首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complex carbohydrates linked to glycoproteins are recently being implicated to play a variety of biological roles. The lack of well-resolved crystallographic coordinates of the carbohydrates makes it difficult to assess the contributions of the glycan chain on protein structure and dynamics. We have modeled two different oligosaccharides NeuNAc2Gal3Man3GlcNAc5Fuc and Man3GlcNAc4 to generate two glycosylation variants of major histocompatibility complex (MHC) class I glycoprotein. Molecular dynamics simulations of the isolated fourteen- and seven-residue oligosaccharides have been done in vacuo and in solution. The dynamics of the two glycoforms of MHC class I protein have been simulated in solution in the free as well as in the peptide-bound form. Good agreement between the calculated solution conformations of the oligosaccharides in isolated and conjugated forms and the average conformations obtained from x-ray or NMR data was observed for most of the glycosidic linkages. These molecular dynamics simulations of the isolated glycan chains and the glycoconjugates reveal the details of the conformational flexibility of the glycan chains; they also provide atomic level details of protein-carbohydrate interactions and the effect of the ligand binding on the carbohydrate structure and dynamics. It was found that though there is some flexibility in some of the glycosidic linkages in the isolated oligosaccharides, in the protein-conjugated form the linkages adopt more restricted conformations. The glycan chains protrude out into the solvent and might hinder the lateral association of the proteins. The presence of the bulky glycan chains does not affect the average backbone fold of the protein but induces local changes in protein structure and dynamics. It has been noted that the extent of the changes depends upon the nature of the attached glycan chain. The glycan chains do not appear to influence the peptide binding property of the protein directly, but may stabilize the protein residues that are involved in ligand binding.  相似文献   

2.
Glycoprotein-glycans have recently been implicated to play a variety of functional roles. The same glycan chain have been found complexed with proteins of diverse functions. In this article two such glycan chains found attached to Fc regions of immunoglobulin G and immunoglobulin M have been studied. An extensive simulated annealing procedure have been adopted to arrive at a low-energy minimum of the two oligosaccharides. Molecular dynamics simulations have been performed to study the flexibility of the glycosidic linkages. It was found that both glycan chains can undergo conformational transitions and adopt folded and extended conformations. The two β(1–2) linkages of complex-type glycan had been found to prefer different conformational regime and the terminal fucose linked to the GlcNAc residue drastically modifies the GlcNAc β(1–4)GlcNAc linkage conformation. In the high-mannose type glycan chain α(1–3) linkages can induce flexibility in addition to the α(1–6) linkages. The results have been compared with recent experimental nmr and fluorescence energy transfer data. © 1998 John Wiley & Sons, Inc. Biopoly 45: 177–190, 1998  相似文献   

3.
Imberty  Anne; Perez  Serge 《Glycobiology》1994,4(3):351-366
By means of a series of new molecular modelling tools, the conformationalbehaviour of mannose-containing di- and trisaccharides boundto either concanavalin A or Lathyrus ochrus isolectin I (LOLI)has been assessed. Tools for estimating and analysing eitherthe ‘rigid’ or the ‘relaxed’ potentialenergy surfaces, representing the conformational space availablefor carbohydrates once interacting with lectins, are reportedfor the first time. Restrictions of conformational space arepredicted to occur with different magnitudes, depending on thenature of the glycosidic linkages, as well as the size of thecarbohydrates. Results from these molecular modelling studiesare compared to existing structural data. Not only could theobserved conformations and orientations of carbohydrates incrystalline lectin–oligosaccharides complexes be reproduced,but several other likely situations were also predicted to occur.Entropy calculations have been performed for comparison withexperimental thermodynamics data. The results of the simulationcan also help giving an explanation of some observed affinityconstants at the molecular level. concanavalin A Lathyrus ochrus lectin-oligosaccharide molecular modelling  相似文献   

4.
Kim YG  Kim SY  Hur YM  Joo HS  Chung J  Lee DS  Royle L  Rudd PM  Dwek RA  Harvey DJ  Kim BG 《Proteomics》2006,6(4):1133-1142
The immunogenic nonhuman carbohydrate sequences in membrane proteins from porcine kidney were identified and characterized using MALDI-TOF MS and ESI-QTOF-MS. The MALDI profile, investigated by incubation with exoglycosidases, showed a series of about 40 carbohydrates that were identified as high mannose glycans (Man(3-9)GlcNAc2) and complex bi-, tri-, and tetra-antennary glycans with and without core fucose. The antennae of many of the complex glycans were terminated with alpha-galactose residues, with the numbers of these residues ranging from one up to the number of antennae. Negative ion ESI-MS/MS spectra confirmed the location of the alpha-galactose residues on the ends of the antennae. This total glycan profile of the membrane proteins from porcine kidney will thus provide important information for the study of molecular interactions between antigenic carbohydrates and proteins in xenotransplantation.  相似文献   

5.
A review is presented focussing attention on the structural molecular biology of polysaccharides and complex carbohydrates, using examples obtained from terraqueous plants, animals, bacteria and insects The type and sequence of the condensation linkages in polysaccharides dominate their conformation, flexibility and interactions The extensive variety of geometries is overlaid by the constituent saccharide units themselves, decoration by side appendages and post-polymerisation chemical and structural modification X-ray diffraction information from oriented samples and computerised modelling has been used to analyse molecular conformation and geometry In general the relationship between glycosidic linkage geometry and conformation for the chemically simpler polysaccharides is understood In the case of more complex carbohydrates, unique solutions using diffraction methods alone are harder to establish In mixed protein carbohydrate systems, such as the glycoprotein antifreezes and protein-polysaccharide fibrous composites in insect cuticle, novel features in structure, morphology and interactions can usefully be explored and examined.  相似文献   

6.
A key concept in template‐based modeling (TBM) is the high correlation between sequence and structural divergence, with the practical consequence that homologous proteins that are similar at the sequence level will also be similar at the structural level. However, conformational diversity of the native state will reduce the correlation between structural and sequence divergence, because structural variation can appear without sequence diversity. In this work, we explore the impact that conformational diversity has on the relationship between structural and sequence divergence. We find that the extent of conformational diversity can be as high as the maximum structural divergence among families. Also, as expected, conformational diversity impairs the well‐established correlation between sequence and structural divergence, which is nosier than previously suggested. However, we found that this noise can be resolved using a priori information coming from the structure‐function relationship. We show that protein families with low conformational diversity show a well‐correlated relationship between sequence and structural divergence, which is severely reduced in proteins with larger conformational diversity. This lack of correlation could impair TBM results in highly dynamical proteins. Finally, we also find that the presence of order/disorder can provide useful beforehand information for better TBM performance.  相似文献   

7.
W3-SWEET: Carbohydrate Modeling By Internet   总被引:5,自引:0,他引:5  
The software tool SWEET accessible through Internet is described which rapidly converts the commonly used sequence information of complex carbohydrates directly into a preliminary but reliable 3D model. The basic idea is to link preconstructed 3D molecular templates of monosaccharides in a specific way of binding as defined in the sequence information. In a subsequent step a fast routine to explore the conformational space for each glycosidic linkage has been implemented. Systematic rotations around the glycosidic linkages are performed, calculating the van der Waals interactions for each step of rotation. The user interaction is supported by an input spreadsheet consisting of a grid of sugar symbol and connection type cells. Several ways to visualise and to output the generated structures and related information are implemented. Since interactivity is an absolute prerequisite for each WWW application, the limitations of the approach are discussed in detail. SWEET will open modelling techniques to a broader range of users, especially for those who do not have access to the required hard- and software equipment.  相似文献   

8.
Studies centered on understanding how molecular structure affects biological function have historically focused on proteins. Circular dichroism (CD) is commonly used to analyze protein secondary structure, yet its application to other molecules is far less explored. In fact, little is known about how glycan conformation might affect function, likely because of a lack of tools for measuring dynamic structural changes of carbohydrates. In the present study, we developed a method based on CD to monitor conformational changes in the zwitterionic T-cell-activating glycoantigen polysaccharide A1 (PSA). We found that PSA helical structure produces a CD spectrum that is strikingly similar to proteins rich in alpha-helical content and is equally sensitive to nonpolar solvents. Like conventional T-cell-dependent proteins, PSA requires processing before major histocompatibility complex class II (MHCII) binding. CD spectra of PSA fragments of varying sizes indicated that fragments smaller than three repeating units lack helical content and are incapable of MHCII binding. Likewise, neutralization of charged groups in the repeating unit resulted in major conformational changes as measured by CD, which correlated with a lack of MHCII presentation. These data represent two significant findings: CD can be used to measure conformational changes in carbohydrates and the functional epitope from PSA is dependent on a specific conformation that is stabilized by adjacent repeating units and a zwitterionic charge motif. As a result, this work demonstrates that CD is a valuable tool for use in functional glycomics efforts that seek to align chemical and conformational structure with biological activity.  相似文献   

9.
BackgroundDiverse varieties of often heterogeneous glycans are ubiquitous in nature. They play critical roles in recognition events, act as energy stores and provide structural stability at both molecular and cellular levels. Technologies capable of fully elucidating the structures of glycans are far behind the other ‘-omic’ fields. Liquid chromatography (LC) and mass spectrometry (MS) are currently the most useful techniques for high-throughput analysis of glycans. However, these techniques do not provide full unambiguous structural information and instead the gap in full sequence assignment is frequently filled by a priori knowledge of the biosynthetic pathways and the assumption that these pathways are highly conserved.Scope of the reviewThis comprehensive review details the rise of the emerging analytical technique ion mobility spectrometry (IMS) (coupled to MS) to facilitate the determination of three-dimensional shape: the separation and characterization of isobaric glycans, glyco(peptides/proteins), glycolipids, glycosaminoglycans and other polysaccharides; localization of sites of glycosylation; or interpretation of the conformational change to proteins upon glycan binding.Major conclusionsIMS is a highly promising new analytical route, able to provide rapid isomeric separation (ms timescale) of either precursor or product ions facilitating MS characterization. This additional separation also enables the deconvolution of carbohydrate MS(/MS) information from contaminating ions, improving sensitivity and reducing chemical noise. Derivation of collision cross sections (CCS) from IM-MS(/MS) data and subsequent calculations validate putative structures of carbohydrates from ab initio derived candidates. IM-MS has demonstrated that amounts of specific glycan isomers vary between disease states, which would be challenging to detect using standard analytical approaches.General significanceIM-MS is a promising technique that fills an important gap within the Glycomics toolbox, namely identifying and differentiating the three-dimensional structure of chemically similar carbohydrates and glycoconjugates. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.  相似文献   

10.
Computer modeling has become a valuable component of studies of carbohydrate three-dimensional structures and their relationship to function and properties. In this paper we examine the methods required for conformational modeling of carbohydrates, and we present a series of tools that have been developed to this end. These tools can be integrated into three-dimensional real-time molecular modeling software. A data base of pre-optimized carbohydrate fragments has been established to be used further in the construction of much more complex molecules. In addition we describe some possible uses of a data base of three dimensional structures of the disaccharide fragments present in the glycan moiety ofN-glycoprotein. A molecular mechanical force field appropriate for the conformational analysis of oligosaccharides has been derived by the addition of new parameters to the Tripos force field and is compatible with protein simulations. The new parametrization has been assessed in three stages of increasing complexity: computations of potential energy surfaces, conformational refinement of relevant oligosaccharides, modeling at the atomic level of a protein/carbohydrate complex.  相似文献   

11.
Complex carbohydrates are implicated in many important biological processes, and have a strong interaction with water. This close interplay with molecular water through multiple hydroxyls may be an integral part of their emergent structure and dynamics, as selected during evolution. Using molecular dynamics simulations with explicit water the interactions at the linkages within a variety of oligosaccharides are investigated and contrasted, in order to establish correlations between linkage orientation, sugar epimerization, and water interaction. In particular, interactions at alpha linkages, and between mannose and glucose residues, that are common in oligosaccharides are considered. Sugars joined by alpha linkages at the 2-, 3-, and 6-position were found to interact via a combination of weak hydrogen-bonds and water-bridges, which is dependent on the epimerization state of the sugars. Due to their three-dimensional structure, they are also likely to interact with noncontiguous sugar residues in an oligosaccharide, which can lead to ordered structures through the exclusion of water. On the other hand, beta linkages (to 3- and 4-position) maintain strong hydrogen-bonds, have a limited ability to be involved in water-bridges, and predominantly interact with the directly attached sugars. Therefore, sequences of alpha-linked sugars form compact, branched structures that have conformational flexibility, and beta linkages form extended, relatively rigid structures, suitable for structural molecules, and at the termini of protein bound oligosaccharides. These results provide further tentative ties between chemical structure, water interactions, and the emergent form and function of specific sugars and linkages in oligosaccharides.  相似文献   

12.
Site-specific presentation of oligosaccharides in the context of carrier proteins can influence markedly their recognition by carbohydrate-binding proteins. On RNaseB, the Man5-9 N-glycans at Asn-34 are bound by the serum lectin conglutinin when the glycoprotein is reduced and denatured, but there is no binding to the N-glycans on the native form of RNaseB. The RNaseB Man8, which is a glycoform preferentially bound by conglutinin, is the subject of the present study. The conformational behavior of the protein-linked oligosaccharide Man8 is investigated on the native and on the reduced and denatured RNaseB, using a combination of NMR and theoretical calculations. Quantitative data on the NOESY crosspeaks have been obtained, thereby allowing the comparison of mobilities of homologous linkages within the glycan chain. Oligosaccharide conformations compatible with the NMR data have been explored by molecular modeling of the free oligosaccharide, using two different force fields (AMBER and SYBYL). There are some differences between the results produced by the two force fields, the AMBER simulations providing a better agreement with the experimental data. The results indicate that both on the native and on the reduced heat-denatured glycoprotein, the RNase Man8 oligosaccharide exhibits a conformational behavior very similar to that of the free oligosaccharide. However, this conformational freedom of the N-glcyan does not amount to full availability for carbohydrate-recognition proteins and enzymes.  相似文献   

13.
Effective characterization of protein-based therapeutic candidates such as monoclonal antibodies (mAbs) is important to facilitate their successful progression from early discovery and development stages to marketing approval. One challenge relevant to biopharmaceutical development is, understanding how the stability of a protein is affected by the presence of an attached oligosaccharide, termed a glycan. To explore the utility of molecular dynamics simulations as a complementary technique to currently available experimental methods, the Fc fragment was employed as a model system to improve our understanding of protein stabilization by glycan attachment. Long molecular dynamics simulations were performed on three Fc glycoform variants modeled using the crystal structure of a human IgG1 mAb. Two of these three glycoform variants have their glycan carbohydrates partially or completely removed. Structural differences among the glycoform variants during simulations suggest that glycan truncation and/or removal can cause quaternary structural deformation of the Fc as a result of the loss or disruption of a significant number of inter-glycan contacts that are not formed in the human IgG1 crystal structure, but do form during simulations described here. Glycan truncation/removal can also increase the tertiary structural deformation of CH2 domains, demonstrating the importance of specific carbohydrates toward stabilizing individual CH2 domains. At elevated temperatures, glycan truncation can also differentially affect structural deformation in locations (Helix-1 and Helix-2) that are far from the oligosaccharide attachment point. Deformation of these helices, which form part of the FcRn, could affect binding if these regions are unable to refold after temperature normalization. During elevated temperature simulations of the deglycosylated variant, CH2 domains collapsed onto CH3 domains. Observations from these glycan truncation/removal simulations have improved our understanding on how glycan composition can affect mAb stability.  相似文献   

14.
Cyclosporin A (CsA) and FK506 are potent natural product immunosuppressants that induce their biological effects by forming an initial complex with cytosolic proteins termed immunophilins. These drug immunophilin complexes then bind to and inhibit the serine/threonine protein phosphatase calcineurin (CN). Two classes of immunophilin have been identified with cyclophilins (CyP's) being proteins specifically binding CsA and FKBPs specifically binding FK506. Solution and crystal structures of various CsA-CyP and FK506-FKBP complexes have been determined and show no apparent structural similarity between the two classes of drug protein complexes. These findings raise the question as to how, given their structural differences, these two complexes can both inhibit CN. While the crystal structure of the FK506-FKBP12-CN complex has been reported, no structure for a CsA-CyP CN complex has been determined. Here are reported studies that use various modelling strategies to construct a model for the interaction of the cyclosporin A- cyclophilin A complex with calcineurin. The first stage of constructing this model consisted of using conformational comparison of CsA and FK506, GRID and GROUP analysis and restrained molecular dynamics to dock CsA into the FK506 binding site of the FK506-FKBP12-CN structure. An initial model for the CsA-CyPA-CN complex was then constructed by superimposing the structure of the CsA-CyPA complex onto the docked CsA molecule. This model was then optimised with molecular dynamics simulations run on sterically clashing regions. The validity of the model for the CsA-CyPA-CN complex was then examined with respect to the effect of chemical modifications to CsA and amino acid substitutions within CyPA on the ability of the drug-immunophilin complex to inhibit calcineurin.  相似文献   

15.
Type IV secretion (T4S) systems are able to transport DNAs and/or proteins through the membranes of bacteria. They form large multiprotein complexes consisting of 12 proteins termed VirB1‐11 and VirD4. VirB7, 9 and 10 assemble into a 1.07 MegaDalton membrane‐spanning core complex (CC), around which all other components assemble. This complex is made of two parts, the O‐layer inserted in the outer membrane and the I‐layer inserted in the inner membrane. While the structure of the O‐layer has been solved by X‐ray crystallography, there is no detailed structural information on the I‐layer. Using high‐resolution cryo‐electron microscopy and molecular modelling combined with biochemical approaches, we determined the I‐layer structure and located its various components in the electron density. Our results provide new structural insights on the CC, from which the essential features of T4S system mechanisms can be derived.  相似文献   

16.
The AAA+ family of proteins play fundamental roles in all three kingdoms of life. It is thought that they act as molecular chaperones in aiding the assembly or disassembly of proteins or protein complexes. Recent structural studies on a number of AAA+ family proteins have revealed that they share similar structural elements. These structures provide a possible link between nucleotide binding/hydrolysis and the conformational changes which are then amplified to generate mechanical forces for their specific functions. However, from these individual studies it is far from clear whether AAA+ proteins in general share properties in terms of nucleotide induced conformational changes. In this study, we analyze sequence conservation within the AAA+ family and identify two subfamilies, each with a distinct conserved linker sequence that may transfer conformational changes upon ATP binding/release to movements between subdomains and attached domains. To investigate the relation of these linker sequences to conformational changes, molecular dynamics (MD) simulations on X-ray structures of AAA+ proteins from each subfamily have been performed. These simulations show differences in both the N-linker peptide, subdomain motion, and cooperativity between elements of quaternary structure. Extrapolation of subdomain movements from one MD simulation enables us to produce a structure in close agreement with cryo-EM experiments.  相似文献   

17.
Glycosylated proteins are ubiquitous components of extracellular matrices and cellular surfaces where their oligosaccharide moieties are implicated in a wide range of cell-cell and cell-matrix recognition events. Glycans constitute highly flexible molecules. Only a small number of glycan X-ray structures is available for which sufficient electron density for an entire oligosaccharide chain has been observed. An unambiguous structure determination based on NMR-derived geometric constraints alone is often not possible. Time consuming computational approaches such as Monte Carlo calculations and molecular dynamics simulations have been widely used to explore the conformational space accessible to complex carbohydrates. The generation of a comprehensive data base for N-glycan fragments based on long time molecular dynamics simulations is presented. The fragments are chosen in such a way that the effects of branched N-glycan structures are taken into account. The prediction database constitutes the basis of a procedure to generate a complete set of all possible conformations for a given N-glycan. The constructed conformations are ranked according to their energy content. The resulting conformations are in reasonable agreement with experimental data. A web interface has been established (http://www.dkfz.de/spec/glydict/), which enables to input any N-glycan of interest and to receive an ensemble of generated conformations within a few minutes.  相似文献   

18.
We have performed replica-exchange molecular dynamics simulations on 41 residue peptides containing NAC region of alpha-synuclein in various force fields and solvent conditions. Alpha-synuclein is known to be the major cause of Parkinson's disease by amyloid-like aggregation, and one of the natively unfolded proteins. To investigate conformational characteristics of intrinsically unstructured peptides, we carried out structural analysis by introducing 'representative structure' for ensemble of structures occurring during the overall trajectory. Representative structures may be defined by using either coordinate averaging or distance averaging. When applied to the natively folded proteins such as villin headpiece, structural analysis based on representative structure was found to yield consistent results with those obtained from conventional analysis. Individual conformations obtained from the simulations of NAC peptide for various conditions show flexible structures close to random coil. Secondary structure contents and free energy surfaces showed dependency on solvent conditions, which may be interpreted as another manifestation of structural diversity. It is found that representative structures can provide useful information about structural characteristics of intrinsically unstructured proteins.  相似文献   

19.
A general strategy has been developed for determining the structural class (oligomannose, hybrid, complex), branching types (biantennary, triantennary, etc.), and molecular microheterogeneity of N-linked oligosaccharides at specific attachment sites in glycoproteins. This methodology combines mass spectrometry and high-performance anion-exchange chromatography with pulsed amperometric detection to take advantage of their high sensitivity and the capability for analysis of complex mixtures of oligosaccharides. Glycopeptides are identified and isolated by comparative HPLC mapping of proteolytic digests of the protein prior to, and after, enzymatic release of carbohydrates. Oligosaccharides are enzymatically released from each isolated glycopeptide, and the attachment site peptide is identified by fast atom bombardment mass spectrometry (FAB-MS) of the mixture. Part of each reaction mixture is then permethylated and analyzed by FAB-MS to identify the composition and molecular heterogeneity of the carbohydrate moiety. Fragment ions in the FAB mass spectra are useful for detecting specific structural features such as polylactosamine units and bisecting N-acetylhexosamine residues, and for locating inner-core deoxyhexose residues. Methylation analysis of these fractions provides the linkages of monomers. Based on the FAB-MS and methylation analysis data, the structural classes of carbohydrates at each attachment site can be proposed. The remaining portions of released carbohydrates from specific attachment sites are preoperatively fractionated by high-performance anion-exchange chromatography, permethylated, and analyzed by FAB-MS. These analyses yield the charge state and composition of each peak in the chromatographic map, and provide semiquantitative information regarding the relative amounts of each molecular species. Analytically useful data may be obtained with as little as 10 pmol of derivatized carbohydrate, and fmol sensitivity has been achieved. The combined carbohydrate mapping and structural fingerprinting procedures are illustrated for a recombinant form of the CD4 receptor glycoprotein.  相似文献   

20.
GlycoSuiteDB is a relational database that curates information from the scientific literature on glyco-protein derived glycan structures, their biological sources, the references in which the glycan was described and the methods used to determine the glycan structure. To date, the database includes most published O:-linked oligosaccharides from the last 50 years and most N:-linked oligosaccharides that were published in the 1990s. For each structure, information is available concerning the glycan type, linkage and anomeric configuration, mass and composition. Detailed information is also provided on native and recombinant sources, including tissue and/or cell type, cell line, strain and disease state. Where known, the proteins to which the glycan structures are attached are reported, and cross-references to the SWISS-PROT/TrEMBL protein sequence databases are given if applicable. The GlycoSuiteDB annotations include literature references which are linked to PubMed, and detailed information on the methods used to determine each glycan structure are noted to help the user assess the quality of the structural assignment. GlycoSuiteDB has a user-friendly web interface which allows the researcher to query the database using mono-isotopic or average mass, monosaccharide composition, glycosylation linkages (e.g. N:- or O:-linked), reducing terminal sugar, attached protein, taxonomy, tissue or cell type and GlycoSuiteDB accession number. Advanced queries using combinations of these parameters are also possible. GlycoSuiteDB can be accessed on the web at http://www.glycosuite.com.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号