those approaching 1 hr (circahoral rhythms) have been determined: for motility, rest-activity, sleep phases, endocrine secretions and other physiological functions. 4. These ultradian and circahoral rhythms have been found in rodents, birds, monkeys and humans. 5. Existing at all stages of ontogeny, they have been proved to be endogenous and species and strain specific. 6. As these ultradian rhythms can be influenced by environmental factors and sometimes by circadian rhythms they are not truly periodic, so therefore cannot be computed by the usual processes of mathematical time analysis.  相似文献   

12.
Honey bee (Apis mellifera) workers emerge from the pupae with no circadian rhythms in behavior or brain clock gene expression but show strong rhythms later in life. This postembryonic development of circadian rhythms is reminiscent of that of infants of humans and other primates but contrasts with most insects, which typically emerge from the pupae with strong circadian rhythms. Very little is known about the internal and external factors regulating the ontogeny of circadian rhythms in bees or in other animals. We tested the hypothesis that the environment during early life influences the later expression of circadian rhythms in locomotor activity in young honey bees. We reared newly emerged bees in various social environments, transferred them to individual cages in constant laboratory conditions, and monitored their locomotor activity. We found that the percentage of rhythmic individuals among bees that experienced the colony environment for their first 48 h of adult life was similar to that of older sister foragers, but their rhythms were weaker. Sister bees isolated individually in the laboratory for the same period were significantly less likely to show circadian rhythms in locomotor activity. Bees experiencing the colony environment for only 24 h, or staying for 48 h with 30 same-age sister bees in the laboratory, were similar to bees individually isolated in the laboratory. By contrast, bees that were caged individually or in groups in single- or double-mesh enclosures inside a field colony were as likely to exhibit circadian rhythms as their sisters that were freely moving in the same colony. These findings suggest that the development of the circadian system in young adult honey bees is faster in the colony than in isolation. Direct contact with the queen, workers, or the brood, contact pheromones, and trophallaxis, which are all important means of communication in honey bees, cannot account for the influence of the colony environment, since they were all withheld from the bees in the double-mesh enclosures. Our results suggest that volatile pheromones, the colony microenvironment, or both influence the ontogeny of circadian rhythms in honey bees.  相似文献   

13.
The endogenous circadian program enables organisms to cope with the temporal ecology of their environment. It is driven by a molecular pacemaker, which is found in animals as well as plants at the level of the single cell. Unicellular organisms are, therefore, ideal model systems for the study of circadian systems because rhythms can be investigated in single cells at the molecular, physiological, behavioral and environmental level. In this review, we discuss the possible driving forces for the evolution of circadian rhythmicity in unicellular marine organisms. The current knowledge about the cellular and molecular mechanisms involved in the different components of the circadian system (input, oscillator and output) are described primarily with reference to the marine dinoflagellate,Gonyaulax polyedra. Light is the most important and best described environmental signal synchronizing the endogenous rhythms to the 24-hour solar day. However, little is known about the nature of circadian light receptors, which appear to be distinct from those that control behavioral light responses such as phototaxis. It has recently been shown inGonyaulaxthat nutrients, namely nitrate, can act as a non-photic zeitgeber for the circadian system. In this alga, bioluminescence is under circadian control, and the molecular mechanisms of this circadian output have been investigated in detail. The circadian program turns out to be more complex than simply consisting of an input pathway, a pacemaker and the driven rhythms. Different rhythms appear to be controlled by separate pacemakers, even in single cells, and both circadian inputs and outputs contain feedback loops. The functional advantages of this complexity are discussed. Finally, we outline the differences between the circadian program under laboratory and natural conditions.  相似文献   

14.
Most circadian rhythms are controlled by a major pacemaker located in the hypothalamic suprachiasmatic nucleus. Some of these rhythms, called marker rhythms, serve to characterize the timing of the internal temporal order. However, these variables are susceptible to masking effects as the result of activity, body position, light exposure, environmental temperature and sleep. Recently, wrist skin temperature (WT) has been proposed as a new index for evaluating circadian system status. In light of previous evidence suggesting the important relationship between WT and core body temperature regulation, the aim of this work was to purify the WT pattern in order to obtain its endogenous rhythm with the application of multiple demasking procedures. To this end, 103 subjects (18–24 years old) were recruited and their WT, activity, body position, light exposure, environmental temperature and sleep were recorded under free-living conditions for 1 week. WT demasking by categories or intercepts was applied to simulate a “constant routine” protocol (awakening, dim light, recumbent position, low activity and warm environmental temperature). Although the overall circadian pattern of WT was similar regardless of the masking effects, its amplitude was the rhythmic parameter most affected by environmental conditions. The acrophase and mesor were determined to be the most robust parameters for characterizing this rhythm. In addition, a circadian modulation of the masking effect was found for each masking variable. WT rhythm exhibits a strong endogenous component, despite the existence of multiple external influences. This was evidenced by simultaneously eliminating the influence of activity, body position, light exposure, environmental temperature and sleep. We therefore propose that it could be considered a valuable and minimally-invasive means of recording circadian physiology in ambulatory conditions.  相似文献   

15.
Abstract

The circadian rhythms of blood pressure (BP) and heart rate (HR) were documented in 30 patients for a 24‐hour period before and during the 24 hours that included unilateral surgery for senile cataract or retinal detachment. The patients were premedicated with diazepam. Anaesthesia was induced at a fixed time (09.00) in all patients with thiopentone, and muscle relaxation was with pancuronium. Maintenance was with enflurane in 15 patients and with fentanyl and droperidol in the rest. Though the intraoperative changes in haemodynamic parameters were dissimilar with the two types of maintenance agents, but both types had a similar effect on the circadian rhythms of blood pressure and heart rate. Whereas preoperatively the BP and HR circadian rhythms were nearly in phase, with their peaks in the late morning to early afternoon, the postoperative rhythms underwent a dissociation to a phase shift in the BP 24‐h pattern. The phase effect may be hypothetically attributed to direct pharmacological actions or to masking effects.  相似文献   

16.
A dual oscillator basis for mammalian circadian rhythms is suggested by the splitting of activity rhythms into two components in constant light and by the photoperiodic control of pineal melatonin secretion and phase-resetting effects of light. Because splitting and photoperiodism depend on incompatible environmental conditions, however, these literatures have remained distinct. The refinement of a procedure for splitting hamster rhythms in a 24-h light-dark:light-dark cycle has enabled the authors to assess the ability of each of two circadian oscillators to initiate melatonin secretion and to respond to light pulses with behavioral phase shifting and induction of Fos-immunoreactivity in the suprachiasmatic nuclei (SCN). Hamsters exposed to a regimen of afternoon novel wheel running (NWR) split their circadian rhythms into two distinct components, dividing their activity between the latter half of the night and the afternoon dark period previously associated with NWR. Plasma melatonin concentrations were elevated during both activity bouts of split hamsters but were not elevated during the afternoon period in unsplit controls. Light pulses delivered during either the nighttime or afternoon activity bout caused that activity component to phase-delay on subsequent days and induced robust expression of Fos-immunoreactivity in the SCN. Light pulses during intervening periods of locomotor inactivity were ineffective. The authors propose that NWR splits the circadian pacemaker into two distinct oscillatory components separated by approximately 180 degrees, with each expressing a short subjective night.  相似文献   

17.
Overt 24-h rhythmicity is composed of both exogenous and endogenous components, reflecting the product of multiple (periodic) feedback loops with a core pacemaker at their center. Researchers attempting to reveal the endogenous circadian (near 24-h) component of rhythms commonly conduct their experiments under constant environmental conditions. However, even under constant environmental conditions, rhythmic changes in behavior, such as food intake or the sleep-wake cycle, can contribute to observed rhythmicity in many physiological and endocrine variables. Assessment of characteristics of the core circadian pacemaker and its direct contribution to rhythmicity in different variables, including rhythmicity in gene expression, may be more reliable when such periodic behaviors are eliminated or kept constant across all circadian phases. This is relevant for the assessment of the status of the circadian pacemaker in situations in which the sleep-wake cycle or food intake regimes are altered because of external conditions, such as in shift work or jet lag. It is also relevant for situations in which differences in overt rhythmicity could be due to changes in either sleep oscillatory processes or circadian rhythmicity, such as advanced or delayed sleep phase syndromes, in aging, or in particular clinical conditions. Researchers studying human circadian rhythms have developed constant routine protocols to assess the status of the circadian pacemaker in constant behavioral and environmental conditions, whereas this technique is often thought to be unnecessary in the study of animal rhythms. In this short review, the authors summarize constant routine methodology and what has been learned from constant routines and argue that animal and human circadian rhythm researchers should (continue to) use constant routines as a step on the road to getting through to central and peripheral circadian oscillators in the intact organism.  相似文献   

18.
Biological rhythms represent a fundamental property of various living organisms. In particular, circadian rhythms, i.e. rhythms with a period close to 24 hours, help organisms to adapt to environmental daily rhythms. Although various factors can entrain or reset rhythms, they persist even in the absence of external timing cue, showing that their generation is endogenous. Indeed, the suprachiasmatic nucleus (SCN) of the hypothalamus is considered to be the main circadian clock in mammals. Isolated SCN neurons have been shown to display circadian rhythms, and in each cell, a set of genes, called "clock genes", are devoted to the generation and regulation of rhythms. Recently, it has become obvious that the clock located in the SCN is not homogenous, but is rather composed of multiple functional components somewhat reminiscent of its neurochemical organization. The significance and implications of these findings are still poorly understood but pave the way for future exciting studies. Here, current knowledge concerning these distinct neuronal populations and the ways through which synchronization could be achieved, as well as the potential role of neuropeptides in both photic and non-photic resetting of the clock, are summarized. Finally, we discuss the role of the SCN within the circadian system, which also includes oscillators located in various tissues and cell types.  相似文献   

19.
《Chronobiology international》2013,30(10):1312-1328
Robustness is a fundamental property of biological timing systems that is likely to ensure their efficient functioning under a wide range of environmental conditions. Here we report the findings of our study aimed at examining robustness of circadian clocks in fruit fly Drosophila melanogaster populations selected to emerge as adults within a narrow window of time. Previously, we have reported that such flies display enhanced synchrony, accuracy, and precision in their adult emergence and activity/rest rhythms. Since it is expected that accurate and precise circadian clocks may confer enhanced stability in circadian time-keeping, we decided to examine robustness in circadian rhythms of flies from the selected populations by subjecting them to a variety of environmental conditions comprising of a range of photoperiods, light intensities, ambient temperatures, and constant darkness. The results revealed that adult emergence and activity/rest rhythms of flies from the selected stocks were more robust than controls, as they displayed enhanced stability under a wide variety of environmental conditions. These results suggest that selection for adult emergence within a narrow window of time results in the evolution of robustness in circadian timing systems of the fruit fly D. melanogaster. (Author correspondence: or )  相似文献   

20.
BACKGROUND: Low-amplitude temperature oscillations can entrain the phase of circadian rhythms in several unicellular and multicellular organisms, including Neurospora and Drosophila. Because mammalian body temperature is subject to circadian variations of 1 degrees C-4 degrees C, we wished to determine whether these temperature cycles could serve as a Zeitgeber for circadian gene expression in peripheral cell types. RESULTS: In RAT1 fibroblasts cultured in vitro, circadian gene expression could be established by a square wave temperature rhythm with a (Delta)T of 4 degrees C (12 hr 37 degrees C/12 hr 33 degrees C). To examine whether natural body temperature rhythms can also affect circadian gene expression, we first measured core body temperature cycles in the peritoneal cavities of mice by radiotelemetry. We then reproduced these rhythms with high precision in the liquid medium of cultured fibroblasts for several days by means of a homemade computer-driven incubator. While these "in vivo" temperature rhythms were incapable of establishing circadian gene expression de novo, they could maintain previously induced rhythms for multiple days; by contrast, the rhythms of control cells kept at constant temperature rapidly dampened. Moreover, circadian oscillations of environmental temperature could reentrain circadian clocks in the livers of mice, probably via the changes they imposed upon both body temperature and feeding behavior. Interestingly, these changes in ambient temperature did not affect the phase of the central circadian pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus. CONCLUSIONS: We postulate that both endogenous and environmental temperature cycles can participate in the synchronization of peripheral clocks in mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号